Together with the theorem that we proved in the preceding item one should state several more related theorems. I list all that I could think of here.
Theorem. For all real numbers $a, b, c$ we have
\[
\forall\mkern+1mu x \in \mathbb{R} \quad ax^2 + bx + c \leq 0 \qquad \Leftrightarrow \qquad (a \leq 0) \ \land \ (c \leq 0) \ \land \ (b^2 - 4 a c \leq 0).
\]
Theorem. For all real numbers $a, b, c$ we have
\[
\forall\mkern+1mu x \in \mathbb{R} \quad ax^2 + bx + c = 0 \qquad \Leftrightarrow \qquad (a = 0) \ \land \ (c = 0) \ \land \ (b= 0).
\]
Theorem. For all real numbers $a, b, c$ we have
\[
\forall\mkern+1mu x \in \mathbb{R} \quad ax^2 + bx + c \gt 0 \qquad \Leftrightarrow \qquad \bigl(a\gt 0 \land b^2 - 4 a c \lt 0\bigr)\lor \bigl(a=0\land b=0 \land c \gt 0 \bigr).
\]
Theorem. For all real numbers $a, b, c$ we have
\[
\forall\mkern+1mu x \in \mathbb{R} \quad ax^2 + bx + c \lt 0 \qquad \Leftrightarrow \qquad \bigl(a\lt 0 \land b^2 - 4 a c \lt 0\bigr)\lor \bigl(a=0\land b=0 \land c \lt 0 \bigr).
\]
Theorem. For all real numbers $a, b, c$ we have
\[
\Bigl( \exists\mkern+1mu s \in \mathbb{R} \quad as^2 + bs + c \lt 0 \Bigr) \bigwedge \Bigl( \exists\mkern+1mu t \in \mathbb{R} \quad at^2 + bt + c \gt 0 \Bigr) \qquad \Leftrightarrow \qquad b^2 - 4 a c \gt 0.
\]
Providing proofs for these theorems is more entertainment for math enthusiasts.