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ON THE REGULARITY OF THE CRITICAL POINT INFINITY OF 

DEFINITIZABLE OPERATORS 

Branko ~urgus 

In this note necessary and sufficient conditions for 
the regularity of the critical point infinity of a definitizable 
operator A are given. Using these criteria it is proved that 
the regularity of the critical point infinity is preserved under 
some additive perturbations as well as for some operators which 
are related to A . Applications to indefinite Sturm-Liouville 
problems are indicated. 

INTRODUCTION 

Let (K,[.,.]) be a Krein space (see [3]), J a fun- 

damental symmetry on K , (x,y):= [Jx,y] (x,y 6 K) and il'll 

the corresponding Hilbert space norm. All topological notions 

in the Krein space K are understood with respect to the topo- 

logy generated by the norm II'II This topology does not de- 

pend on the special choice of the fundamental symmetry J For 

this and other facts about Krein spaces see [3]. We use the 

common definitions of symmetric, positive, selfadjoint and de- 

finitizable operators in Krein spaces (see [3], [19]). In this 

note all these operators are supposed to be densely defined. A 

definitizable operator in the Krein space K has a spectral 

function, possibly with critical points on the real axis, see 

[3], [9], [19]. The spectral function of the definitizable 

operator A will be denoted by E , and the set of critical 

points of E , which are also called the critical points of A , 

by c(A) The critical point t 6 �9 of the definitizable 

operator A is called regular (see [19], [10]) if there exists 

an open neighbourhood 40 ~ �9 of t , 40 N c(A) = {t} , such 

that the projectors E(~) , ~ ~ 40 ~ {t} are uniformly 
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bounded. Here ~ = ~ U {~} is regarded as the one point com- 

pactification of ~ . The critical points of A which are not 

regular are called singular critical points of A ; we denote 

the set of all singular critical points of A by c (A) 
s 

In this note we give criteria for the regularity of 

the critical point ~ of the definitizable operator A . E.g., 

we show that infinity is not a singular critical point of A if 

and only if in the Krein space K there exists a positive, 

bounded and boundedly invertible operator W such that 

W D(A) ~ D(A) Further, we use these criteria in order to 

prove that the regularity of the critical point ~ is preserved 

under some additive perturbations as well as for some operators 

which are related to A . 

We mention that the main criteria for the regularity 

of the critical point ~ given in Theorems 2.5 and 3.2 are 

inspired by a construction of Beals (see [2]), see Remark 3.7. 

In [5] we use the above results in order to study selfadjoint, 

ordinary differential operators with an indefinite weight func- 

tion. 

I. PRELIMINARIES 

1.1. For the convenience of the reader we recall the 

following results. 

PROPOSITION 1.1. Let 

be Hilbert spaces such that H I 

for some constant k > 0 holds 

(HI,(.,.) I) and (H2,(.,.) 2) 

is dense in (H2,(.,.) 2) and 

llxll I >__ kllxll 2 (x 6 H 1) Then 

there exists a positive selfadjoint operator in H 2 with 

domain H I If P is any selfadjoint operator in H 2 with 

D(P) = H I , then the norm II.II I is equivalent to the graph 

norm 
2 2 1/2 

x ~ (llxll 2 + llPxll2) ( x s ~(P) = H I ) (1.1) 

The first statement follows from Theorem 2.23 in [13]. 

To prove the second statement we observe that the inequality 
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+ I/2 ,,x,, 2 ( x c 

holds, we form a sum of the norm (1.1) and 11.111 , and apply 

the closed graph theorem. 

We note that in the case 0 6 0(P) the norm (1.1) is 

equivalent to the norm x ~ llPxll 2 ( x 6 D(P) = H I ) 

THEOREM 1.2. ("Heinz inequality", see [16].) Let P 

and Pl be positive selfadjoint operators defined in the Hilbert 

spaces (H,(.,.)) and (HI,(.,.) I) , respectively. If 

T : H ~ H I is a bounded operator with the norm M such that 

T D(P) ~ V(P I) and 

then, for 

IIPITXll I < MIIIPxll ( x s D(P) ) , 

0 =< ~ <= I , we have T D(P a) c= D(P~) and 

llP~TXlll =< MI-a M I llPaxll ( x s D(Pa) ) 

The following corollary is a consequence of Theorem 

1.2 and Proposition 1.1. 

COROLLARY 1.3. If PI and P2 are positive self- 

adjoint operators in a Hilbert space H and D(P I) = ~(P2 ) , 

then 

V(P~) = D(P~) ( 0 < ~ < I ) (I.2) 
I 

= = 

and the corresponding graph norms on V(P~) ( j = 1,2 ) are 

equivalent. 

