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Throughout this note V is a vector space over F and j, k, l,m, and n are
natural numbers.

Definition 1. Vectors v1, . . . , vn ∈ V are said to be linearly dependent if
there exist α1, . . . , αn ∈ F and k ∈ {1, . . . , n} such that α1v1+· · ·+αnvn = 0
and αk 6= 0.

The formal negation of the statement in Definition 1 is:
For all α1, . . . , αn ∈ F and all k ∈ {1, . . . , n} we have α1v1+· · ·+αnvn 6= 0

or αk = 0.
The last statement is equivalent to:
For all α1, . . . , αn ∈ F and all k ∈ {1, . . . , n} we have α1v1+· · ·+αnvn = 0

implies αk = 0.
The last statement can be restated as:
If α1, . . . , αn ∈ F and α1v1 + · · · + αnvn = 0, then αk = 0 for all k ∈

{1, . . . , n}.

Definition 2. Vectors v1, . . . , vn ∈ V are said to be linearly independent if
α1, . . . , αn ∈ F and α1v1+· · ·+αnvn = 0 implies αk = 0 for all k ∈ {1, . . . , n}.

Lemma 3. Let k ≤ m and let v1, . . . , vm be vectors in V. If the vectors
v1, . . . , vk are linearly dependent, then the vectors v1, . . . , vm are linearly
dependent.

Proof. Let the vectors v1, . . . , vk be linearly dependent. Then there exist
α1, . . . , αk in F, not all equal to 0, such that α1v1 + · · · + αkvk = 0. Take
αk+1 = · · · = αm = 0. Then, not all α1, . . . , αk, . . . , αm are equal to 0
and α1v1 + · · ·+ αkvk + · · ·+ αmvm = 0. Therefore, v1, . . . , vm are linearly
dependent. �

The following corollary is the contrapositive of Lemma 3.

Corollary 4. Let k ≤ m and let v1, . . . , vm be vectors in V. If the vectors
v1, . . . , vm are linearly independent, then the vectors v1, . . . , vk are linearly
independent.

Lemma 5. Let m ≥ 2, let v1, . . . , vm be vectors in V. The vectors v1, . . . , vm

are linearly dependent if and only if there exists k ∈ {1, 2, . . . ,m} such that

(1) span
{
vl : l ∈ {1, . . . ,m} \ {k}

}
= span{v1, . . . , vm}.
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Proof. Assume that v1, . . . , vm are linearly dependent. Then there exist
α1, . . . , αm ∈ F such that α1v1 + · · · + αmvm = 0 and there exists k ∈
{1, . . . ,m} such that αk 6= 0. Now, α1v1 + · · ·+ αmvm = 0 implies

vk = −(1/αk)
(
α1v1 + · · ·+ αk−1vk−1 + αk+1vk+1 + · · ·+ αmvm

)
.

Thus vk ∈ span
{
vl : l ∈ {1, . . . ,m} \ {k}

}
. Consequently

span{v1, . . . , vm} ⊆ span
{
vl : l ∈ {1, . . . ,m} \ {k}

}
.

Since the converse inclusion is trivial, the “if” part of the lemma is proved.
Assume that there exists k ∈ {1, 2, . . . ,m} such that (1) holds. Then

vk ∈ span
{
vl : l ∈ {1, . . . ,m} \ {k}

}
. Therefore there exist

β1, . . . , βk−1, βk+1, . . . , βm ∈ F

such that vk = β1v1 + · · ·+βk−1vk−1 +βk+1vk+1 + · · ·+βmvm. Consequently,

β1v1 + · · ·+ βk−1vk−1 + (−1)vk + βk+1vk+1 + · · ·+ βmvm = 0.

Since −1 6= 0, v1, . . . , vm are linearly dependent. �

Lemma 6. If V = span{v1, . . . , vm} and w ∈ V \ {0}, then, after a suitable
renumbering of v1, . . . , vm, we have

V = span{w, v2, . . . , vm}.

Proof. Assume that v1, . . . , vm span V and w ∈ V \ {0}. Then there exist
α1, . . . αm in F such that w = α1v1+· · ·αmvm. Since w 6= 0 not all α1, . . . αm

are equal to 0. Renumber v1, . . . , vm in such a way that α1 6= 0. Then

v1 = (1/α1)(w − α2v2 − · · · − αmvm).

Thus v1 ∈ span{w, v2, . . . , vm}. Consequently,

V = span{v1, . . . , vm} ⊆ span{w, v2, . . . , vm}.
Since the converse inclusion is obvious, V = span{w, v2, . . . , vm} is proved.

