BASES

BRANKO ĆURGUS

Throughout this note \mathcal{V} is a vector space over \mathbb{F} and j, k, l, m, and n are natural numbers.

Definition 1. Vectors $v_1, \ldots, v_n \in \mathcal{V}$ are said to be *linearly dependent* if there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ and $k \in \{1, \ldots, n\}$ such that $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$ and $\alpha_k \neq 0$.

The formal negation of the statement in Definition 1 is:

For all $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ and all $k \in \{1, \ldots, n\}$ we have $\alpha_1 v_1 + \cdots + \alpha_n v_n \neq 0$ or $\alpha_k = 0$.

The last statement is equivalent to:

For all $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ and all $k \in \{1, \ldots, n\}$ we have $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$ implies $\alpha_k = 0$.

The last statement can be restated as:

If $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$, then $\alpha_k = 0$ for all $k \in \{1, \ldots, n\}$.

Definition 2. Vectors $v_1, \ldots, v_n \in \mathcal{V}$ are said to be *linearly independent* if $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$ implies $\alpha_k = 0$ for all $k \in \{1, \ldots, n\}$.

Lemma 3. Let $k \leq m$ and let v_1, \ldots, v_m be vectors in \mathcal{V} . If the vectors v_1, \ldots, v_k are linearly dependent, then the vectors v_1, \ldots, v_m are linearly dependent.

Proof. Let the vectors v_1, \ldots, v_k be linearly dependent. Then there exist $\alpha_1, \ldots, \alpha_k$ in \mathbb{F} , not all equal to 0, such that $\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$. Take $\alpha_{k+1} = \cdots = \alpha_m = 0$. Then, not all $\alpha_1, \ldots, \alpha_k, \ldots, \alpha_m$ are equal to 0 and $\alpha_1 v_1 + \cdots + \alpha_k v_k + \cdots + \alpha_m v_m = 0$. Therefore, v_1, \ldots, v_m are linearly dependent.

The following corollary is the contrapositive of Lemma 3.

Corollary 4. Let $k \leq m$ and let v_1, \ldots, v_m be vectors in \mathcal{V} . If the vectors v_1, \ldots, v_m are linearly independent, then the vectors v_1, \ldots, v_k are linearly independent.

Lemma 5. Let $m \ge 2$, let v_1, \ldots, v_m be vectors in \mathcal{V} . The vectors v_1, \ldots, v_m are linearly dependent if and only if there exists $k \in \{1, 2, \ldots, m\}$ such that

(1)
$$\operatorname{span}\{v_l : l \in \{1, \dots, m\} \setminus \{k\}\} = \operatorname{span}\{v_1, \dots, v_m\}.$$

BRANKO ĆURGUS

Proof. Assume that v_1, \ldots, v_m are linearly dependent. Then there exist $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$ such that $\alpha_1 v_1 + \cdots + \alpha_m v_m = 0$ and there exists $k \in \{1, \ldots, m\}$ such that $\alpha_k \neq 0$. Now, $\alpha_1 v_1 + \cdots + \alpha_m v_m = 0$ implies

$$v_k = -(1/\alpha_k) \big(\alpha_1 v_1 + \dots + \alpha_{k-1} v_{k-1} + \alpha_{k+1} v_{k+1} + \dots + \alpha_m v_m \big).$$

Thus $v_k \in \operatorname{span}\{v_l : l \in \{1, \dots, m\} \setminus \{k\}\}$. Consequently

$$\operatorname{span}\{v_1,\ldots,v_m\}\subseteq \operatorname{span}\{v_l:l\in\{1,\ldots,m\}\setminus\{k\}\}.$$

Since the converse inclusion is trivial, the "if" part of the lemma is proved. Assume that there exists $k \in \{1, 2, ..., m\}$ such that (1) holds. Then

 $v_k \in \operatorname{span}\{v_l : l \in \{1, \ldots, m\} \setminus \{k\}\}$. Therefore there exist

$$\beta_1, \ldots, \beta_{k-1}, \beta_{k+1}, \ldots, \beta_m \in \mathbb{F}$$

such that $v_k = \beta_1 v_1 + \dots + \beta_{k-1} v_{k-1} + \beta_{k+1} v_{k+1} + \dots + \beta_m v_m$. Consequently,

$$\beta_1 v_1 + \dots + \beta_{k-1} v_{k-1} + (-1)v_k + \beta_{k+1} v_{k+1} + \dots + \beta_m v_m = 0.$$

Since $-1 \neq 0, v_1, \ldots, v_m$ are linearly dependent.