In a special case the equality in (1.2) holds for 

arbitrary nonnegative ~ . Namely, let S be a selfadjoint 

operator in the Hilbert space H which is bounded from below 

with a lower bound y Then for a ~ y it holds 

D((S-aI) ~) = D(ISI ~) ( ~ 6 [0,+~) ) (1.3) 

This follows easily using the characterization of the elements 

of the domains in (1.3) by means of the spectral function of S . 

1.2. Let A be a selfadjoint operator in the Krein 

space (K,[.,.]) According to Proposition 1.1 the topology 
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on ~(A) generated by the graph norm with respect to the opera- 

tor JA does not depend on the special choice of J . The set 
^ 

D(A) equipped with this topology will be denoted by D(A) 

For a selfadjoint operator S in the Hilbert space 

(H,(.,.)) by D[S] we denote the completion of ~(S) with 

respect to the norm II (ISI+I) I/2. {I . The linear space D[S] 

with the topology defined by the norm el (ISI+I) I/2. II is deno- 

ted by D[S] ~ . Since the operator (ISI+I) 1/2 is boundedly 

invertible I) we have 

lix{{ ~ I{ ({S{+I)-1/2{{ {{ ({S}+I) 1/2 x{{ ( x 6 P(S) ) , 

and this implies P[S] ~ H . It holds D[S] = P((IS{+I) I/2) 

and, by (1.2), P[S] = P({S{ I/2) 

According to Corollary 1.3 P[JA] ~ , defined in the 

Hilbert space (K,(.,.)) , does not depend on the special choice 

of J . 

REMARK 1.4. Proposition 1.1 and Corollary 1.3 imply 

that the following equalities hold true 

^ 

p[jA] ~ = p[IJA}+I] ~ = p(J(}JAI+I) I/2) , 

^ ^ N 

D(A) = ~(J(IJAI+I)) = ~[(JA) 2] 

REMARK 1.5. Let A be a selfadjoint operator in the 

Krein space (K,[.,.]) , such that the inequality 

[Ax,x] a y llx{l 2 ( x E D(A) ) is satisfied for some real con- 

stant y depending on the fundamental symmetry J , i.e. the 

sesquilinear form [A.,.] : D(A) • D(A) ~ ~ is bounded from 

below in (K,(.,.)) Then the operator JA is selfadjoint 

and bounded from below in the Hilbert space (K,(.,.)) Now 

Remark 1.4 and Corollary 1.3 imply that D[JA] is the domain 

of the closure of the sesquilinear form [A.,.] (see [23, 

p. 122]). 

I ) An operator A is said to be boundedly invertible if 

0 E p(A) 
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REMARK 1.6. If the selfadjoint operator S is given 

by an ordinary 2n-th order differential expression with boundary 

conditions the set ~[S] is determined by the essential 

boundary conditions (see [14,10~ [4, Theorem 2.4]). 

REMARK 1.7. Let S be a boundedly invertible selfad- 

joint operator in the Hilbert space (H, (.,.)) The topology 

on ~[S] ~ is given by the norm II IS11/2. II �9 The inequality 

l(Sx,y) I ~ II ISI I/2 xll II ISI I/2 yll ( x,y 6 D(S) ) 

implies that the scalar product (S.,.) can be extended by con- 

tinuity onto ~[S] Then (~[S],(S.,.)) is a Krein space. 

The norm topology on this Krein space is defined by II ISl I/2" �9 II, 

hence it coincides with the topology on 0[S] N . This Krein 

space is a Pontrjagin space of index K (see [19]) if and only 

if the negative spectrum of S consists of finitely many eigen- 

values of total multiplicity <. In this case the operator S 

is bounded from below, say S ~ y , and Corollary 1.3 yields 

that the norm II (S-aI) I/2" �9 II, for a < y , generates the norm 

topology of the Pontrjagin space (~[S],(S.,.)) 

1.3. In this subsection we consider a selfadjoint op- 

erator A in the Krein space (K,[.,.]) such that zero is not 

an eigenvalue of A and put P = JA . Then the following 

equivalences hold true. 

(a) If the operator PJP is densely defined, then it is 

selfadjoint in the Hilbert space (K,(.,.)) if and only if 
-I 

P • ai PJ are boundedly invertible operators for some (and 

hence for all) a 6 ~ . 

(b) The resolvent set p(jp2) is not empty if and only 

if the operator p-1 + ai JP is boundedly invertible for some 

(and hence for all) a 6 ~ . 

