Eigensystem of a linear operator

Branko Curgus ´

March 5, 2015 at 17:59

1 Algebra of linear operators

In this section we consider a vector space $\mathscr V$ over a scalar field $\mathbb F$. By $\mathscr L(\mathscr V)$ we denote the vector space $\mathscr{L}(\mathscr{V}, \mathscr{V})$ of all linear operators on \mathscr{V} . The vector space $\mathscr{L}(\mathscr{V})$ with the composition of operators as an additional binary operation is an algebra in the sense of the following definition.

Definition 1.1. A vector space $\mathscr A$ over a field $\mathbb F$ is an *algebra* over $\mathbb F$ if the following conditions are satisfied:

- (a) there exist a binary operation $\cdot : \mathscr{A} \times \mathscr{A} \to \mathscr{A}$.
- (b) (associativity) for all $x, y, z \in \mathscr{A}$ we have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- (c) (right-distributivity) for all $x, y, z \in \mathscr{A}$ we have $(x+y) \cdot z = x \cdot z + y \cdot z$.
- (d) (left-distributivity) for all $x, y, z \in \mathscr{A}$ we have $z \cdot (x + y) = z \cdot x + z \cdot y$.
- (e) (respect for scaling) for all $x, y \in \mathscr{A}$ and all $\alpha \in \mathbb{F}$ we have $\alpha(x \cdot y) =$ $(\alpha x) \cdot y = x \cdot (\alpha y).$

The binary operation in an algebra is often referred to as *multiplication*.

The multiplicative identity in the algebra $\mathscr{L}(\mathscr{V})$ is the identity operator $I_{\mathscr{V}}$.

For $T \in \mathcal{L}(\mathcal{V})$ we recursively define nonnegative integer powers of T by $T^0 = I_{\mathscr{V}}$ and for all $n \in \mathbb{N}$ $T^n = T \circ T^{n-1}$.

For $T \in \mathscr{L}(\mathscr{V})$, set

$$
\mathscr{A}_T = \text{span}\{T^k : k \in \mathbb{N} \cup \{0\}\}.
$$

Clearly \mathscr{A}_T is a subspace of $\mathscr{L}(\mathscr{V})$. Moreover, we will see below that \mathscr{A}_T is a commutative subalgebra of $\mathscr{L}(\mathscr{V})$.

Recall that by definition of a span a nonzero $S \in \mathcal{L}(\mathcal{V})$ belongs to \mathcal{A}_T if and only if $\exists m \in \mathbb{N} \cup \{0\}$ and $\alpha_0, \alpha_1, \ldots, \alpha_m \in \mathbb{F}$ such that $a_m \neq 0$ and

$$
S = \sum_{k=0}^{m} \alpha_k T^k.
$$
 (1)

The last expression reminds us of a polynomial over F. Recall that by $\mathbb{F}[z]$ we denote the algebra of all polynomials over \mathbb{F} . That is

$$
\mathbb{F}[z] = \left\{ \sum_{j=0}^{n} \alpha_j z^j \, : \, n \in \mathbb{N} \cup \{0\}, \, (\alpha_0, \dots, \alpha_n) \in \mathbb{F}^{n+1} \right\}.
$$

Next we recall the definition of the multiplication in the algebra $\mathbb{F}[z]$. Let $m, n \in \mathbb{N} \cup \{0\}$ and

$$
p(z) = \sum_{i=0}^{m} \alpha_i z^i \in \mathbb{F}[z] \quad \text{and} \quad q(z) = \sum_{j=0}^{n} \beta_j z^j \in \mathbb{F}[z]. \quad (2)
$$

Then by definition

$$
(pq)(z) = \sum_{k=0}^{m+n} \left(\sum_{\substack{i+j=k \ i \in \{0,\dots,m\} \\ j \in \{0,\dots,n\}}} \alpha_i \beta_j \right) z^k.
$$

Since the multiplication in $\mathbb F$ is commutative, it follows that $pq = qp$. That is $\mathbb{F}[z]$ is a commutative algebra.

The obvious alikeness of the expression (1) and the expression for the polynomial p in (2) is the motivation for the following definition. For a fixed $T \in \mathscr{L}(\mathscr{V})$ we define

$$
\Xi_T:\mathbb F[z]\to\mathscr L(\mathscr V)
$$

by setting

$$
\Xi_T(p) = \sum_{i=0}^m \alpha_i T^i \quad \text{where} \quad p(z) = \sum_{i=0}^m \alpha_i z^i \in \mathbb{F}[z]. \quad (3)
$$

It is common to write $p(T)$ for $\Xi_T(p)$.

Theorem 1.2. Let $T \in \mathcal{L}(\mathcal{V})$. The function $\Xi_T : \mathbb{F}[z] \to \mathcal{L}(\mathcal{V})$ defined in (3) is an algebra homomorphism. The range of Ξ_T is \mathscr{A}_T .

