$\displaystyle \left\lfloor \frac{1}{2} + \sqrt{2n} \right\rfloor = m$
$\bigl\lfloor \sqrt{2n} + \frac{1}{2} \bigr\rfloor = m \ $ if and only if $ \ m \leq \sqrt{2n} + \frac{1}{2} \lt m+1$.
$m \leq \sqrt{2n} + \frac{1}{2} \lt m+1 \ $ if and only if $ \ m - \frac{1}{2} \leq \sqrt{2n} \lt m + \frac{1}{2}$
$m - \frac{1}{2} \leq \sqrt{2n} \lt m + \frac{1}{2} \ $ if and only if $ \ m^2 - m + \frac{1}{4} \leq 2n \lt m^2 + m + \frac{1}{4}$
$m^2 - m + \frac{1}{4} \leq 2n \lt m^2 + m + \frac{1}{4} \ $ if and only if $ \ m^2 - m \lt 2n \leq m^2 + m$
$m^2 - m \lt 2n \leq m^2 + m \ $ if and only if $ \ \dfrac{(m-1)m}{2} \lt n \leq \dfrac{m(m + 1)}{2}$
$\bigl\lfloor \sqrt{2n} + \frac{1}{2} \bigr\rfloor = m \ $ if and only if $ \ \dfrac{m(m-1)}{2} \lt n \leq \dfrac{m(m+1)}{2}$.
Proposition. There does not exist a surjection from $\mathbb{Z}^+$ onto $\mathcal{P}(\mathbb{Z}^+).$
Proof. Let \[ f : \mathbb{Z}^+ \to \mathcal{P}(\mathbb{Z}^+) \] be an arbitrary function from $\mathbb{Z}^+$ to $\mathcal{P}(\mathbb{Z}^+).$ We will prove that $f$ is not a surjection. To prove that $f$ is not a surjection we need to prove that there exists a subset $S$ of $\mathbb{Z}^+$ such that for all $k in \mathbb{Z}^+$ we have $f(k) \neq S.$ That is, \[ \exists\, S \in \mathcal{P}(\mathbb{Z}^+) \ \ \forall k \in \mathbb{Z}^+ \quad f(k) \neq S. \] Notice that $f(k) \in \mathcal{P}(\mathbb{Z}^+)$ for all $k \in \mathbb{Z}^+.$ We define the set $S$ as follows \[ S = \bigl\{ n \in \mathbb{Z}^+ \, | \, n \not\in f(n) \bigr\}. \] Visualize forming the set $S$ as follows: Decide whether to put $1$ in $S$ or not; look at the set $f(1)$ which is given by the function $f$; if $1 \in f(1)$ we do not put it in $S$; if $1\not\in f(1)$, then we put $1$ in $S$; now we proceed to $2$ and so on.
Now we prove the for every $k \in \mathbb{Z}^+$ we have $f(k) \neq S.$ Let $k \in \mathbb{Z}^+$ be arbitrary. We distinguish two cases. Case 1. In this case $k\in f(k).$ By the definition of $S$ in this case we have $k \not\in S.$ Hence, \[ \bigl( k\in f(k) \bigr) \wedge \bigl( k \not\in S \bigr). \] Thus, $f(k) \neq S$ in this case. Case 2. In this case $k\not\in f(k).$ By the definition of $S$ in this case we have $k \in S.$ Hence, in this case \[ \bigl( k\not\in f(k) \bigr) \wedge \bigl( k \in S \bigr) \] Thus, $f(k) \neq S$ in this case. This proves that $f(k) \neq S$. Since $k \in \mathbb{Z}^+$ was arbitrary, by universal generalization it follows that $f(k) \neq S$ for all $k \in \mathbb{Z}^+.$ This completes the proof.
Bijection between $\mathbb N$ and $\mathbb Z$
$ A =\{0\}\cup \mathbb R^+, \ B = \{0\}\cup \mathbb R^+, \ \operatorname{sq} = \bigl\{ (x,x^2) \ \bigl| \bigr. \ x \in A \bigr\} $ |
$A = \mathbb R, \ B = \mathbb R, \ \operatorname{cube} = \bigl\{ (x,x^3) \ \bigl| \bigr. \ x \in A \bigr\}$ |
---|---|
$A = \mathbb R, \ B = \mathbb R^+, \ \exp = \bigl\{ (x,e^x) \ \bigl| \bigr. \ x \in A \bigr\}$ |
$A = (-\pi/2,\pi/2), \ B = \mathbb R, \ \operatorname{rtan} = \bigl\{ \bigl( x,\tan(x) \bigr) \ \bigl| \bigr. \ x \in A \bigr\} $ |
$ A = [-\pi/2,\pi/2], \ B = [-1,1], \ \operatorname{rsin} = \bigl\{ \bigl(x,\sin(x)\bigr) \ \bigl| \bigr. \ x \in A \bigr\} $ |
$ A = [0,\pi], \ B = [-1,1], \ \operatorname{rcos} = \bigl\{ \bigl(x,\cos(x)\bigr) \ \bigl| \bigr. \ x \in A \bigr\} $ |
Place the cursor over the image to start the animation.
The composition at a generic point $x$ |
The composition at another generic point $x$ |
Finding a minimum of the composition |
Finding a maximum of the composition |
Place the cursor over the image to start the animation.
$ \operatorname{us} = \bigl\{ (x,0) \ \bigl| \bigr. x \lt 0 \bigr\} \cup \bigl\{ (x,1) \ \bigl| \bigr. x \geq 0 \bigr\} \subset \mathbb R \times \{0,1\} $ |
$ \operatorname{sgn}\! =\! \bigl\{ (x,-1) \bigl| \bigr. x \lt 0 \bigr\}\! \cup\! \bigl\{(0,0)\bigr\}\! \cup \! \bigl\{ (x,1) \ \bigl| \bigr. x \gt 0 \bigr\}\! \subset\! \mathbb R \! \times\! \{-1,0,1\} $ |
---|---|
$\operatorname{floor} = \bigl\{ (x,k) \in \mathbb R\times \mathbb Z \ \bigl| \bigr. \ k\leq x \lt k+1 \bigr\}$ |
$\operatorname{ceiling} = \bigl\{ (x,k) \in \mathbb R\times \mathbb Z \ \bigl| \bigr. \ k-1\lt x \leq k \bigr\}$ |
$\operatorname{round} = \bigl\{ (x,k) \in \mathbb R\times \mathbb Z \ \bigl| \bigr. \ k-1/2\leq x \lt k+1/2 \bigr\}$ |
$\operatorname{abs} = \bigl\{ (x,y) \in \mathbb R\times \mathbb R \ \bigl| \bigr. \ y = x \operatorname{sgn}(x) \bigr\}$ |
Grid 1 | Grid 2 | Grid 3 | Grid 4 |
---|---|---|---|
Every year that is exactly divisible by four is a leap year, except for years that are exactly divisible by 100, but these centurial years are leap years if they are exactly divisible by 400.
$P(y)\ $ stands for: | $Q(y)\ $ stands for: | $R(y)\ $ stands for: |
$\dfrac{y}{4}\ $ is an integer. | $\dfrac{y}{100}\ $ is an integer. | $\dfrac{y}{400}\ $ is an integer. |
You can fool all the people some of the time and some of the people all the time, but you cannot fool all the people all the time.