We mention that the operators p-1 • ai PJ are defined 

on PD(PJP) In order to prove (a) we suppose first that PJP 

is a selfadjoint operator. Then for every a 6 ~ the operator 

I - ai PJP is boundedly invertible. The operator 
-I P(I - ai PJP) is a composition of the bounded operator 
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(I - ai pjp)-1 , which maps K onto ~(PJP) ~ ~(P) , and the 
-1 

closed operator P Hence, P(I - ai PJP) is an everywhere 

defined closed operator and therefore bounded. It is easy to 

see that P(I - ai pjp)-1 is an inverse of p-1 _ ai PJ . Con- 
-I 

versely, let us suppose that the operators P • ai PJ are 

boundedly invertible for some a s ~ . Then p-1(p-1 • ai pj)-1 

are everywhere defined closed operators and hence bounded. 

These operators are the inverses of the operators I • ai PJP . 

Therefore, the symmetric operator PJP is selfadjoint in the 

Hilbert space (K,(.,.)) 

The proof of (b) uses the same ideas as the proof of (a). 

LEMMA 1.8. Let A be a definitizable operator in the 

Krein space K such that zero is not an eigenvalue of A and 

put P = JA . If ~ N p(P) * ~ , then for any positive integer 

m the operator JP 2m has a nonempty resolvent set. 

PROOF. We shall prove the lemma for m = I first. Let 

I/b be a real number in p(P) The nonreal spectrum of A 

consists of a finite number of points. Therefore we can choose 

a real a �9 0 such that -ai, ai, i/ab 6 P(A) 

I. We have chosen the number a such that the operator 

(A - ai I) (A + ai I) = A 2 + a 2 I 

is boundedly invertible, i.e. -a 2 6 Q(A 2) Consequently, the 

symmetric operator A 2 + a 2 I is selfadjoint in the Krein 

space K Hence, A 2 is selfadjoint in the Krein space K 

and PJP = JA 2 is selfadjoint in the Hilbert space (K,(.,.)) 
-1 

According to the equivalence (a) the operator P - ai PJ is 

boundedly invertible. Now we prove that p-1 _ ai PJ is a 

densely defined operator. The operator PJ = JAJ is invertible 

and definitizable in the Krein space K . Indeed, PJ is a 

selfadjoint operator in (K,[.,.]) , it has the same defini- 

tizing polynomial as A and Q(JAJ) = p(A) % @ . Therefore, 

~(PJ) A R(PJ) = D(P -I - ai PJ) is dense in K and p-1 _ ai PJ 

is a densely defined and boundedly invertible operator. 
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2. According to the choice of a and b the operator 

i i (JP + ~ I) (bP -I - I) = bJ - JP + ! p-1 _ __ a ab I 

i p-1 _ jp 
is boundedly invertible and hence closed. Thus, 

and also p-1 + ai JP are closed operators. Comparing the 

domains we see that 

-I -I 
P (I + ai PJP) c P + ai JP . 

Consequently 

R(P -I + ai JP) ~ R(P-I(I + ai PJP)) = ~(P) 

-I 
Hence, we see that P + ai JP is a densely defined, closed 

operator with a dense range. 

3. It holds true 

p I + ai JP c (p-1 _ ai PJ) , (1.4) 

where the asterisk * denotes operator adjoints in (K,(.,.)) 

According to the first step of this proof the operator on the 

right-hand side of (1.4) is boundedly invertible and we have 

(p-1 + ai jp)-1 ~ (p-1 - ai pj)*-1 (1.5) 

According to the second step of this proof the operator on the 

left-hand side of (1.5) is densely defined and closed. There- 

fore, in (1.5) (and hence in (1.4)) we have equality and 

p-1 + ai JP is a boundedly invertible operator. 

The equivalence (b) yields p(jp2) # @ . Hence the 

lemma is proved for the case m = I If m > 1 , we apply the 

already proved result m times. The lemma is proved. 

In a similar way we show that for a selfadjoint inver- 

tible operator P in the Hilbert space (K,(.,.)) such that 

p(jp2) �9 ~ the operator PJP is selfadjoint in (K,(.,.)) 

This result improves Lemma 3.1 from [18] where only the essen- 

tial selfadjointness of the operator PJP is proved. 
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In order to prove the stated result we observe that 
-I 

P • ai PJ are closed operators with dense ranges. Indeed, 

these operators are closed as the operators 

(p-1 + I)(ai PJ + I) = ai J + ai PJ + p-1 + I 

are closed, and the inclusions 

-I -1 
P -+ ai PJ m P 

imply that the operators 

It holds true 

(I + ai p2j) 

-I 
P _+ ai PJ have dense ranges. 

p-1 _+ ai PJ c= (p-1 u ai JP)* (I .6) 

According to the equivalence (b) the operators on the right-hand 

side of (1.6) are boundedly invertible and we have 

(p-1 • ai pj)-1 g (p-1 ; ai jp)*-1 (1.7) 

According to the preceding observation the operators on the 

left-hand side of (1.7) are densely defined and closed. There- 

fore, in (1.7) (and hence in (1.6)) we have equality and 
-I 

P • ai PJ are boundedly invertible operators. The equiva- 

lence (a) yields that PJP is a selfadjoint operator in 

(K,(.,.)) 