�

Lemma 7. Let 2 ≤ j ≤ m. Let w1, . . . , wj, and vj , vj+1, . . . , vm, be vectors
in V. If

(2) V = span{w1, . . . , wj−1, vj , vj+1, . . . , vm}
and w1, . . . , wj are linearly independent, then, after a suitable renumbering
of the vectors vj , . . . , vm, we have

(3) V = span{w1, . . . , wj−1, wj , vj+1 . . . , vm}.

Proof. Assume that (2) holds and that w1, . . . , wj−1, wj are linearly inde-
pendent. Then there exist β1, . . . , βm in F such that

(4) wj = β1w1 + · · ·+ βj−1wj−1 + βjvj + · · ·+ βmvm.

Since w1, . . . , wj−1, wj are linearly independent we have

wj − β1w1 − · · · − βj−1wj−1 6= 0.
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From (4) we have

0 6= wj − β1w1 − · · · − βj−1wj−1 = βjvj + · · ·+ βmvm.

Therefore not all βj , . . . , βm are equal to 0. Renumber vj , . . . , vm in such a
way that βj 6= 0. Then

vj = (1/βj)(−β1w1 − · · · − βj−1wj−1 + wj − βj+1vj+1 − · · · − βmvm).

Thus vj ∈ span{w1, . . . , wj−1, wj , . . . , vm}. Consequently,

V = span{w1, . . . , wj−1, vj , . . . , vm} ⊆ span{w1, . . . , wj , vj+1, . . . , vm}.
Since the converse inclusion is obvious, (3) is proved. �

Theorem 8. Let k ≤ m. Let v1, . . . , vm, and w1, . . . , wk be vectors in V. If
V = span{v1, . . . , vm} and w1, . . . , wk, are linearly independent, then, after
a suitable renumbering of v1, . . . , vm, we have

V = span{w1, . . . , wk, vk+1, . . . , vm}.

Proof. Assume that V = span{v1, . . . , vm} and that w1, . . . , wk are linearly
independent. Then w1 6= 0. By Lemma 6, after a suitable renumbering
of v1, . . . , vm, we have V = span{w1, v2, . . . , vm}. If k = 1 the theorem is
proved. Let k ≥ 2 and let 2 ≤ j ≤ k. By Corollary 4 the vectors w1, . . . , wj

are linearly independent. In particular w1 and w2 are linearly independent.
Lemma 7 with j = 2 yields that, after a suitable renumbering of v2, . . . , vm,
we have V = span{w1, w2, v3, . . . , vm}. Repeated application of Lemma 7
(total of k− 1 times) yields that, after a suitable renumbering of v1, . . . , vm,
we have V = span{w1, . . . , wk, vk+1, . . . , vm}. �

An important special case of the preceding theorem is when k = m. We
state it as a corollary.

Corollary 9. Let v1, . . . , vm and w1, . . . , wm be vectors in V. If w1, . . . , wm

are linearly independent and V = span{v1, . . . , vm}, then

V = span{w1, . . . , wm}.

Theorem 10. Let v1, . . . , vm and w1, . . . , wk be vectors in V. If w1, . . . , wk

are linearly independent and V = span{v1, . . . , vm}, then k ≤ m.

This theorem has the following logical structure: P ∧ Q ⇒ R. It is
not difficult to show (using the truth tables) that the last implication is
equivalent to the implication P ∧¬R ⇒ ¬Q and also to ¬R∧Q ⇒ ¬P . We
state each of these equivalent implications separately. There is no need to
number them since these statements are equivalent to Theorem 10.

Statement. Let v1, . . . , vm and w1, . . . , wk be vectors in V. If w1, . . . , wk

are linearly independent and k > m, then the vectors v1, . . . , vm do not span
V.

Statement. Let v1, . . . , vm and w1, . . . , wk be vectors in V. If k > m and
V = span{v1, . . . , vm}, then w1, . . . , wk are linearly dependent.
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Proof. We will prove the last statement. Assume that V = span{v1, . . . , vm}
and k > m. We will consider the following two cases:
Case 1. The vectors w1, . . . , wm are linearly dependent.
Case 2. The vectors w1, . . . , wm are linearly independent.
In Case 1 by Lemma 3 the vectors w1, . . . , wm, wm+1, . . . , wk are also linearly
dependent.

