$ \displaystyle \frac{d}{dt} \int_{x}^{x+\Delta x} u(\xi,t)d\xi $ | $\displaystyle = \int_{x}^{x+\Delta x} \frac{\partial u}{\partial t}(\xi,t)d\xi $ | by Leibniz's Rule |
$ \displaystyle \frac{d}{dt} \int_{x}^{x+\Delta x} u(\xi,t)d\xi $ | $\displaystyle = -\bigl(\phi\bigl(x+\Delta x,t\bigr) - \phi(x,t)\bigr) \quad $ | by the Conservation of Dye Law |
Place the cursor over the image to see the diffusion of the dye.