2. POSITIVE OPERATORS 

2.1. In this section we consider a positive, boundedly 

invertible operator A in the Krein space (K,[.,.]) Then 

we have 

[Ax,x] = (JAx,x) ~ II (JA)-Ifl-lilxii 2 = li A -I 

and 

if tlxiJ 2 ( x 6 ~(A) ), 

(x,Y)A := [Ax,y] ( x,y 6 D(A) ) 
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defines a positive definite scalar product on D(A) The corre- 

sponding norm II (JA) I/2. II is denoted by It.ll A . As in 

Remark 1.7 the scalar product (''')A can be extended by con- 

tinuity onto ~[JA] and (~[JA], (.,.)A) is a Hilbert space. 

REMARK 2 1 The operator A -I �9 " ]D[JA] maps ~[JA] 

into D(A) q D[JA] and it is a selfadjoint, bounded operator in 

the Hilbert space (~[JA],(.,.) A) Indeed, the selfadjointness 

follows from the relation 

(A-Ix,Y)A = [AA-Ix,y] = [A-IAx,y] 

= [Ax,A-ly] = (x,A-ly)A ( x,y 6 D(A) ) , 

and the boundedness from the relation 

](A-Ix,x)A i --L[x,x]] =< (x,x) 

< llA -I II [Ax,x] = ILA -I II (x,x) A ( x 6 D(A) ) 

The next lemma is a simple consequence of Krein-Reid- 

Lax theorem about symmetrizable operators (see [15], [21], [20]). 

LEMMA 2.2. Let S and K be bounded operators in the 

Hilbert space (H,(.,.)) such that 

joint. Then we have 

S and SK are selfad- 

i (SKx,x) i ~ lIKil (ISJx,x) ( x 6 H ) 

PROOF. The operator sgn(S)K is bounded in H 

II sgn(S)Kil ~ lIKll The operator ISi is positive and 

and 

IS]sgn(S)K = SK is a selfadjoint operator in H . Therefore 

all the assumptions of Theorem 2.1 in [21] are satisfied. Hence 

I (SKx,x) I = l(IS~sgn(S)Kx,x) j 

11Kll (ISix,x) ( x 6 H ) 

The lemma is proved. 

LEMMA 2.3. Let B 

operator in the Krein space 

be a positive, boundedly invertible 

(K,[.,.]) Assume that there 
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exists a positive, boundedly invertible operator W in the Krein 

space (K,[.,.]) such that 

@[JB] c D(W) , WD[JB] c D[JB] 
= = 

and such that WID[jB ] is a bounded operator in D[JB] N 

Then, on D[JB] the norm generated by the positive definite 

scalar product 

<x,y> B := (IB-11D[jB]IX,Y)B ( x,y 6 D[JB] ) (2.1) 

is equivalent to the Hilbert space norm I1"11 of K The 

operator W is bounded in K . 
-1 PROOF. The operator B ID[jB ] is selfadjoint and 

bounded in the Hilbert space (D[JB],(.,.) B) ; IB-IID[jB]I 

denotes its absolute value in this Hilbert space. For 

x 6 D[JB] we have 

llxll 2 = (x,x) S llw-111 [Wx,x] = llw -I 

ljw-111 II WID-[jB]II (IB-11D[jB]IX'X)B 

= IIW-III II WID[jB]II <x,x> B . 

II (B-IWx,X)B 

(2.2) 

The last inequality in (2.2) is a consequence of Lemma 2.2 

applied to the bounded operators B-IID[jB] and WI~[jB ]~ in 

the Hilbert space (D[JB],(.,.)B) Here we use the fact that 

operator (B-IID[jB]) (WID[jB]) is positive the in 

(D[JB],(.,.) B) (see the first line in (2.2)). Further, for 

x 6 D[JB] we have 

<X,X> B sup {I<x,Y>B 12 = : <Y'Y>B ~ 1} 

= sup {I (IB-IID[jB]IX,Y)B 12 : <Y'Y>B ~ 1} 

= sup {I(B-Ix,Y)B 12 : <Y'Y>B ~ I} 

= sup {I[x,y] I 2 : <Y'Y>B ~ 1} 
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sup { l [ x , y ] l  2 : I ly l l  2 ~ IIW-111 I I W I ~ [ j B ] I I  } 

= IIW -111 II WI0 [ jB  ]11 I lx l l  2 (2 .3)  

By (2.2) and (2.3) the scalar products <'''>B and (.,.) 

generate equivalent norms on ~[JB] The operator JB is 

positive in the Hilbert space (K, (.,.)) and from (2.2) and 

(2.3) it follows that JW is a bounded operator in (K, (.,.)) 