Proof. It is not difficult to prove that $\Xi_T : \mathbb{F}[z] \to \mathscr{L}(\mathscr{V})$ is linear. We will prove that $\Xi_T : \mathbb{F}[z] \to \mathscr{L}(\mathscr{V})$ is multiplicative, that is, for all $p, q \in \mathbb{F}[z]$ we have $\Xi_T(pq) = \Xi_T(p)\Xi_T(q)$. To prove this let $p, q \in \mathbb{F}[z]$ be arbitrary and given in (2). Then

$$
\begin{split}\n\Xi_T(p)\Xi_T(q) &= \left(\sum_{i=0}^m \alpha_i T^i\right) \left(\sum_{j=0}^n \beta_j T^j\right) \qquad \text{(by definition in (3))} \\
&= \sum_{i=0}^m \sum_{j=0}^n \alpha_i \beta_j T^{i+j} \qquad \text{(since } \mathscr{L}(\mathscr{V}) \text{ is an algebra)} \\
&= \sum_{k=0}^{m+n} \left(\sum_{\substack{i+j=k \ i \in \{0,\dots,m\} \\ j \in \{0,\dots,n\} }} \alpha_i \beta_j\right) T^k \qquad \text{(since } \mathscr{L}(\mathscr{V}) \text{ is a vector space)} \\
&= \Xi_T(pq) \qquad \text{(by definition in (3))}.\n\end{split}
$$

This proves the multiplicative property of Ξ_T .

The fact that \mathscr{A}_T is the range of Ξ_T is obvious.

Corollary 1.3. Let $T \in \mathcal{L}(\mathcal{V})$. The subspace \mathcal{A}_T of $\mathcal{L}(\mathcal{V})$ is a commutative subalgebra of $\mathscr{L}(\mathscr{V})$.

 \Box

Proof. Let $Q, S \in \mathscr{A}_T$. Since \mathscr{A}_T is the range of Ξ_T there exist $p, q \in$ $\mathbb{F}[z]$ such that $Q = \Xi_T(p)$ and $S = \Xi_T(q)$. Then, since Ξ_T is an algebra homomorphism we have

$$
QS = \Xi_T(p)\Xi_T(p) = \Xi_T(pq) = \Xi_T(qp) = \Xi_T(q)\Xi_T(p) = SQ.
$$

This sequence of equalities shows that $QS \in \text{ran}(\Xi_T) = \mathscr{A}_T$ and $QS =$ SQ. That is \mathscr{A}_T is closed with respect to the operator composition and the operator composition on \mathcal{A}_T is commutative. □

Corollary 1.4. Let $\mathcal V$ be a complex vector space and let $T \in \mathcal L(\mathcal V)$ be a nonzero operator. Then for every $p \in \mathbb{C}[z]$ such that $m = \deg p \geq 1$ there exist a nonzero $\alpha \in \mathbb{C}$ and $z_1, \ldots, z_m \in \mathbb{C}$ such that

$$
\Xi_T(p) = p(T) = \alpha(T - z_1 I) \cdots (T - z_m I).
$$

Proof. Let $p \in \mathbb{C}[z]$ such that $m = \deg p \geq 1$. Then there exist $\alpha_0, \ldots, \alpha_m \in$ C such that $\alpha_m \neq 0$ such that

$$
p(z) = \sum_{k=0}^{m} \alpha_j z^j
$$

.

By the Fundamental Theorem of Algebra there exist nonzero $\alpha \in \mathbb{C}$ and $z_1, \ldots, z_m \in \mathbb{C}$ such that

$$
p(z) = \alpha(z - z_1) \cdots (z - z_m).
$$

Here $\alpha = \alpha_m$ and z_1, \ldots, z_m are the roots of p. Since Ξ_T is an algebra homomorphism we have

$$
p(T) = \Xi_T(p) = \alpha \, \Xi_T(z - z_1) \cdots \Xi_T(z - z_m) = \alpha(T - z_1 I) \cdots (T - z_m I).
$$

This completes the proof.

This completes the proof.

2 Existence of an eigenvalue

Lemma 2.1. Let $n \in \mathbb{N}$ and $S_1, \ldots, S_n \in \mathcal{L}(\mathcal{V})$. If S_1, \ldots, S_n are all injective, then $S_1 \cdots S_n$ is injective.

Proof. We proceed by Mathematical Induction. The base step is trivial. It is useful to prove the implication for $n = 2$. Assume that $S, T \in \mathcal{L}(\mathcal{V})$ are injective and let $u, v \in \mathscr{V}$ be such that $u \neq v$. Then, since T is injective, $Tu \neq Tv$. Since S is injective, $S(Tu) \neq S(Tv)$. Thus, ST is injective.

Next we prove the inductive step. Let $m \in \mathbb{N}$ and assume that $S_1 \cdots S_m$ is injective whenever $S_1, \ldots, S_m \in \mathscr{L}(\mathscr{V})$ are all injective. (This is the inductive hypothesis.) Now assume that $S_1, \ldots, S_m, S_{m+1} \in \mathscr{L}(\mathscr{V})$ are all injective. By the inductive hypothesis the operator $S = S_1 \cdots S_m$ is injective. Since by assumption $T = S_{m+1}$ is injective, the already proved claim for $n = 2$ yields that

$$
ST = S_1 \cdots S_m S_{m+1}
$$

is injective. This completes the proof.