Lemma 6. If $\mathcal{V} = \text{span}\{v_1, \ldots, v_m\}$ and $w \in \mathcal{V} \setminus \{0\}$, then, after a suitable renumbering of v_1, \ldots, v_m , we have

$$\mathcal{V} = \operatorname{span}\{w, v_2, \dots, v_m\}.$$

Proof. Assume that v_1, \ldots, v_m span \mathcal{V} and $w \in \mathcal{V} \setminus \{0\}$. Then there exist $\alpha_1, \ldots, \alpha_m$ in \mathbb{F} such that $w = \alpha_1 v_1 + \cdots + \alpha_m v_m$. Since $w \neq 0$ not all $\alpha_1, \ldots, \alpha_m$ are equal to 0. Renumber v_1, \ldots, v_m in such a way that $\alpha_1 \neq 0$. Then

 $v_1 = (1/\alpha_1)(w - \alpha_2 v_2 - \dots - \alpha_m v_m).$

Thus $v_1 \in \text{span}\{w, v_2, \dots, v_m\}$. Consequently,

 $\mathcal{V} = \operatorname{span}\{v_1, \dots, v_m\} \subseteq \operatorname{span}\{w, v_2, \dots, v_m\}.$

Since the converse inclusion is obvious, $\mathcal{V} = \operatorname{span}\{w, v_2, \dots, v_m\}$ is proved.

Lemma 7. Let $2 \leq j \leq m$. Let w_1, \ldots, w_j , and $v_j, v_{j+1}, \ldots, v_m$, be vectors in \mathcal{V} . If

(2)
$$\mathcal{V} = \operatorname{span}\{w_1, \dots, w_{j-1}, v_j, v_{j+1}, \dots, v_m\}$$

and w_1, \ldots, w_j are linearly independent, then, after a suitable renumbering of the vectors v_j, \ldots, v_m , we have

(3)
$$\mathcal{V} = \operatorname{span}\{w_1, \dots, w_{j-1}, w_j, v_{j+1}, \dots, v_m\}$$

Proof. Assume that (2) holds and that $w_1, \ldots, w_{j-1}, w_j$ are linearly independent. Then there exist β_1, \ldots, β_m in \mathbb{F} such that

(4)
$$w_j = \beta_1 w_1 + \dots + \beta_{j-1} w_{j-1} + \beta_j v_j + \dots + \beta_m v_m$$

Since $w_1, \ldots, w_{j-1}, w_j$ are linearly independent we have

$$w_j - \beta_1 w_1 - \dots - \beta_{j-1} w_{j-1} \neq 0.$$

From (4) we have

$$0 \neq w_j - \beta_1 w_1 - \dots - \beta_{j-1} w_{j-1} = \beta_j v_j + \dots + \beta_m v_m.$$

Therefore not all β_j, \ldots, β_m are equal to 0. Renumber v_j, \ldots, v_m in such a way that $\beta_j \neq 0$. Then

$$v_j = (1/\beta_j)(-\beta_1 w_1 - \dots - \beta_{j-1} w_{j-1} + w_j - \beta_{j+1} v_{j+1} - \dots - \beta_m v_m).$$

Thus $v_j \in \operatorname{span}\{w_1, \dots, w_{j-1}, w_j, \dots, v_m\}$. Consequently,

 $\mathcal{V} = \operatorname{span}\{w_1, \dots, w_{j-1}, v_j, \dots, v_m\} \subseteq \operatorname{span}\{w_1, \dots, w_j, v_{j+1}, \dots, v_m\}.$

Since the converse inclusion is obvious, (3) is proved.