Here we have used the fact that D(B) is a dense set in K . 

Then the operator W is also bounded. This completes the proof 

of the lemma. 

We note that in [2] and [12], in order to prove half- 

range completeness, the equivalence of the norms in Lemma 2.4 

was shown by other methods for the special case of Sturm- 

Liouville operators with an indefinite weight function. 

In the following, if J is a fundamental symmetry we put 

I 
P• := ~ (I • J) , K• := P• 

The operator A in the Krein space K is called funda- 

mentally reducible if there exists a fundamental symmetry J 

such that for every x s D(A) we have P+x , P_x 6 D(A) and 

AP• 6 K• 
The following characterization of fundamental reduci- 

bility is contained in [6]. 

LEMMA 2.4. The following statements are equivalent. 

(i) The operator A is fundamentally reducible. 

(ii) There exists a fundamental symmetry J such that 

AP m P A and AP m P A hold. 
+ =  + - - =  -- 

(iii) There exists a fundamental symmetry J such that 

AJ = JA holds. 

The operator A in the Hilbert space (H,(.,.)) is 

said to be similar to a selfadjoint operator in (H,(.,.)) if 

there exists a scalar product (.,.)' on H such that (.,.)' 

and (.,.) generate on H equivalent norms and A is self- 

adjoint in the Hilbert space (H,(.,.)') The following 
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theorem is the main result of this section. 

THEOREM 2.5. Let A be a positive, boundedly inver- 

tible operator in the Krein space (K,[.,.]) The following 

statements are equivalent. 

(i) A is fundamentally reducible. 

(ii) In the Krein space (K,[.,.]) there exists a 

positive, boundedly invertible operator W such that 

~(A) c D(W) , WV(A) = D(A) , (2.4) 
= = 

^ 

and WID(A) is a bounded operator in D(A) 

(iii) In the Krein space (K,[.,.]) there exists a 

positive, bounded and boundedly invertible operator W such 

that (2.4) holds. 

(iv) In the Krein space (K,[.,.]) there exists a 

positive, boundedly invertible operator W such that 

O[JA] c D(W) , WV[JA] c D[JA] , 
= = 

and WID[JA ] is a bounded operator in D[JA] N . 

(v) The positive definite scalar products <'''>A 

and (.,.) generate equivalent norms on O[JA] 

(vi) A is similar to a selfadjoint operator in the 

Hilbert space (K,(.,.)) 

(vii) Infinity is not a singular critical point of A . 

PROOF. (i) ~ (ii) : Let A be fundamentally reducible. 

Then by Lemma 2.4 there exists a fundamental symmetry J0 which 

commutes with A , AJ 0 = J0 A . It follows that JoD(A) ~ D(A) , 

and J0 is bounded with respect to the norm ll.lIAJoA . Accor- 

ding to Proposition 1.1^ the norm ll. IIAJoA generates on D(A) 

the topology^of D(A) Hence, J01D(A) is a bounded opera- 

tor in D(A) and we can take W = J0 in (ii). 

(ii) ~ (iii): In order to prove this implication 

we apply Lemma 2.3 to the operators B := AJA and W from 

(ii). The operator AJA is positive and boundedly invertible 



474 Curgus 

in the Krein space K . According to Remark 1.4 we have 

D[(JA) 2] = D[J(AJA)] = D(A) Hence all the assumptions of 

Lemma 2.3 are fulfilled and according to this lemma the operator 

W is bounded in K . 

(iii) ~ (iv): The operator WA -I is bounded in K 
-I 

Since WD(A) ~ D(A) , the operator AWA is everywhere defined 
-I 

and closed, and therefore bounded in K The operator WAWA 

is also bounded in K , i.e. 

II WAWA-Ixll ~ c 3 llxll (x 6 K) 

with some c 3 > 0 This inequality is equivalent to 

II WAWx ~ c 3 lJAxll ( x 6 D(A) ) , 

and also to 

lJ JWAWxll < c 3 lIJAxlJ ( x 6 D (A)) 

The operator c 3 JA is positive and selfadjoint in (K,(.,.)) 