Now consider Case 2. By Corollary 9 we have V = span{w1, . . . , wm}.
Since k > m, we have k ≥ m + 1 and thus, wm+1 is a vector in V which
can be written as a linear combination of the vectors w1, . . . , wm. Thus the
vectors w1, . . . , wm, wm+1 are linearly dependent. Consequently

w1, . . . , wm, wm+1, . . . , wk

are linearly dependent. �

Definition 11. A vector space V over F is finite dimensional if there exists
m ∈ N and vectors v1, . . . , vm ∈ V such that

V = span{v1, . . . , vm}.
A vector space which is not finite dimensional is said to be infinite dimen-
sional.

Proposition 12. A vector space V over F is infinite dimensional if and
only if for every n ∈ N there exists linearly independent vectors v1, . . . , vn

in V.

Proof. We first prove the “only if” part. Assume that V is an infinite di-
mensional vector space over F. For n ∈ N, denote by P (n) the following
statement:

There exist n linearly independent vectors in V.

We will prove that P (n) holds for for every n ∈ N. Mathematical induction
is a natural tool here. Since the space {0V} is finite dimensional, we have
V 6= {0V}. Therefore there exists v ∈ V such that v 6= 0V . Hence P (1)
holds. Let k ∈ N and assume that P (k) holds. That is assume that there
exists linearly independent vectors v1, . . . , vk in V. Since V is an infinite
dimensional, span{v1, . . . , vk} is a proper subset of V. Therefore there exists
v ∈ V such that v 6∈ span{v1, . . . , vk}. Now it is not difficult to prove (prove
it as an exercise) that k + 1 vectors v1, . . . , vk, v are linearly independent.
Hence P (k + 1) holds.

We prove the “if” part by proving its contrapositive. Assume that V is a
finite dimensional vector space. Then there exists m ∈ N and v1, . . . , vm ∈ V
such that V = span{v1, . . . , vm}. Let w1, . . . , wm, wm+1 be arbitrary vectors
in V. By Theorem 10 (more precisely, the second Statement after it) the
vectors w1, . . . , wm, wm+1 are linearly dependent. Thus, for m + 1 ∈ N, any
vectors w1, . . . , wm, wm+1 ∈ V are linearly dependent. This completes the
proof. �
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Proposition 13. If V is a finite dimensional vector space over F and U is
a subspace of V, then U is a finite dimensional vector space over F.

Proof. We proceed with a proof by contradiction. So, we make the following
three assumptions:

(i) V is a finite dimensional vector space over F.
(ii) U is a subspace of V.
(iii) U is an infinite dimensional vector space over F.
Since V is finite dimensional there exists m ∈ N and v1, . . . , vm ∈ V such
that V = span{v1, . . . , vm}. By Proposition 12 there exists u1, . . . , um ∈ U
which are linearly independent. Since U ⊆ V, we have u1, . . . , um ∈ V. Now,
Corollary 9 implies span{u1, . . . , um} = V. Since U is infinite dimensional
we have

span{u1, . . . , um} ⊂ U and span{u1, . . . , um} 6= U .

Hence
V ⊂ U ⊆ V and V 6= U .

This is a contradiction. The proposition is proved. �

Definition 14. Let V be a finite dimensional vector space over F. A set
{v1, . . . , vn} is a basis of V if

V = span{v1, . . . , vn} and v1, . . . , vn are linearly independent.

The next theorem shows that each nonzero finite dimensional vector space
has a basis.

Theorem 15. Let V be a vector space over F. If V = span{v1, . . . , vp} and
V 6= {0}, then there exist n ∈ N, n ≤ p, and j1, . . . , jn ∈ {1, . . . , p} such
that vj1 , . . . , vjn is a basis of V.

Proof. Since V 6= {0} there exists l ∈ {1, . . . , p} such that vl 6= 0. Put

K =
{

k ∈ N : k ≤ p,
∃i1, . . . , ik ∈ {1, . . . , p} such that

vi1 , . . . , vik are linearly independent

}
.

The vector vl is linearly independent. Therefore 1 ∈ K; namely we can
choose i1 = l. Thus K 6= ∅. Since K is a subset of N and it is bounded above
by p, K has a maximum; denote it by n, n = max K. Since n ∈ K, there
exist j1, . . . , jn ∈ {1, . . . , p} such that vj1 , . . . , vjn are linearly independent.
Since vj1 , . . . , vjn are linearly independent the indexes j1, . . . , jn are distinct.
Therefore, if n = p, then {j1, . . . , jp} = {1, . . . , p}. Consequently, if n = p,
then the vectors v1, . . . , vp are linearly independent and span{v1, . . . , vp} =
V. That is v1, . . . , vp is a basis of V.