Theorem 8. Let $k \leq m$. Let v_1, \ldots, v_m , and w_1, \ldots, w_k be vectors in \mathcal{V} . If $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_m\}$ and w_1, \ldots, w_k , are linearly independent, then, after a suitable renumbering of v_1, \ldots, v_m , we have

$$\mathcal{V} = \operatorname{span}\{w_1, \ldots, w_k, v_{k+1}, \ldots, v_m\}.$$

Proof. Assume that $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_m\}$ and that w_1, \ldots, w_k are linearly independent. Then $w_1 \neq 0$. By Lemma 6, after a suitable renumbering of v_1, \ldots, v_m , we have $\mathcal{V} = \operatorname{span}\{w_1, v_2, \ldots, v_m\}$. If k = 1 the theorem is proved. Let $k \geq 2$ and let $2 \leq j \leq k$. By Corollary 4 the vectors w_1, \ldots, w_j are linearly independent. In particular w_1 and w_2 are linearly independent. Lemma 7 with j = 2 yields that, after a suitable renumbering of v_2, \ldots, v_m , we have $\mathcal{V} = \operatorname{span}\{w_1, w_2, v_3, \ldots, v_m\}$. Repeated application of Lemma 7 (total of k - 1 times) yields that, after a suitable renumbering of v_1, \ldots, v_m , we have $\mathcal{V} = \operatorname{span}\{w_1, \ldots, w_k, v_{k+1}, \ldots, v_m\}$.

An important special case of the preceding theorem is when k = m. We state it as a corollary.

Corollary 9. Let v_1, \ldots, v_m and w_1, \ldots, w_m be vectors in \mathcal{V} . If w_1, \ldots, w_m are linearly independent and $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_m\}$, then

$$\mathcal{V} = \operatorname{span}\{w_1, \ldots, w_m\}.$$

Theorem 10. Let v_1, \ldots, v_m and w_1, \ldots, w_k be vectors in \mathcal{V} . If w_1, \ldots, w_k are linearly independent and $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_m\}$, then $k \leq m$.

This theorem has the following logical structure: $P \wedge Q \Rightarrow R$. It is not difficult to show (using the truth tables) that the last implication is equivalent to the implication $P \wedge \neg R \Rightarrow \neg Q$ and also to $\neg R \wedge Q \Rightarrow \neg P$. We state each of these equivalent implications separately. There is no need to number them since these statements are equivalent to Theorem 10.

Statement. Let v_1, \ldots, v_m and w_1, \ldots, w_k be vectors in \mathcal{V} . If w_1, \ldots, w_k are linearly independent and k > m, then the vectors v_1, \ldots, v_m do not span \mathcal{V} .

Statement. Let v_1, \ldots, v_m and w_1, \ldots, w_k be vectors in \mathcal{V} . If k > m and $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_m\}$, then w_1, \ldots, w_k are linearly dependent.

BRANKO ĆURGUS

Proof. We will prove the last statement. Assume that $\mathcal{V} = \text{span}\{v_1, \ldots, v_m\}$ and k > m. We will consider the following two cases:

Case 1. The vectors w_1, \ldots, w_m are linearly dependent.

Case 2. The vectors w_1, \ldots, w_m are linearly independent.

In Case 1 by Lemma 3 the vectors $w_1, \ldots, w_m, w_{m+1}, \ldots, w_k$ are also linearly dependent.

Now consider Case 2. By Corollary 9 we have $\mathcal{V} = \operatorname{span}\{w_1, \ldots, w_m\}$. Since k > m, we have $k \ge m + 1$ and thus, w_{m+1} is a vector in \mathcal{V} which can be written as a linear combination of the vectors w_1, \ldots, w_m . Thus the vectors $w_1, \ldots, w_m, w_{m+1}$ are linearly dependent. Consequently

$$w_1,\ldots,w_m,w_{m+1},\ldots,w_k$$

are linearly dependent.

Definition 11. A vector space \mathcal{V} over \mathbb{F} is *finite dimensional* if there exists $m \in \mathbb{N}$ and vectors $v_1, \ldots, v_m \in \mathcal{V}$ such that

$$\mathcal{V} = \operatorname{span}\{v_1, \dots, v_m\}.$$

A vector space which is not finite dimensional is said to be *infinite dimensional*.

