MATH 204 Examination December 8, 2019

Name _

GIVE DETAILED EXPLANATIONS FOR YOUR ANSWERS.

On a final exams I assign eight problems. Each is worth 12.5 points.

I try to assign problems from different topics that we covered.

Two out of eight problems may be from Chapter 5.

1. Let
$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$
 and $\mathbf{x}_0 = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$.

- (a) Find a basis of \mathbb{R}^2 which consists of eigenvectors of A.
- (b) Write \mathbf{x}_0 as a linear combination of the basis vectors found in 1a.
- (c) Let k be a positive integer. Write $A^k \mathbf{x}_0$ as a linear combination of the basis vectors found in 1a.
- (d) What can you say about a vector $A^k \mathbf{x}_0$ for large positive integer k, say k = 1000?

2. Consider the matrix
$$A = \begin{bmatrix} 5 & h & -2 & 1 \\ 0 & 3 & h & 2 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
. Find the value(s) of $h \in \mathbb{R}$ such that the matrix

A is diagonalizable.

3. Consider the matrix
$$A = \begin{bmatrix} 0 & -5 & 3 \\ 1 & 6 & -3 \\ 3 & 9 & -4 \end{bmatrix}$$

- (a) Diagonalize the matrix A.
- (b) Calculate A^6 without using your calculator.
- (c) Calculate A^k , where k is an even integer.
- 4. Is the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ diagonalizable?
- 5. Consider the matrix $A = \begin{bmatrix} 1 & -3 & -3 \\ 3 & 7 & 3 \\ -3 & -3 & 1 \end{bmatrix}$. The eigenvalues of this matrix are 1 and 4.
 - (a) Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$.
 - (b) Let D be the diagonal matrix found in 5a. Find eight distinct diagonal matrices D_1, \ldots, D_8 such that $(D_j)^2 = D$.
 - (c) We have seen how we can use the expression $A = PDP^{-1}$ to easily compute high powers of the matrix A. Use this idea and 5b to find several matrices B such that $B^2 = A$.

6. For a real number x consider the matrix $A_x = \begin{bmatrix} 1 & x & 0 \\ x & x & x \\ 0 & x & 1 \end{bmatrix}$.

- (a) Prove that $\lambda = 1$ is an eigenvalue of the matrix A_x for all real numbers x. Find a corresponding eigenvector.
- (b) Does there exist an $x \in \mathbb{R}$ such that the eigenspace corresponding to the eigenvalue $\lambda = 1$ is two dimensional? Find all such x.
- (c) Prove that all the eigenvalues of A_x are real.
- (d) For which value(s) of x is $\lambda = -1$ an eigenvalue of A_x ?
- (e) For which value(s) of x all eigenvalues of A_x are positive?
- (f) For which value of x the distance between the smallest and the largest eigenvalue of A_x is the smallest possible.
- (g) Is the matrix A_x diagonalizable for every $x \in \mathbb{R}$?

This is the increasing order of difficulty: 6d, 6a, 6b, 6c, 6g, 6e, 6f.

7. Repeat the above problem for the matrix $A_x = \begin{bmatrix} 0 & x & 1 \\ x & x & x \\ 1 & x & 0 \end{bmatrix}$. Make one change: swap the expressions $\lambda = 1$ and $\lambda = -1$.

The last two problems are too long for an exam. I just wanted to make a record of all interesting questions that came to mind.