Theorem 2.2. Let $\mathscr V$ be a nontrivial finite dimensional vector space over C. Let $T \in \mathscr{L}(\mathscr{V})$. Then there exists $a \lambda \in \mathbb{C}$ and $v \in \mathscr{V}$ such that $v \neq 0_{\mathscr{V}}$ and $Tv = \lambda v$.

Proof. The claim of the theorem is trivial if $T = 0_{\mathscr{L}(\mathscr{V})}$. So, assume that $T \in \mathscr{L}(\mathscr{V})$ is a nonzero operator.

Let $n = \dim \mathscr{V}$ and let $u \in \mathscr{V} \setminus \{0_{\mathscr{V}}\}\$. Now consider the vectors

$$
u, Tu, T^2u, \dots, T^n u. \tag{4}
$$

If two of these vectors coincide, say $k, l \in \{0, \ldots, n\}, k < l$ are such that $T^k u = T^l u$, setting $\alpha_j = 0$ for $j \in \{0, ..., n\} \setminus \{k, l\}$ and $\alpha_k = 1$ and $\alpha_l = -1$ we obtain a nontrivial linear combination of the vectors in (4).

 \Box

If the vectors in (4) are distinct, since $n = \dim \mathscr{V}$, it follows from the Steinitz Exchange Lemma that the vectors in (4) are linearly dependent.

Hence, in either case, there exist $\alpha_0, \ldots, \alpha_n \in \mathbb{C}$ and $k \in \{0, \ldots, n\}$ such that

$$
\alpha_0 u + \alpha_1 T u + \alpha_2 T^2 u + \dots + \alpha_n T^n u = 0
$$
\n⁽⁵⁾

and $\alpha_k \neq 0$. Since $u \neq 0_{\mathscr{V}}$ it is not possible that $\alpha_j = 0$ for all $j \in \{1, \ldots, n\}.$ Therefore, there exists $k \in \{1, \ldots, n\}$ such that $\alpha_k \neq 0$.

Set

$$
p(z) = \alpha_0 + \alpha_1 z + \alpha_2 z^2 + \cdots + \alpha_n z^n.
$$

Since there exists $k \in \{1, \ldots, n\}$ such that $\alpha_k \neq 0$, we have that $m =$ deg $p > 0$. By the Fundamental Theorem of Algebra there exists $\alpha \neq 0$ and $z_1, \ldots, z_m \in \mathbb{C}$ such that

$$
p(z) = \alpha(z - z_1) \cdots (z - z_m).
$$

Here $\alpha = \alpha_m$ and z_1, \ldots, z_m are the roots of p.

Since Ξ_T is an algebra homomorphism we have

$$
p(T) = \Xi_T(p) = \alpha \Xi_T(z - z_1) \cdots \Xi_T(z - z_m) = \alpha (T - z_1 I) \cdots (T - z_m I).
$$

Equality (5) yields that the operator $p(T)$ is not an injection. Lemma 2.1 now implies that there exists $j \in \{1, \ldots, m\}$ such that $T - z_j I$ is not injective. That is, there exists $v \in \mathscr{V}$, $v \neq 0_{\mathscr{V}}$ such that

$$
(T-z_jI)v=0.
$$

 \Box

Setting $\lambda = z_j$ completes the proof.

Definition 2.3. Let $\mathscr V$ be a vector space over $\mathbb F, T \in \mathscr L(\mathscr V)$. A scalar $\lambda \in \mathbb F$ is an *eigenvalue* of T if there exists $v \in \mathscr{V}$ such that $v \neq 0$ and $Tv = \lambda v$. The subspace nul(T – λI) of $\mathscr V$ is called the *eigenspace* of T corresponding to λ

Definition 2.4. Let $\mathcal V$ be a finite dimensional vector space over $\mathbb F$. Let $T \in \mathscr{L}(\mathscr{V})$. The set of all eigenvalues of T is denoted by $\sigma(T)$. It is called the spectrum of T.

The next theorem can be stated in English simply as: Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Theorem 2.5. Let $\mathscr V$ be a vector space over $\mathbb F$, $T \in \mathscr L(\mathscr V)$ and $n \in \mathbb N$. Assume

- (a) $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ are such that $\lambda_i \neq \lambda_j$ for all $i, j \in \{1, \ldots, n\}$ such that $i \neq j$,
- (b) $v_1, \ldots, v_n \in \mathcal{V}$ are such that $Tv_k = \lambda_k v_k$ and $v_k \neq 0$ for all $k \in$ $\{1, \ldots, n\}.$

Then $\{v_1, \ldots, v_n\}$ is linearly independent.

Proof. We will prove this by using the mathematical induction on n . For the base case, we will prove the claim for $n = 1$. Let $\lambda_1 \in \mathbb{F}$ and let $v_1 \in \mathcal{V}$ be such that $v_1 \neq 0$ and $Tv_1 = \lambda_1 v_1$. Since $v_1 \neq 0$, we conclude that $\{v_1\}$ is linearly independent.

Next we prove the inductive step. Let $m \in \mathbb{N}$ be arbitrary. The inductive hypothesis is the assumption that the following implication holds.

If the following two conditions are satisfied:

- (i) $\mu_1, \ldots, \mu_m \in \mathbb{F}$ are such that $\mu_i \neq \mu_j$ for all $i, j \in$ $\{1, \ldots, m\}$ such that $i \neq j$,
- (ii) $w_1, \ldots, w_m \in \mathcal{V}$ are such that $Tw_k = \mu_k w_k$ and $w_k \neq$ 0 for all $k \in \{1, ..., m\},\$

then $\{w_1, \ldots, w_m\}$ is linearly independent.

We need to prove the following implication

If the following two conditions are satisfied: (I) $\lambda_1, \ldots, \lambda_{m+1} \in \mathbb{F}$ are such that $\lambda_i \neq \lambda_j$ for all $i, j \in$ $\{1,\ldots,m+1\}$ such that $i\neq j,$ (II) $v_1, \ldots, v_{m+1} \in \mathcal{V}$ are such that $Tv_k = \lambda_k v_k$ and $v_k \neq 0$ for all $k \in \{1, ..., m + 1\}$, then $\{v_1, \ldots, v_{m+1}\}\$ is linearly independent.

Assume (I) and (II) in the red box. We need to prove that $\{v_1, \ldots, v_{m+1}\}\$ is linearly independent.

Let $\alpha_1, \ldots, \alpha_{m+1} \in \mathbb{F}$ be such that

$$
\alpha_1 v_1 + \dots + \alpha_m v_m + \alpha_{m+1} v_{m+1} = 0. \tag{6}
$$

Applying $T \in \mathcal{L}(\mathcal{V})$ to both sides of (6), using the linearity of T and assumption (II) we get

$$
\alpha_1 \lambda_1 v_1 + \dots + \alpha_m \lambda_m v_m + \alpha_{m+1} \lambda_{m+1} v_{m+1} = 0. \tag{7}
$$

Multiplying both sides of (6) by λ_{m+1} we get

$$
\alpha_1 \lambda_{m+1} v_1 + \dots + \alpha_m \lambda_{m+1} v_m + \alpha_{m+1} \lambda_{m+1} v_{m+1} = 0.
$$
 (8)

Subtracting (8) from (7) we get

$$
\alpha_1(\lambda_1-\lambda_{m+1})v_1+\cdots+\alpha_m(\lambda_m-\lambda_{m+1})v_m=0.
$$

Since by assumption (I) we have $\lambda_j - \lambda_{m+1} \neq 0$ for all $j \in \{1, \ldots, m\}$, setting

$$
w_j = (\lambda_j - \lambda_{m+1})v_j, \qquad j \in \{1, \ldots, m\},\
$$

and taking into account (II) we have

$$
w_j \neq 0
$$
 and $Tw_j = \lambda_j w_j$ for all $j \in \{1, ..., m\}$. (9)

Thus, by (I) and (9), the scalars $\lambda_1, \ldots, \lambda_m$ and vectors w_1, \ldots, w_m satisfy assumptions (i) and (ii) of the inductive hypothesis (the green box). Consequently, the vectors w_1, \ldots, w_m are linearly independent. Since by (9) we have

$$
\alpha_1 w_1 + \dots + \alpha_m w_m = 0,
$$

it follows that $\alpha_1 = \cdots = \alpha_m = 0$. Substituting these values in (6) we get $\alpha_{m+1}v_{m+1} = 0$. Since by (II), $v_{m+1} \neq 0$ we conclude that $\alpha_{m+1} = 0$. This completes the proof of the linear independence of v_1, \ldots, v_{m+1} . □

A different proof follows.

Proof. Consider operators $T - \lambda_j I$ for $j \in \{1, ..., n\}$. Then

$$
(T - \lambda_j I)v_k = (\lambda_k - \lambda_j)v_k, \quad j, k \in \{1, \ldots, n\}.
$$

Or, more precisely,

$$
(T - \lambda_j I) v_k = \begin{cases} (\lambda_k - \lambda_j) v_k & j \neq k, \\ 0 \neq & j = k \end{cases}
$$

 (10)
 $j = k$

Let $i, k \in \{1, ..., n\}$. Repeated application of (10) yields

$$
\left(\prod_{j=1, j\neq i}^{n} (T - \lambda_j I)\right) v_k = \left(\prod_{j=1, j\neq i}^{n} (\lambda_k - \lambda_j)\right) v_k,
$$

or, more precisely,

$$
\left(\prod_{j=1,j\neq i}^{n} (T - \lambda_j I)\right) v_k = \begin{cases} 0_{\mathcal{V}} & k \neq i, \\ \left(\prod_{j=1,j\neq k}^{n} (\lambda_k - \lambda_j)\right) v_k & k = i \end{cases}
$$
(11)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ be such that

$$
\alpha_1 v_1 + \dots + \alpha_n v_n = 0_{\mathcal{V}}.\tag{12}
$$

Let $k \in \{1, \ldots, n\}$ be arbitrary and apply the operator

$$
\prod_{j=1, j\neq k}^{n} (T - \lambda_j I)
$$

to both sides of (12) . Then by (11) we get

$$
\alpha_k \bigg(\prod_{j=1, j \neq k}^n (\lambda_k - \lambda_j) \bigg) v_k = 0_\mathscr{V}.\tag{13}
$$

Since $\lambda_1, \ldots, \lambda_n$ are distinct we have

$$
\prod_{j=1, j\neq k}^{n} (\lambda_k - \lambda_j) \neq 0,
$$

and since also $v_k \neq 0$ γ , from (13) we deduce $\alpha_k = 0$. Since $k \in \{1, ..., n\}$ was arbitrary, the theorem is proved. was arbitrary, the theorem is proved.

Corollary 2.6. Let $\mathcal V$ be a finite dimensional vector space over $\mathbb F$ and let $T \in \mathscr{L}(\mathscr{V})$. Then T has at most $n = \dim \mathscr{V}$ distinct eigenvalues.

Proof. Let $\mathscr B$ be a basis of $\mathscr V$ where $\mathscr B = \{u_1, ..., u_n\}$. Then $|\mathscr B| = n$ and span $\mathscr{B} = \mathscr{V}$. Let $\mathscr{C} = \{v_1, ..., v_m\}$ be eigenvectors corresponding to m distinct eigenvalues. Then $\mathscr C$ is a linearly independent set with $|\mathscr C|=m$. By the Steinitz Exchange Lemma, $m \leq n$. Consequently, T has at most n distinct eigenvalues. \Box

3 Existence of an upper-triangular matrix representation

Definition 3.1. A matrix $A \in \mathbb{F}^{n \times n}$ with entries $a_{ij}, i, j \in \{1, ..., n\}$ is called upper triangular if $a_{i,j} = 0$ for all $i, j \in \{1, \ldots, n\}$ such that $i > j$.

Theorem 3.2 (Theorem 5.13). Let $\mathscr V$ be a nonzero finite dimensional complex vector space. If $\dim \mathcal{V} = n$ and $T \in \mathcal{L}(\mathcal{V})$, then there exists a basis \mathcal{B} of $\mathscr V$ such that $M_{\mathscr B}^{\mathscr B}(T)$ is upper-triangular.

Proof. We proceed by the complete induction on $n = \dim(\mathcal{V})$.

The base case is trivial. Assume dim $\mathscr{V} = 1$ and $T \in \mathscr{L}(\mathscr{V})$. Set $\mathscr{B} = \{u\}$, where $u \in \mathscr{V} \backslash \{0_{\mathscr{V}}\}$ is arbitrary. Then there exists $\lambda \in \mathbb{C}$ such that $Tu = \lambda u$. Thus, $M_{\mathscr{B}}^{\mathscr{B}}(T) = [\lambda]$.

Now we prove the inductive step. Let $m \in \mathbb{N}$ be arbitrary. The inductive hypothesis is

For every $k \in \{1, \ldots, m\}$ the following implication holds: If $\dim \mathscr{U} = k$ and $S \in \mathscr{L}(\mathscr{U})$, then there exists a basis \mathscr{A} of $\mathscr U$ such that $M^{\mathscr A}_{\mathscr A}(S)$ is upper-triangular.

To complete the inductive step, we need to prove the implication:

If dim $\mathscr{V} = m + 1$ and $T \in \mathscr{L}(\mathscr{V})$, then there exists a basis \mathscr{B} of $\mathscr V$ such that $M_{\mathscr B}^{\mathscr B}(T)$ is upper-triangular.

To prove the red implication assume that dim $\mathscr{V} = m+1$ and $T \in \mathscr{L}(\mathscr{V})$. By Theorem 2.2 the operator T has an eigenvalue. Let λ be an eigenvalue of T. Set $\mathcal{U} = \text{ran}(T - \lambda I)$. Because $(T - \lambda I)$ is not injective, it is not surjective, and thus $k = \dim(\mathcal{U}) < \dim(\mathcal{V}) = m+1$. That is $k \in \{1, ..., m\}$.

Moreover, $T \mathscr{U} \subseteq \mathscr{U}$. To show this, let $u \in \mathscr{U}$. Then $Tu = (T - \lambda I)u +$ λu. Since $(T - \lambda I)u \in \mathcal{U}$ and $\lambda u \in \mathcal{U}$, $Tu \in \mathcal{U}$. Hence, $S = T|_{\mathcal{U}}$ is an operator on $\mathscr{U}.$

By the inductive hypothesis (the green box), there exists a basis \mathscr{A} = $\{u_1, \ldots, u_k\}$ of $\mathscr U$ such that $M^{\mathscr A}_{\mathscr A}(S)$ is upper-triangular. That is,

 $Tu_j = Su_j \in \text{span}\{u_1, \ldots, u_j\}$ for all $j \in \{1, \ldots, k\}.$

Extend $\mathscr A$ to a basis $\mathscr B = \{u_1, \ldots, u_k, v_1, \ldots, v_{n-k}\}\$ of $\mathscr V$. Since

$$
Tv_j = (T - \lambda I)v_j + \lambda v_j, \qquad j \in \{1, \ldots, n - k\},\
$$

where $(T - \lambda I)v_i \in \mathcal{U}$, for all $j \in \{1, ..., n-k\}$ we have

$$
Tv_j \in \text{span}\{u_1,\ldots,u_m,v_j\} \subseteq \text{span}\{u_1,\ldots,u_m,v_1,\ldots,v_j\}.
$$

By Theorem 3.6, $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular.

 \Box

Definition 3.3. Let $\mathcal V$ be a vector space over $\mathbb F$ and $T \in \mathcal L(\mathcal V)$. A subspace Uff of V is called an *invariant subspace* under T if $T(\mathscr{U}) \subseteq \mathscr{U}$.

The following proposition is straightforward.

Proposition 3.4. Let $S, T \in \mathcal{L}(\mathcal{V})$ be such that $ST = TS$. Then $\text{null } T$ is invariant under S and nul S is invariant under T . In particular, all eigenspaces of T are invariant under T .

Definition 3.5. Let $\mathcal V$ be a finite dimensional vector space over $\mathbb F$ with $n = \dim \mathcal{V} > 0$. Let $T \in \mathcal{L}(\mathcal{V})$. A sequence of nontrivial subspaces $\mathscr{U}_1,\ldots,\mathscr{U}_n$ of \mathscr{V} such that

$$
\mathscr{U}_1 \subsetneq \mathscr{U}_2 \subsetneq \cdots \subsetneq \mathscr{U}_n \tag{14}
$$

and

$$
T\mathscr{U}_k \subseteq \mathscr{U}_k \qquad \text{for all} \qquad k \in \{1, \dots, n\}
$$

is called a fan for T in $\mathscr V$. A basis $\{v_1,\ldots,v_n\}$ of $\mathscr V$ is called a fan basis corresponding to T if the subspaces

$$
\mathscr{V}_k = \text{span}\{v_1, \dots, v_k\}, \qquad k \in \{1, \dots, n\},
$$

form a fan for T.

Notice that (14) implies

$$
1 \le \dim \mathcal{U}_1 < \dim \mathcal{U}_2 < \cdots < \dim \mathcal{U}_n \le n.
$$

Consequently, if $\mathscr{U}_1, \ldots, \mathscr{U}_n$ is a fan for T we have dim $\mathscr{U}_k = k$ for all $k \in$ $\{1, \ldots, n\}$. In particular $\mathscr{U}_n = \mathscr{V}$.

Theorem 3.6 (Theorem 5.12). Let $\mathcal V$ be a finite dimensional vector space over F with dim $\mathcal{V} = n$ and let $T \in \mathcal{L}(\mathcal{V})$. Let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be a basis of $\mathscr V$ and set

$$
\mathscr{V}_k = \text{span}\{v_1, \dots, v_k\}, \qquad k \in \{1, \dots, n\}.
$$

The following statements are equivalent.

- (a) $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular.
- (b) $Tv_k \in \mathcal{V}_k$ for all $k \in \{1, \ldots, n\}.$
- (c) $T\mathscr{V}_k \subseteq \mathscr{V}_k$ for all $k \in \{1, \ldots, n\}.$
- (d) $\mathscr B$ is a fan basis corresponding to T .

Proof. (a) \Rightarrow (b). Assume that $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper triangular. That is

$$
M_{\mathscr{B}}^{\mathscr{B}}(T) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{kk} & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}
$$

.

Let $k \in \{1, \ldots, n\}$ be arbitrary. Then, by the definition of $M_{\mathscr{B}}^{\mathscr{B}}(T)$,

$$
C_{\mathscr{B}}(Tv_k) = \begin{bmatrix} a_{1k} \\ \vdots \\ a_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix}.
$$

Consequently, by the definition of $C_{\mathscr{B}}$, we have

$$
Tv_k = a_{1k}v_1 + \cdots + a_{kk}v_k \in \text{span}\{v_1, \ldots, v_k\} = \mathscr{V}_k.
$$

Thus, (b) is proved.

(b) \Rightarrow (a). Assume that $Tv_k \in \mathscr{V}_k$ for all $k \in \{1, \ldots, n\}$. Let a_{ij} , $i, j \in \{1, \ldots, n\}$, be the entries of $M_{\mathscr{B}}^{\mathscr{B}}(T)$. Let $j \in \{1, \ldots, n\}$ be arbitrary. Since $Tv_j \in \mathscr{V}_j$ there exist $\alpha_1, \ldots, \alpha_j \in \mathbb{F}$ such that

$$
Tv_j=\alpha_1v_1+\cdots+\alpha_jv_j.
$$

By the definition of $C_{\mathscr{B}}$ we have

$$
C_{\mathscr{B}}(Tv_j) = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_j \\ 0 \\ \vdots \\ 0 \end{bmatrix}.
$$

On the other side, by the definition of $M_{\mathscr{B}}^{\mathscr{B}}(T)$, we have

$$
C_{\mathscr{B}}(Tv_j) = \begin{bmatrix} a_{1k} \\ \vdots \\ a_{jj} \\ a_{j+1,j} \\ \vdots \\ a_{nj} \end{bmatrix}.
$$

The last two equalities, and the fact that $C_{\mathscr{B}}$ is a function, imply $a_{ij} = 0$ for all $i \in \{j+1,\ldots,n\}$. This proves (a).