The operator JWAW is positive and boundedly invertible, and 

hence selfadjoint in (K,(.,.)) Furthermore, 

D(JWAW) ~ D(A) = D(c 3 JA) By Theorem 1.2 it follows that 

(JWAWx,x) < c 3(JAx,x) ( x 6 D(A) ) , 

or, equivalently, 

[AWx,Wx] ~ c 3 [Ax,x] ( x 6 D(A) ) 

This shows that the operator WID(A) is bounded with respect 

to the norm Jl.ll A on D(A) It remains to show that 

WD[JA] ~ ~[JA] Let (x n) be a sequence of elements of D(A) 

x in II.ll A Then x s D[JA] , x n ~ x in II'll and x n 

and, since W is bounded, Wx n ~ Wx in II'11 Since W~D(A) 

is bounded with respect to li.ll A on D(A) , the sequence 

(WXn) is a ll.llA-Cauchy sequence and consequently convergent 

in (D[JA],Jl.iJA) , i.e. WXn ~ Y0 in ll'IIA ' Y0 6 D[JA] 



Curgus 475 

It follows WXn ~ Y0 in H'It �9 Hence Y0 = Wx 6 D[JA] This 

proves W~[JA] c D[JA] 
= 

2.3. 

(iv) ~ (v): This implication is a consequence of Lemma 

(v) ~ (vi) : Assume that the scalar products <'''>A 

and (.,.) generate equivalent norms on D[JA] Since 

D[JA] is dense in the Hilbert space (K,(.,.)) the scalar 

product <'''>A can be extended onto K by continuity. The 

extended scalar product will also be denoted by <'''>A " In 
-I 

Remark 2.1 it was shown that the operator A I~[jA ] is self- 

adjoint in the Hilbert space (D[JA],(.,.) A) In the same way 
-1 

one proves that the operator A is selfadjoint in the Hilbert 

space (K,<.,.> A) The scalar products <'''>A and (.,.) 
-I 

generate equivalent norms on K and hence A is similar to 

a selfadjoint operator in the Hilbert space (K,(.,.)) Con- 

sequently, A is also similar to a selfadjoint operator in 

(K,(.,.)) and (vi) is proved. 

The implication (vi) ~ (vii) is obvious. The equivalence 

(i) ~ (vii) is well-known (see [I]). The theorem is proved. 

In [12] one can find an example of an operator A for 

which the norms in (v) are not equivalent. According to 

Theorem 2.5 this means ~ 6 Cs(A) Earlier examples of posi- 

tive operators in Krein spaces for which ~ 6 c (A) were given 
s 

in [17], [7] and [1]. 

COROLLARY 2.6. Let A and B be positive, boundedly 

invertible operators in the Krein space K and suppose that 

D(A) = D(B) Then ~ ~ Cs(A) if and only if ~ ~ Cs(B) 

PROOF. This assertion is an easy consequence of the 

equivalence (iii) ~ (vii) in Theorem 2.5 and the assumption 

D(A) = D(B) 

COROLLARY 2.7. Let A be as in Theorem 2.5. Then A 

is fundamentally reducible if and only if there exists a funda- 

mental symmetry J such that the inclusion P+D(A) ~ D(A) 

holds. 
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PROOF. The operator J = P+ - P_ is positive, bounded 

and boundedly invertible in the Krein space K and we have 

J~(A) ~ D(A) . Thus the implication (iii) ~ (i) from Theorem 2.5 

implies the "if" part of the corollary. The converse statement 

is obvious. 

2.2. LEMMA 2.8. Let A be a positive, boundedly inver- 

tible operator in the Krein space K , and let m be an integer. 

Put P = JA . Then ~ ~ Cs(A) if and only if ~ ~ Cs(jp2m) 

PROOF. Suppose first that m = 1 Then the operator 

jp2 = AJA is positive and boundedly invertible in the Krein 

space K In Remark 1.4 we have noted that 
^ 

V(A) = D[J(AJA)] N . Therefore the operator W in Theorem 2.5 

(ii) with respect to the operator A has the same properties 

as W in Theorem 2.5 (iv) with respect to the operator AJA 

Hence it follows that ~ r Cs(A) if and only if ~ ~ Cs(JP 2) 

Further we can suppose that m �9 0 Then the lemma follows if 

we apply the already proved part of Lemma 2.8 m times. In the 

case m > 0 we start with the operator A , and in the case 

m < 0 we start with JP 2m 

THEOREM 2.9. Let A be a positive, boundedly invertible 

operator in the Krein space K and let ~ 6 (0,+~) Put 

P = JA . Then ~ ~ Cs(A) if and only if ~ ~ Cs(JPP) 

PROOF. Suppose that ~ r Cs(A) The implication 

(vii) ~ (ii) in Theorem 2.5 yields the existence of a positive, 

boundedly invertible operator W such that 

(A) c ~(W) , W~(A) c D(A) 
_-- = 

and the operator WID(A) is bounded with respect to the norm 

II (p2 + i)1/2.11 on D(A) Consequently, the operator WID(A) 

is bounded with respect to the norm IIP'II on P(A) = ~(P) 

In the proof of the implication (ii) ~ (iii) in Theorem 2.5 it 

was shown that W is a bounded operator in K . By Theorem 1.2 

it follows that 
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WD (P~) c__ D (P~) ( 0 <__ e< 1 ) . 

Hence, we have proved that in the Krein space K there exists 

a positive, bounded and boundedly invertible operator W such 

that WD(JP ~) ~ D(JP ~) ( 0 ~ ~ ~ 1 ) Since the operator JP~ 

( ~ 6 (0,+~) ) is positive and boundedly invertible in the 

Krein space K the implication (iii) ~ (vii) in Theorem 2.5 

yields ~ ~ Cs(JP~) Thus we have proved the "only if" part 

of the theorem for U s (0,1] For ~ > I there exists a 

positive integer m such that U/2 m < I The operator JP 2m 

is positive, boundedly invertible and Lemma 2.8 implies 

~ Cs(JP 2m) Since ~/2 m < I , we can apply the part of 

Theorem 2.9 which was proved already to the operator JP 2m and 

we get ~ ~ Cs(JPU) ( ~ 6 (I,+~) ) The "only if" part of the 

theorem is proved. In order to prove the "if" part of the 

theorem we apply the already proved "only if" part of the theo- 

rem to the operator JP~ ( ~ s (0,+~) ) and I/~ 6 (0,+~) It 

follows that ~ ~ Cs(JP~) implies ~ ~ Cs(JP) The theorem 

is proved. 

3. DEFINITIZABLE OPERATORS 

3.1. In this section we generalize the equivalence of 

the statements (ii), (iii), (iv) and (vii) in Theorem 2.5 to 

definitizable operators in the Krein space K and give some 

applications of this result. 

LEMMA 3.1. Let A be a definitizable operator in the 

Krein space (K,[.,.]) Then ~ ~ Cs(A) if and only if 

~ CS(J(JJAI + I)) 

PROOF. Denote the spectral function of A by E 

Let A be such that ~ ~ ~ is a bounded interval containing 

all the finite critical points of A and zero in its interior 

and put K := E(~ )K The restriction Ai K is a boundedly 
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invertible, positive operator in the Krein space (K ,[.,.]) 

Suppose ~ ~ Cs(A) and let J0 be a fundamental symmetry on 

K commuting with E(~ ) We put (x,y) 0 := [J0x,Y] ( x,y 6 K ) 

and P0 := J0 A " Then J01K is a fundamental symmetry on K 

and P0 commutes with E(~ ) The operator P01K is positive 

and boundedly invertible in the Hilbert space (K ,(.,.) 0) and 

P01K = IP011K Now the following statements are equivalent: 

(a) ~ ~ Cs(A) , (b) ~ ~ Cs(Ai K ) , (c) ~ r Cs(J0P01K ) , 

(d) ~ ~ Cs(J01P011K ) , (e) ~ ~ Cs(J0(IP01 + I)I K ) , 

(f) -- ~ Cs(J(IP01 + I)) , (g) - ~ Cs(J(IP I + I)) The 

equivalences (d) ~ (e) and (f) ~ (g) are consequences of 

Corollary 2.6, the other equivalences are obvious. This com- 

pletes the proof of the lemma. 

The following theorem is a consequence of Lemma 3.1, 

Remark 1.4 and Theorem 2.5. 

THEOREM 3.2. Let A be a definitizable operator in the 

Krein space 

lent. 

(i) 

(ii) 

positive, boundedly invertib~e operator W 

(K,[.,.]) The following statements are equiva- 

Infinity is not a singular critical point of A . 

In the Krein space (K,[.,.]) there exists a 

such that 

D(A) ~ D(W) , WD(A) q_ D(A) , (3.1) 

A 

is a bounded operator in D(A) and WID(A) 
(iii) In the Krein space (K,[.,.]) there exists a 

positive, bounded and boundedly invertible operator W such 

that (3.1) holds. 

(iv) In the Krein space (K,[.,.]) there exists a 

positive, boundedly invertible operator W such that 

D[JA] c D(W) , WD[JA] c D[JA] , 
= = 

is a bounded operator in D[JA]~ �9 and WID[JA ] 
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COROLLARY 3.3. Let A and B be definitizable opera- 

tors in the Krein space K and suppose that ~(A) = ~(B) 

Then ~ ~ Cs(A) if and only if ~ ~ Cs(B) 

PROOF. This assertion is an easy consequence of the 

equivalence (iii) ~ (i) in Theorem 3.2 and the assumption 

V(A) = ~(B) 

REMARK 3.4. The preceding corollary yields the following 

perturbation results. Let A and B be operators in the Krein 

space K such that ~(B) ~ D(A) (0(B) ~ R(A) , respectively) 

and such that the operators A and A + B ( BA ) are defi- 

nitizable. Then ~ ~ Cs(A) if and only if ~ ~ Cs(A + B) 

( ~ ~ Cs(BA) , respectively). 