If if n < p, then {j1, . . . , jp} is a proper subset of {1, . . . , p}. We shall
prove that span{vj1 , . . . , vjn} = V. Let

k ∈ {1, . . . , p} \ {j1, . . . , jn}
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be arbitrary. Since n+1 /∈ K, the vectors (n+1 of them) vj1 , . . . , vjn , vk are
linearly dependent. Thus there exist α1, . . . , αn, αn+1 ∈ F not all zero such
that

α1vj1 + · · ·+ αnvjn + αn+1vk = 0.

Since the vectors vj1 , . . . , vjn , are linearly independent, αn+1 = 0 is not
possible. Thus αn+1 6= 0. Therefore

(5) vk = − 1
αn+1

(α1vj1 + · · ·+ αnvjn) .

Hence

vk ∈ span{vj1 , . . . , vjn} for each k ∈ {1, . . . , p} \ {j1, . . . , jn}.
Consequently

span{v1, . . . , vp} ⊆ span{vj1 , . . . , vjn}.
Since the converse inclusion is obvious, the theorem is proved. �

Theorem 16. Let V be a nonzero finite dimensional vector space. Then
V has a basis. If {v1, . . . , vm} and {w1, . . . , wn} are two basis of V, then
m = n.

Proof. The fact that V has a basis is proved in the proof of Proposition 13.
Just set U = V in that proof.

Let {v1, . . . , vm} and {w1, . . . , wn} be two bases of V. Since

V = span{v1, . . . , vm}
and w1, . . . , wn are linearly independent, Theorem 10 implies m ≥ n. Since
V = span{w1, . . . , wn} and v1, . . . , vm are linearly independent Theorem 10
implies m ≤ n. Thus m = n. �

Definition 17. Let V be a nonzero finite dimensional vector space over F
and let {v1, . . . , vn} be a basis of V. The number n is called the dimension
of V and it is denoted by dimV. By definition the dimension of the zero
vector space is 0.

Theorem 18. Let V be a finite dimensional vector space and let u1, . . . , uk

be linearly independent vectors in V. Then there exist vectors uk+1, . . . , un

in V such that {u1, . . . , un} is a basis of V.

Proof. By Theorem 16 the vector space V has a basis. Let {v1, . . . , vn} be a
basis for V. By Theorem 10 we have k ≤ n. By Theorem 8, after a suitable
renumbering of v1, . . . , vn, we have

V = span{u1, . . . , uk, vk+1, . . . , vn}.
Since v1, . . . , vn are linearly independent, by Theorem 10 (see the first State-
ment) no proper subset of

{u1, . . . , uk, vk+1, . . . , vn}
spans V. By Lemma 5 this implies that the vectors u1, . . . , uk, vk+1, . . . , vn

are linearly independent. �
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Proposition 19. Let V be a finite dimensional vector space and let U be a
subspace of V. Then dimU ≤ dimV. Also, U = V if and only if dimU =
dimV.

Proof. Let m = dimU and n = dimV. Let u1, . . . , um be a basis of U and
let v1, . . . , vn be a basis of V. Since V = span{v1, . . . , vn} and u1, . . . , um are
linearly independent Theorem 10 implies m ≤ n.

If U = V, then clearly dimU = dimV. Now assume that U is a proper
subspace of V. Then there exists v ∈ V such that v /∈ U . Let again u1, . . . , um

be a basis of U . Then u1, . . . , um, v are linearly independent vectors in V.
By Theorem 10 we have m + 1 ≤ n. Thus m < n. �

Proposition 20. Let V be a finite dimensional vector space over F and let
w1, . . . , wn be vectors in V. Then any two of the following three statements
imply the remaining one.
(a) n = dimV.
(b) span{w1, . . . , wn} = V.
(c) w1, . . . , wn are linearly independent.

Proof. Assume (b) and (c). Then (a) follows by the definition of dimension
of V.

Notice that (b) and Theorem 15 imply that n ≥ dimV. Therefore,
the implication “(a) and (b) imply (c)” is equivalent to the implication:
If span{w1, . . . , wn} = V and w1, . . . , wn are linearly dependent, then n >
dimV. The last implication is an immediate consequence of Lemma 5. Thus
(a) and (b) imply (c).

Notice that (c) and Theorem 15 imply that n ≤ dimV. Therefore,
the implication “(a) and (c) imply (b)” is equivalent to the implication:
If w1, . . . , wn are linearly independent and span{w1, . . . , wn} is a proper
subspace of V, then n < dimV. The last implication is a consequence of
Proposition 19. �


