$A = [0,+\infty), \ B = [0,+\infty), \ f_1 = \bigl\{ (x,x^2) \ : \ x \in A \bigr\}$ |
$A = \mathbb R, \ B = \mathbb R, \ f_2 = \bigl\{ (x,x^3) \ : \ x \in A \bigr\}$ |
$A = \mathbb R, \ B = (0,+\infty), \ f_3 = \bigl\{ (x,e^x) \ : \ x \in A \bigr\}$ |
$A = (-\pi/2,\pi/2), \ B = \mathbb R, \ f_4 = \bigl\{ \bigl( x,\tan(x) \bigr) \ : \ x \in A \bigr\}$ |
$A = [-\pi/2,\pi/2], \ B = [-1,1], \ f_5 = \bigl\{ \bigl(x,\sin(x)\bigr) \ : \ x \in A \bigr\}$ |
$A = [0,\pi], \ B = [-1,1], \ f_6 = \bigl\{ \bigl(x,\cos(x)\bigr) \ : \ x \in A \bigr\}$ |
$\color{blue}{\cosh(x)} = \color{green}{\dfrac{1}{2} e^x} + \color{red}{\dfrac{1}{2} e^{-x}}, \ x \in \mathbb{R}$ |
$\color{blue}{\sinh(x)} = \color{green}{\dfrac{1}{2} e^x} \color{red}{- \dfrac{1}{2} e^{-x}}, \ x \in \mathbb{R}$ |
$ \tanh(x) = \dfrac{\sinh(x)}{\cosh(x)} = \dfrac{e^x - e^{-x}}{e^x + e^{-x}}, \ x \in \mathbb{R}$ |
Hyperbola $\bigl\{ (x,y) \in \mathbb R\!\times \!\mathbb R \, : \, x^2 - y^2 = 1\bigr\}$ |
The sign function |
The unit step function |
The floor function |
The ceiling function |
The Unit Circle $\bigl\{ (x,y) \in {\mathbb R}\times {\mathbb R} \, : \, x^2+y^2=1 \bigr\}$ |
Place the cursor over the image to start the animation.
The composition at a generic point $x$ |
The composition at another generic point $x$ |
Finding a minimum of the composition |
Finding a maximum of the composition |
Place the cursor over the image to start the animation.