(b) \Rightarrow (c). Suppose $Tv_k \in \mathscr{V}_k = span\{v_1, \ldots, v_k\}$ for all $k \in \{1, \ldots, n\}$. Let $v \in \mathscr{V}_k$. Then $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$. Applying T, we get $Tv =$ $\alpha_1 Tv_1 + \cdots + \alpha_k Tv_k$. Thus,

$$
Tv \in \text{span}\{Tv_1, \dots, Tv_k\}.
$$
\n(15)

Since

$$
Tv_j \in \mathscr{V}_j \subset \mathscr{V}_k
$$
 for all $j \in \{1, ..., k\},$

we have

$$
\mathrm{span}\{Tv_1,\ldots,Tv_k\}\subseteq\mathscr{V}_k.
$$

Together with (15), this proves (c).

 $(c) \Rightarrow (b)$. Suppose $T\mathscr{V}_k \subseteq \mathscr{V}_k$ for all $k \in \{1, \ldots, n\}$. Then since $v_k \in \mathscr{V}_k$, we have $Tv_k \in \mathscr{V}_k$ for each $k \in \{1, \ldots, n\}.$

 $(c) \Leftrightarrow (d)$ follows from the definition of a fan basis corresponding to T. \Box

Theorem 3.7. Let $\mathcal V$ be a finite dimensional vector space over $\mathbb F$ with dim $\mathscr{V}=n$, and let $T \in \mathscr{L}(\mathscr{V})$. Let $\mathscr{B}=\{v_1,\ldots,v_n\}$ be a basis of \mathscr{V} such that $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper triangular with diagonal entries $a_{jj}, j \in \{1, \ldots, n\}.$ Then T is not injective if and only if there exists $j \in \{1, \ldots, n\}$ such that $a_{jj} = 0.$

Proof. In this proof we set

$$
\mathscr{V}_k = \text{span}\{v_1, ..., v_k\}, \qquad k \in \{1, ..., n\}.
$$

Then

$$
\mathscr{V}_1 \subsetneq \mathscr{V}_2 \subsetneq \ldots \subsetneq \mathscr{V}_n \tag{16}
$$

and by Theorem 3.6, $T\mathscr{V}_k \subseteq \mathscr{V}_k$.

We first prove the "only if" part. Assume that T is not injective. Consider the set

$$
\mathbb{K} = \{k \in \{1, ..., n\} : T\mathcal{V}_k \subsetneq \mathcal{V}_k\}
$$

Since T is not injective, nul $T \neq \{0_{\mathscr{V}}\}$. Thus by the Rank-Nullity Theorem, ran $T \subsetneq \mathscr{V} = \mathscr{V}_n$. Since $T\mathscr{V}_n = \text{ran } T$, it follows that $T\mathscr{V}_n \subsetneq \mathscr{V}_n$. Therefore $n \in \mathbb{K}$. Hence the set K is a nonempty set of positive integers. Hence, by the Well-Ordering principle min K exists. Set $j = \min K$.

If $j = 1$, then dim $\mathcal{V}_1 = 1$, but since $T\mathcal{V}_1 \subsetneq \mathcal{V}_1$ it must be that dim $T\mathcal{V}_1 =$ 0. Thus $T\mathscr{V}_1 = \{0\gamma\}$, so $Tv_1 = 0_v$. Hence $C_{\mathscr{B}}(T) = [0 \cdots 0]^\top$ and so $a_{jj} = 0$. If $j > 1$, then $j - 1 \in \{1, ..., n\}$ but $j - 1 \notin \mathbb{K}$. By Theorem 3.6, $T\mathscr{V}_{j-1} \subseteq \mathscr{V}_{j-1}$ and, since $j-1 \notin \mathbb{K}$, $T\mathscr{V}_{j-1} \subsetneq \mathscr{V}_{j-1}$ is not true. Hence $T\mathscr{V}_{j-1} = \mathscr{V}_{j-1}$. Since $j \in \mathbb{K}$, we have $T\mathscr{V}_j \subsetneq \mathscr{V}_j$. Now we have

$$
\mathscr{V}_{j-1} = T\mathscr{V}_{j-1} \subseteq T\mathscr{V}_j \subsetneq \mathscr{V}_j.
$$

Consequently,

$$
j-1 = \dim \mathscr{V}_{j-1} \le \dim(T\mathscr{V}_j) < \dim \mathscr{V}_j = j,
$$

which implies $\dim(T\mathscr{V}_j) = j - 1$ and therefore $T\mathscr{V}_j = \mathscr{V}_{j-1}$. This implies that there exist $\alpha_1, \ldots, \alpha_{j-1} \in \mathbb{F}$ such that

$$
Tv_j = \alpha_1v_1 + \cdots + \alpha_{j-1}v_{j-1}.
$$

By the definition of $M_{\mathscr{B}}^{\mathscr{B}}$ this implies that $a_{jj} = 0$.