Proposition 12. A vector space \mathcal{V} over \mathbb{F} is infinite dimensional if and only if for every $n \in \mathbb{N}$ there exists linearly independent vectors v_1, \ldots, v_n in \mathcal{V} .

Proof. We first prove the "only if" part. Assume that \mathcal{V} is an infinite dimensional vector space over \mathbb{F} . For $n \in \mathbb{N}$, denote by P(n) the following statement:

There exist n linearly independent vectors in \mathcal{V} .

We will prove that P(n) holds for for every $n \in \mathbb{N}$. Mathematical induction is a natural tool here. Since the space $\{0_{\mathcal{V}}\}$ is finite dimensional, we have $\mathcal{V} \neq \{0_{\mathcal{V}}\}$. Therefore there exists $v \in \mathcal{V}$ such that $v \neq 0_{\mathcal{V}}$. Hence P(1)holds. Let $k \in \mathbb{N}$ and assume that P(k) holds. That is assume that there exists linearly independent vectors v_1, \ldots, v_k in \mathcal{V} . Since \mathcal{V} is an infinite dimensional, span $\{v_1, \ldots, v_k\}$ is a proper subset of \mathcal{V} . Therefore there exists $v \in \mathcal{V}$ such that $v \notin \text{span}\{v_1, \ldots, v_k\}$. Now it is not difficult to prove (prove it as an exercise) that k + 1 vectors v_1, \ldots, v_k, v are linearly independent. Hence P(k + 1) holds.

We prove the "if" part by proving its contrapositive. Assume that \mathcal{V} is a finite dimensional vector space. Then there exists $m \in \mathbb{N}$ and $v_1, \ldots, v_m \in \mathcal{V}$ such that $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_m\}$. Let $w_1, \ldots, w_m, w_{m+1}$ be arbitrary vectors in \mathcal{V} . By Theorem 10 (more precisely, the second Statement after it) the vectors $w_1, \ldots, w_m, w_{m+1}$ are linearly dependent. Thus, for $m + 1 \in \mathbb{N}$, any vectors $w_1, \ldots, w_m, w_{m+1} \in \mathcal{V}$ are linearly dependent. This completes the proof.

4

BASES

Proposition 13. If \mathcal{V} is a finite dimensional vector space over \mathbb{F} and \mathcal{U} is a subspace of \mathcal{V} , then \mathcal{U} is a finite dimensional vector space over \mathbb{F} .

Proof. We proceed with a proof by contradiction. So, we make the following three assumptions:

- (i) \mathcal{V} is a finite dimensional vector space over \mathbb{F} .
- (ii) \mathcal{U} is a subspace of \mathcal{V} .
- (iii) \mathcal{U} is an infinite dimensional vector space over \mathbb{F} .

Since \mathcal{V} is finite dimensional there exists $m \in \mathbb{N}$ and $v_1, \ldots, v_m \in \mathcal{V}$ such that $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_m\}$. By Proposition 12 there exists $u_1, \ldots, u_m \in \mathcal{U}$ which are linearly independent. Since $\mathcal{U} \subseteq \mathcal{V}$, we have $u_1, \ldots, u_m \in \mathcal{V}$. Now, Corollary 9 implies $\operatorname{span}\{u_1, \ldots, u_m\} = \mathcal{V}$. Since \mathcal{U} is infinite dimensional we have

$$\operatorname{span}\{u_1,\ldots,u_m\} \subset \mathcal{U} \quad \text{and} \quad \operatorname{span}\{u_1,\ldots,u_m\} \neq \mathcal{U}.$$

Hence

$$\mathcal{V} \subset \mathcal{U} \subseteq \mathcal{V} \quad \text{and} \quad \mathcal{V} \neq \mathcal{U}$$

This is a contradiction. The proposition is proved.

Definition 14. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} . A set $\{v_1, \ldots, v_n\}$ is a *basis of* \mathcal{V} if

 $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_n\}$ and v_1, \ldots, v_n are linearly independent.

The next theorem shows that each nonzero finite dimensional vector space has a basis.

