Topology of IR at the end, I proved that E closed => E open by proving the contrapositive

Jopology 0\$ $a \in \mathbb{R}$ a neighborhood is $(a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$ of a $\mathcal{N}(a, \varepsilon)$ Punctured neighborhood : 304 $N(a, E) \ 2ay$ GER is an accumulation print $F \subseteq IR$ $\uparrow \neq \emptyset$ $E \cap (N(a, e)) \neq ag$

 \mathbf{C} When we are proving that a is an acc. print of a given E, then it is, just algebro to more - XEE S.T. and $x \in N/a, \varepsilon$ punctured

The most important example is A bad above (supA) & A then supA is an acc. put. of A V To some extend, the acc. points of E "belong" to E E attracts its acc. puts. of E closure of E = EUE

CL(E) = E = EUE'E is said to closed if $E' \leq E$. $F = \overline{F}$ $\overline{F} = (0,1)$ $\sup_{x \in E} E = 1$ $\lim_{x \in E} E = 0$ 0¢E 1ÉE $\overline{E} = \begin{bmatrix} 0, 1 \end{bmatrix}$ $0, 1 \in E'$

Dual concepts: ESR $a \in \mathbb{R}$ is an interior point of E $\exists \varepsilon > 0 \text{ s.t. } \mathcal{N}(a, \varepsilon) \leq E$ The set of all interior points of E is denoted by E St/iu IK

 $\mathcal{F}^{o} =$

i's an open se - 1 E>O such that Definition of open set au $N(a, \varepsilon) \subseteq E$ E is closed if and only if the complement of E, is open. $F^{c} = R^{\prime}$

 $(N(b,\varepsilon), 2by) \cap E \neq \emptyset.$ Thus, we proved that b is an ACC Point of E and, by assemption b EE that is b & E. This prores that E is NOT closed.

E open = E closed Let us try the contrapositive again. Enot closed = Enot open EÉÉ means that there exists an accumulation point a of E such that a & E Jaf E such that te> $(N(a, \varepsilon) \setminus \{a\}) \cap E \neq \emptyset$

Since a & E, Huis means $N(a, \varepsilon) \cap E \neq \emptyset. \Leftrightarrow M(a, \varepsilon) \neq E'$ Thus JacE' Such that $\forall \varepsilon > 0 \quad N(a, \varepsilon) \neq E^{c}.$ that is a E is NOT an interior point of E°, that is S NOT OPEN.