Next we prove the "if" part. Assume that there exists $j \in \{1, ..., n\}$ such that $a_{jj} = 0$. Then

$$
Tv_j = a_{1j}v_1 + \dots + a_{j-1,j}v_{j-1} + 0v_j \in \mathscr{V}_{j-1}.
$$
\n(17)

By Theorem 3.6 and (16) we have

$$
Tv_i \in \mathscr{V}_i \subseteq \mathscr{V}_{j-1} \qquad \text{for all} \qquad i \in \{1, \dots, j-1\}.
$$
 (18)

Now (17) and (18) imply $Tv_i \in \mathscr{V}_{j-1}$ for all $i \in \{1, \ldots, j\}$ and consequently $T\mathscr{V}_j \subseteq \mathscr{V}_{j-1}$. To complete the proof, we apply the Rank-Nullity theorem to the restriction $T|_{\mathscr{V}_j}$ of T to the subspace \mathscr{V}_j :

$$
\dim \operatorname{null}(T|_{\mathscr{V}_j}) + \dim \operatorname{ran}(T|_{\mathscr{V}_j}) = j.
$$

Since $T\mathscr{V}_j \subseteq \mathscr{V}_{j-1}$ implies $\dim \text{ran}(T|_{\mathscr{V}_j}) \leq j-1$, we conclude

$$
\dim \operatorname{null}(T|_{\mathscr{V}_j}) \geq 1.
$$

Thus $\text{null}(T|\gamma_j) \neq \{0\gamma\}$, that is, there exists $v \in \mathscr{V}_j$ such that $v \neq 0$ and $Tv = T|_{\mathscr{V}_j}v = 0.$ This proves that T is not invertible. □

Corollary 3.8 (Theorem 5.16). Let $\mathcal V$ be a finite dimensional vector space over $\mathbb F$ with dim $\mathscr V=n$, and let $T\in\mathscr L(\mathscr V)$. Let $\mathscr B$ be a basis of $\mathscr V$ such that $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper triangular with diagonal entries $a_{jj}, j \in \{1, \ldots, n\}$. The following statements are equivalent.

- (a) T is not injective.
- (b) T is not invertible.
- (c) 0 is an eigenvalue of T.
- (d) $\prod_{i=1}^{n} a_{ii} = 0.$
- (e) There exists $j \in \{1, \ldots, n\}$ such that $a_{jj} = 0$.

Proof. The equivalence (a) \Leftrightarrow (b) follows from the Rank-nullity theorem and it has been proved earlier. The equivalence (a) \Leftrightarrow (c) is almost trivial. The equivalence (a) \Leftrightarrow (e) was proved in Theorem 3.7 and The equivalence $(d) \Leftrightarrow (e)$ is should have been proved in high school. □

Theorem 3.9. Let $\mathcal V$ be a finite dimensional vector space over $\mathbb F$ with $\dim \mathscr{V}=n$, and let $T\in \mathscr{L}(\mathscr{V})$. Let \mathscr{B} be a basis of \mathscr{V} such that $M_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper triangular with diagonal entries a_{jj} , $j \in \{1, \ldots, n\}$. Then

$$
\sigma(T) = \{a_{jj} : j \in \{1, ..., n\}\}.
$$

Proof. Notice that $M_{\mathscr{B}}^{\mathscr{B}} : \mathscr{L}(V) \to \mathbb{F}^{n \times n}$ is a linear operator. Therefore

$$
M_{\mathscr{B}}^{\mathscr{B}}(T-\lambda I) = M_{\mathscr{B}}^{\mathscr{B}}(T) - \lambda M_{\mathscr{B}}^{\mathscr{B}}(I) = M_{\mathscr{B}}^{\mathscr{B}}(T) - \lambda I_n.
$$

Here I_n denotes the identity matrix in $\mathbb{F}^{n \times n}$. As $M_{\mathscr{B}}^{\mathscr{B}}(T)$ and $M_{\mathscr{B}}^{\mathscr{B}}(I) = I_n$ are upper triangular, $M_{\mathscr{B}}^{\mathscr{B}}(T - \lambda I)$ is upper triangular as well with diagonal entries $a_{ij} - \lambda, j \in \{1, ..., n\}.$

To prove a set equality we need to prove two inclusions.

First we prove \subseteq . Let $\lambda \in \sigma(T)$. Because λ is an eigenvalue, $T - \lambda I$ is not injective. Because $T - \lambda I$ is not injective, by Theorem 3.7 one of its diagonal entries is zero. So there exists $i \in \{1, ..., n\}$ such that $a_{ii} - \lambda = 0$. Thus $\lambda = a_{ii}$. So $\sigma(T) \subseteq \{a_{jj} : j \in \{1, ..., n\}\}.$

Next we prove \supseteq . Let $a_{ii} \in \{a_{jj} : j \in \{1, ..., n\}\}\$ be arbitrary. Then $a_{ii} - a_{ii} = 0$. By Theorem 3.7 and the note at the beginning of this proof $T - a_{ii}I$ is not injective. This implies that a_{ii} is an eigenvalue of T. Thus $a_{ii} \in \sigma(T)$. This completes the proof. □

Remark 3.10. Theorem 3.9 is identical to Theorem 5.18 in the textbook.