Theorem 15. Let \mathcal{V} be a vector space over \mathbb{F} . If $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_p\}$ and $\mathcal{V} \neq \{0\}$, then there exist $n \in \mathbb{N}$, $n \leq p$, and $j_1, \ldots, j_n \in \{1, \ldots, p\}$ such that v_{j_1}, \ldots, v_{j_n} is a basis of \mathcal{V} .

Proof. Since $\mathcal{V} \neq \{0\}$ there exists $l \in \{1, \ldots, p\}$ such that $v_l \neq 0$. Put

$$\mathbb{K} = \left\{ k \in \mathbb{N} : k \le p, \quad \begin{array}{c} \exists i_1, \dots, i_k \in \{1, \dots, p\} \text{ such that} \\ v_{i_1}, \dots, v_{i_k} \text{ are linearly independent} \end{array} \right\}$$

The vector v_l is linearly independent. Therefore $1 \in \mathbb{K}$; namely we can choose $i_1 = l$. Thus $\mathbb{K} \neq \emptyset$. Since \mathbb{K} is a subset of \mathbb{N} and it is bounded above by p, \mathbb{K} has a maximum; denote it by $n, n = \max \mathbb{K}$. Since $n \in \mathbb{K}$, there exist $j_1, \ldots, j_n \in \{1, \ldots, p\}$ such that v_{j_1}, \ldots, v_{j_n} are linearly independent. Since v_{j_1}, \ldots, v_{j_n} are linearly independent the indexes j_1, \ldots, j_n are distinct. Therefore, if n = p, then $\{j_1, \ldots, j_p\} = \{1, \ldots, p\}$. Consequently, if n = p, then the vectors v_1, \ldots, v_p are linearly independent and span $\{v_1, \ldots, v_p\} = \mathcal{V}$. That is v_1, \ldots, v_p is a basis of \mathcal{V} .

If if n < p, then $\{j_1, \ldots, j_p\}$ is a proper subset of $\{1, \ldots, p\}$. We shall prove that span $\{v_{j_1}, \ldots, v_{j_n}\} = \mathcal{V}$. Let

$$k \in \{1,\ldots,p\} \setminus \{j_1,\ldots,j_n\}$$

BRANKO ĆURGUS

be arbitrary. Since $n+1 \notin \mathbb{K}$, the vectors $(n+1 \text{ of them}) v_{j_1}, \ldots, v_{j_n}, v_k$ are linearly dependent. Thus there exist $\alpha_1, \ldots, \alpha_n, \alpha_{n+1} \in \mathbb{F}$ not all zero such that

$$\alpha_1 v_{j_1} + \dots + \alpha_n v_{j_n} + \alpha_{n+1} v_k = 0.$$

Since the vectors v_{j_1}, \ldots, v_{j_n} , are linearly independent, $\alpha_{n+1} = 0$ is not possible. Thus $\alpha_{n+1} \neq 0$. Therefore

(5)
$$v_k = -\frac{1}{\alpha_{n+1}} \left(\alpha_1 v_{j_1} + \dots + \alpha_n v_{j_n} \right).$$

Hence

$$v_k \in \operatorname{span}\{v_{j_1}, \ldots, v_{j_n}\}$$
 for each $k \in \{1, \ldots, p\} \setminus \{j_1, \ldots, j_n\}$.

Consequently

$$\operatorname{span}\{v_1,\ldots,v_p\}\subseteq\operatorname{span}\{v_{j_1},\ldots,v_{j_n}\}$$

Since the converse inclusion is obvious, the theorem is proved.

Theorem 16. Let \mathcal{V} be a nonzero finite dimensional vector space. Then \mathcal{V} has a basis. If $\{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_n\}$ are two basis of \mathcal{V} , then m = n.

Proof. The fact that \mathcal{V} has a basis is proved in the proof of Proposition 13. Just set $\mathcal{U} = \mathcal{V}$ in that proof.

Let $\{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_n\}$ be two bases of \mathcal{V} . Since

$$\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_m\}$$

and w_1, \ldots, w_n are linearly independent, Theorem 10 implies $m \ge n$. Since $\mathcal{V} = \operatorname{span}\{w_1, \ldots, w_n\}$ and v_1, \ldots, v_m are linearly independent Theorem 10 implies $m \le n$. Thus m = n.

