CHAPTER 3

Continuous functions

In this chapter I will always denote a non-empty subset of \mathbb{R}. This includes more general sets, but the most common examples of I are intervals.

3.1. The ϵ-δ definition of a continuous function

Definition 3.1.1. A function $f : I \to \mathbb{R}$ is continuous at a point $x_0 \in I$ if for each $\epsilon > 0$ there exists $\delta = \delta(\epsilon, x_0) > 0$ such that

$$x \in (x_0 - \delta, x_0 + \delta) \cap I \implies |f(x) - f(x_0)| < \epsilon.$$

The function f is continuous on I if it is continuous at each point of I.

Note that the implication in (3.1.1) can be restated as

$$x \in I \text{ and } |x - x_0| < \delta(\epsilon, x_0) \implies |f(x) - f(x_0)| < \epsilon.$$

Next we restate Definition 3.1.1 using the terminology introduced in Section 2.14.

For a function $f : I \to \mathbb{R}$ and a subset $A \subseteq I$ we will use the notation $f(A)$ to denote the set $\{y \in \mathbb{R} : \exists x \in A \text{ s.t. } f(x) = y\} = \{f(x) : x \in A\}$.

A function $f : I \to \mathbb{R}$ is continuous at a point $x_0 \in I$ if for each neighborhood V of $f(x_0)$ there exists a neighborhood U of x_0 such that

$$f(I \cap U) \subseteq V.$$

3.2. Finding $\delta(\epsilon)$ for a given function at a given point

In this and the next section we will prove that some familiar functions are continuous. This should be a review of what was done in Math 226.

A general strategy for proving that a given function f is continuous at a given point x_0 is as follows:

Step 1. Simplify the expression $|f(x) - f(x_0)|$ and try to establish a simple connection with the expression $|x - x_0|$. The simplest connection is to discover positive constants δ_0 and K such that

$$x \in I \text{ and } x_0 - \delta_0 < x < x_0 + \delta_0 \implies |f(x) - f(x_0)| \leq K|x - x_0|.$$

Constants δ_0 and K might depend on x_0. Formulate your discovery as a lemma.

Step 2. Let $\epsilon > 0$ be given. Use the result in Step 1 to define your $\delta(\epsilon, x_0)$. For example, if (3.2.1) holds, then $\delta(\epsilon, x_0) = \min\{\epsilon/K, \delta_0\}$.

Step 3. Use the definition of $\delta(\epsilon, x_0)$ from Step 2 and the lemma from Step 1 to prove the implication (3.1.1).
Example 3.2.1. We will show that the function $f(x) = x^2$ is continuous at $x_0 = 3$. Here $I = \mathbb{R}$ and we do not need to worry about the domain of f.

Step 1. First simplify

$(3.2.2) \quad |f(x) - f(x_0)| = |x^2 - 3^2| = |(x + 3)(x - 3)| = |x + 3||x - 3|.$

Now we notice that if $2 < x < 4$ we have $|x + 3| = x + 3 \leq 7$. Thus $(3.2.1)$ holds with $\delta_0 = 1$ and $K = 7$. We formulate this result as a lemma.

Lemma. Let $f(x) = x^2$ and $x_0 = 3$. Then

$(3.2.3) \quad |x - 3| < 1 \quad \Rightarrow \quad |x^2 - 3^2| < 7|x - 3|.$

Proof. Let $|x - 3| < 1$. Then $2 < x < 4$. Therefore $x + 3 > 0$ and $|x + 3| = x + 3 < 7$. By $(3.2.2)$ we now have $|x^2 - 3^2| < 7|x - 3|$. \hfill \Box

Step 2. Now we define $\delta(x) = \min\{\epsilon/7, 1\}$.

Step 3. It remains to prove $(3.1.1)$. To this end, assume $|x - 3| < \min\{\epsilon/7, 1\}$. Then $|x - 3| < 1$. Therefore, by Lemma we have $|x^2 - 3^2| < 7|x - 3|$. Since by the assumption $|x - 3| < \epsilon/7$, we have $7|x - 3| < 7\epsilon/7\epsilon$. Now the inequalities $|x^2 - 3^2| < 7|x - 3|$ and $7|x - 3| < \epsilon$ imply that $|x^2 - 3^2| < \epsilon$. This proves $(3.1.1)$ and completes the proof that the function $f(x) = x^2$ is continuous at $x_0 = 3$.

Exercise 3.2.2. Prove that the reciprocal function $x \mapsto \frac{1}{x}$, $x \neq 0$, is continuous at $x_0 = 1/2$.

Exercise 3.2.3. State carefully what it means for a function f not to be continuous at a point x_0 in its domain. (Express this as a formal mathematical statement.)

Exercise 3.2.4. Consider the function $f(x) = \text{sgn} x$. Find a point x_0 at which the function f is not continuous. Provide a formal proof.

Exercise 3.2.5. Show that the function $f(x) = x^2$ is continuous on \mathbb{R}.

Exercise 3.2.6. Prove that $q(x) = 3x^2 + 5$ is continuous on \mathbb{R}.

3.3. Familiar continuous functions

Exercise 3.3.1. Let $m, k \in \mathbb{R}$ and $m \neq 0$. Prove that the linear function $\ell(x) = mx + k$ is continuous on \mathbb{R}.

Exercise 3.3.2. Let $a, b, c \in \mathbb{R}$ and $a \neq 0$. Prove that the quadratic function $q(x) = ax^2 + bx + c$ is continuous on \mathbb{R}.

Exercise 3.3.3. Let $n \in \mathbb{N}$ and let $x, x_0 \in \mathbb{R}$ be such that $x_0 - 1 \leq x \leq x_0 + 1$. Prove the following inequality

$$|x^n - x_0^n| \leq n(|x_0| + 1)^{n-1}|x - x_0|.$$

Hint: First notice that the assumption $x_0 - 1 \leq x \leq x_0 + 1$ implies that $|x| < |x_0| + 1$. Then use the Mathematical Induction and the identity

$$|x^{n+1} - x_0^{n+1}| = |x^{n+1} - x x_0^n + x_0^n - x_0^{n+1}|.$$

Exercise 3.3.4. Let $n \in \mathbb{N}$. Prove that the power function $x \mapsto x^n$, $x \in \mathbb{R}$, is continuous on \mathbb{R}.
Exercise 3.3.5. Let \(n \in \mathbb{N} \) and let \(a_0, a_1, \ldots, a_n \in \mathbb{R} \) with \(a_n \neq 0 \). Prove that the \(n \)-th order polynomial
\[
p(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + a_n x^n
\]
is a continuous function on \(\mathbb{R} \).

Exercise 3.3.6. Prove that the reciprocal function \(x \mapsto \frac{1}{x}, x \neq 0 \), is continuous on its domain.

Exercise 3.3.7. Prove that the square root function \(x \mapsto \sqrt{x}, x \geq 0 \), is continuous on its domain.

Exercise 3.3.8. Let \(n \in \mathbb{N} \) and let \(x \) and \(a \) be positive real numbers. Prove that
\[
|\sqrt[n]{x} - \sqrt[n]{a}| \leq \frac{\sqrt[n]{a}}{a} |x - a|.
\]
HINT: Notice that the given inequality is equivalent to
\[
b^{n-1} |y - b| \leq |y^n - b^n|, \quad y, b > 0.
\]
This inequality can be proved using Exercise 2.7.7 (with \(a = 1 \) and \(x = y/b \)).

Exercise 3.3.9. Let \(n \in \mathbb{N} \). Prove that the \(n \)-th root function \(x \mapsto \sqrt[n]{x}, x \geq 0 \), is continuous on its domain.

3.4. Various properties of continuous functions

Exercise 3.4.1. Let \(f : I \to \mathbb{R} \) be continuous at \(x_0 \in I \) and let \(y \) be a real number such that \(f(x_0) < y \). Then there exists \(\alpha > 0 \) such that
\[
x \in I \cap (x_0 - \alpha, x_0 + \alpha) \quad \Rightarrow \quad f(x) < y.
\]
Illustrate with a diagram.

Exercise 3.4.2. Let \(f : I \to \mathbb{R} \) be a continuous function on \(I \). Let \(S \) be a non-empty bounded above subset of \(I \) such that \(u = \sup S \) belongs to \(I \). Let \(y \in \mathbb{R} \). Prove: If \(f(x) \leq y \) for each \(x \in S \), then \(f(u) \leq y \).

3.5. Algebra of continuous functions

All exercises in this section have the same structure. With the exception of Exercise 3.5.3 there are three functions in each exercise: \(f \), \(g \) and \(h \). The function \(h \) is always related in a simple (green) way to the functions \(f \) and \(g \). Based on the given (green) information about \(f \) and \(g \) you are asked to prove a claim (red) about the function \(h \).

Exercise 3.5.1. Let \(f : I \to \mathbb{R} \) and \(g : I \to \mathbb{R} \) be given functions with a common domain. Define the function \(h : I \to \mathbb{R} \) by
\[
h(x) = f(x) + g(x), \quad x \in I.
\]
(a) If \(f \) and \(g \) are continuous at \(x_0 \in I \), then \(h \) is continuous at \(x_0 \).
(b) If \(f \) and \(g \) are continuous on \(I \), then \(h \) is continuous on \(I \).

Exercise 3.5.2. Let \(f : I \to \mathbb{R} \) and \(g : I \to \mathbb{R} \) be given functions with a common domain. Define the function \(h : I \to \mathbb{R} \) by
\[
h(x) = f(x)g(x), \quad x \in I.
\]
(a) If f and g are continuous at $x_0 \in I$, then h is continuous at x_0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 3.5.3. Let $g : I \to \mathbb{R}$ be a given functions such that $g(x) \neq 0$ for all $x \in I$. Define the function $h : I \to \mathbb{R}$ by

$$h(x) = \frac{1}{g(x)}, \quad x \in I.$$

(a) If g is continuous at $x_0 \in I$, then h is continuous at x_0.
(b) If g is continuous on I, then h is continuous on I.

Exercise 3.5.4. Let $f : I \to \mathbb{R}$ and $g : I \to \mathbb{R}$ be given functions with a common domain. Assume that $g(x) \neq 0$ for all $x \in I$. Define the function $h : I \to \mathbb{R}$ by

$$h(x) = \frac{f(x)}{g(x)}, \quad x \in I.$$

(a) If f and g are continuous at $x_0 \in I$, then h is continuous at x_0.
(b) If f and g are continuous on I, then h is continuous on I.

Exercise 3.5.5. Let I and J be non-empty subsets of \mathbb{R}. Let $f : I \to \mathbb{R}$ and $g : J \to \mathbb{R}$ be given functions. Assume that the range of f is contained in J. Define the function $h : I \to \mathbb{R}$ by

$$h(x) = g(f(x)), \quad x \in I.$$

(a) If f is continuous at $x_0 \in I$ and g is continuous at $f(x_0) \in J$, then h is continuous at x_0.
(b) If f is continuous on I and g is continuous on J, then h is continuous on I.

3.6. Continuous functions on a closed bounded interval $[a, b]$

In this section we assume that $a, b \in \mathbb{R}$ and $a < b$.

Exercise 3.6.1. Let $f : [a, b] \to \mathbb{R}$ be a continuous function. If $f(a) < 0$ and $f(b) > 0$, then there exists $c \in [a, b]$ such that $f(c) = 0$.

HINT: Consider the set

$$W = \{ w \in [a, b] : \forall x \in [a, w] \ f(x) < 0 \}.$$

Prove the following properties of W:

(i) W does not have a maximum.
(ii) W has a supremum. Set $w = \sup W$.
(iii) Review Exercise 3.4.2.
(iv) Connect the dots.

Exercise 3.6.2. Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then there exists $c \in [a, b]$ such that $f(x) \leq f(c)$ for all $x \in [a, b]$.

HINT: Consider the set

$$W = \{ v \in [a, b] : \exists z \in [a, b] \text{ such that } \forall x \in [a, v] \ f(x) < f(z) \}.$$

Here $[a, a]$ denotes the set $\{ a \}$. Prove the following properties of the set W:

(i) If $a < u$ and $[a, u] \subseteq W$ and there exists $t \in [a, b]$ such that $f(t) > f(u)$, then $u \in W$.
(ii) W does not have a maximum.
(iii) W has a supremum. Set $w = \sup W$ and prove $[a, w] \subseteq W$.
(iv) The items \(\text{(iii)} \) and \(\text{(iv)} \) yield information about \(w \).

Exercise 3.6.3. Let \(f : [a, b] \to \mathbb{R} \) be a continuous function. Then there exists \(d \in [a, b] \) such that \(f(d) \leq f(x) \) for all \(x \in [a, b] \).

Hint: Use Exercise 3.6.2

Exercise 3.6.4. Let \(f : [a, b] \to \mathbb{R} \) be a continuous function. Then the range of \(f \) is a closed bounded interval.

Hint: Use Exercises 3.6.2, 3.6.3, and 3.6.1

Exercise 3.6.5. Consider the function \(f(x) = x^2, x \in \mathbb{R} \).

(a) Prove that 2 is in the range of \(f \).

(b) Prove that the range of \(f \) equals \([0, +\infty)\).

Definition 3.6.6. A function \(f \) is **increasing** on an interval \(I \) if \(x, y \in I \) and \(x < y \) imply \(f(x) < f(y) \). A function \(f \) is **decreasing** if \(x, y \in I \) and \(x < y \) imply \(f(x) > f(y) \). A function which is increasing or decreasing is said to be **strictly monotonic**.

Exercise 3.6.7. If \(f \) is continuous and increasing on \([a, b]\) or continuous and decreasing on \([a, b]\), then for each \(y \) between \(f(a) \) and \(f(b) \) there is exactly one \(x \in [a, b] \) such that \(f(x) = y \).

Exercise 3.6.8. Let \(f(x) = x^3 + x, x \in \mathbb{R} \). Prove that \(f \) has an inverse. That is, prove that for each \(y \in \mathbb{R} \) there exists unique \(x \in \mathbb{R} \) such that \(f(x) = y \).