Definition 17. Let \mathcal{V} be a nonzero finite dimensional vector space over \mathbb{F} and let $\{v_1, \ldots, v_n\}$ be a basis of \mathcal{V} . The number *n* is called the *dimension* of \mathcal{V} and it is denoted by dim \mathcal{V} . By definition the dimension of the zero vector space is 0.

Theorem 18. Let \mathcal{V} be a finite dimensional vector space and let u_1, \ldots, u_k be linearly independent vectors in \mathcal{V} . Then there exist vectors u_{k+1}, \ldots, u_n in \mathcal{V} such that $\{u_1, \ldots, u_n\}$ is a basis of \mathcal{V} .

Proof. By Theorem 16 the vector space \mathcal{V} has a basis. Let $\{v_1, \ldots, v_n\}$ be a basis for \mathcal{V} . By Theorem 10 we have $k \leq n$. By Theorem 8, after a suitable renumbering of v_1, \ldots, v_n , we have

$$\mathcal{V} = \operatorname{span}\{u_1, \dots, u_k, v_{k+1}, \dots, v_n\}.$$

Since v_1, \ldots, v_n are linearly independent, by Theorem 10 (see the first Statement) no proper subset of

$$\{u_1,\ldots,u_k,v_{k+1},\ldots,v_n\}$$

spans \mathcal{V} . By Lemma 5 this implies that the vectors $u_1, \ldots, u_k, v_{k+1}, \ldots, v_n$ are linearly independent.

 $\mathbf{6}$

BASES

Proposition 19. Let \mathcal{V} be a finite dimensional vector space and let \mathcal{U} be a subspace of \mathcal{V} . Then dim $\mathcal{U} \leq \dim \mathcal{V}$. Also, $\mathcal{U} = \mathcal{V}$ if and only if dim $\mathcal{U} = \dim \mathcal{V}$.

Proof. Let $m = \dim \mathcal{U}$ and $n = \dim \mathcal{V}$. Let u_1, \ldots, u_m be a basis of \mathcal{U} and let v_1, \ldots, v_n be a basis of \mathcal{V} . Since $\mathcal{V} = \operatorname{span}\{v_1, \ldots, v_n\}$ and u_1, \ldots, u_m are linearly independent Theorem 10 implies $m \leq n$.

If $\mathcal{U} = \mathcal{V}$, then clearly $\dim \mathcal{U} = \dim \mathcal{V}$. Now assume that \mathcal{U} is a proper subspace of \mathcal{V} . Then there exists $v \in \mathcal{V}$ such that $v \notin \mathcal{U}$. Let again u_1, \ldots, u_m be a basis of \mathcal{U} . Then u_1, \ldots, u_m, v are linearly independent vectors in \mathcal{V} . By Theorem 10 we have $m + 1 \leq n$. Thus m < n.

Proposition 20. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} and let w_1, \ldots, w_n be vectors in \mathcal{V} . Then any two of the following three statements imply the remaining one.

(a) $n = \dim \mathcal{V}$.

(b) $\operatorname{span}\{w_1,\ldots,w_n\} = \mathcal{V}.$

(c) w_1, \ldots, w_n are linearly independent.

Proof. Assume (b) and (c). Then (a) follows by the definition of dimension of \mathcal{V} .

Notice that (b) and Theorem 15 imply that $n \ge \dim \mathcal{V}$. Therefore, the implication "(a) and (b) imply (c)" is equivalent to the implication: If span $\{w_1, \ldots, w_n\} = \mathcal{V}$ and w_1, \ldots, w_n are linearly dependent, then $n > \dim \mathcal{V}$. The last implication is an immediate consequence of Lemma 5. Thus (a) and (b) imply (c).

Notice that (c) and Theorem 15 imply that $n \leq \dim \mathcal{V}$. Therefore, the implication "(a) and (c) imply (b)" is equivalent to the implication: If w_1, \ldots, w_n are linearly independent and $\operatorname{span}\{w_1, \ldots, w_n\}$ is a proper subspace of \mathcal{V} , then $n < \dim \mathcal{V}$. The last implication is a consequence of Proposition 19.