PROPOSITION 3.5. Let A be a definitizable operator in 

the Krein space K The following statements are equivalent. 

(i) Infinity is not a singular critical point of A . 

(ii) In the Krein space K there exists a positive, 

bounded and boundedly invertible operator W such that 

W?[JA] ~ ~[JA] . 

PROOF. Remark 1.4 implies ~[JA] = ~(J(IJAI + I) I/2) 

Consequently, the statement (ii) of this proposition coincides 

with the statement (iii) in Theorem 2.5 applied to the positive, 

boundedly invertible operator J(IJAi + I) 1/2 According to 

the equivalence (iii) ~ (vii) in Theorem 2.5, in order to prove 

the proposition, it is sufficient to show that 

~ Cs(J(IJAl + I) I/2) if and only if ~ ~ Cs(A) In order to 

(J(IJAj + I) I/2) prove this we note that Lemma 2.8 yields ~ ~ c s 

if and only if ~ ~ Cs(J(IJAl + I)) and that Lemma 3.1 implies 

~ Cs(J(IJAI + I)) if and only if ~ ~ Cs(A) The proposi- 

tion is proved. 

COROLLARY 3.6. Let A and B be definitizable opera- 

tors in the Krein space K . Suppose that ~[JA] = ~[JA] 

Then ~ ~ Cs(A) if and only if ~ ~ Cs(B) 

PROOF. This assertion is an easy consequence of the 
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equivalence in Proposition 3.5 and the assumption D[JA] = D[JB]. 

REMARK 3.7. Let A be a definitizable operator in the 

Krein space K . We shall describe a situation in which the 

assumption (ii) of Proposition 3.5 is fulfilled. Suppose that 

there exist a fundamental symmetry J and operators X• , Y• 

defined on K with the following properties: 

(a) X• ~ D[JA] , Y• ~ D[JA] , 

(b) X• and Y• are bounded in K , 

(c) X•177 = I•  , X• ~ Kg , 

(d) X• = Y~J 

Here I (I• , respectively) denotes the identity operator on 

K (K• , respectively). Then the operator W := Y+X+ + Y X_ 

has all the properties of the operator W in Proposition 

3.5(ii). In order to prove this we only have to show that W 

is boundedly invertible and positive in the Krein space K 

This follows from the relation 

(x,x) = (x+,x+) + (x ,x ) = (X+x+,X+x+) + (X_x_,X_x_) 

(X+x,Y~Jx) + (x_x,Y~Jx) 

= (JY+X+x,x) + (JY_X_x,x) = (J(Y+X+ + Y_X_)x,x) 

= (JWx,x) = [Wx,x] ( x 6 K , x• = p• ) . 

Operators X• , Y• with the above properties are constructed in 

[2] for a class of Sturm-Liouville operators with an indefinite 

weight function (see also [5]). 

REMARK 3.8. Let S be a symmetric operator in the 

Hilbert space (K,(.,.)) which is bounded from below with a 

lower bound y Then the equality 

2 + (Sx,x) ( x s D(S) ) ~Ix~1 s := (I - X) IIxH 2 

defines a norm on D(S) (see [23, p. 122]). Denote by S F the 

Friedrichs extension of S and suppose that JS F is a defini- 

tizable operator in the Krein space (K,[.,.]) Assume that 
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there exists a positive, boundedly invertible operator W such 

that 

D(S) c D(w) , WD(S) c D(s) 
--- = 

and such that Wig(s ) is a bounded operator with respect to the 

norm Is.el s Then ~ ~ Cs(JSF) 

Indeed, the completion of D(S) with respect to the 

norm ii'ii is evidently contained in D(W) and invariant 
s 

under W . This completion coincides with D[S F] ([14, 

Theorem 10]). The norm il.Jl s can be extended onto D[S F] and 

for this extended norm IB'ii we have s 

lixll s = ii (S F + (I - y) I)I/2xli ( x 6 ~[SF]) , (3.2) 

and WID[SF ] is bounded with respect to this norm. Proposition 

1.1 implies that the norm (3.2) generates the topology of 

D[SF ]N . Hence, Theorem 3.2 yields ~ ~ Cs(JS F) 

Denote by S K the Krein extension of S (that is the 

soft extension in the terminology of [14]). Suppose that JS K 

is a definitizable operator in the Krein space (K,[.,.]) and 

> 0 If the operator W , in addition to the previous 

properties, is bounded and satisfies 

WR(JS) c__ R(JS) , 

then ~ ~ c s(JS K) 

In order to prove this observe that by Theorem 14 in 

[14] we have 

D[S K] = D[S F] + N O , 

where N O is a kernel of the operator S* . Furthermore N 0 

is invariant under W . Indeed, for every x 6 ~(S) there 

exists x' 6 D(S) such that WJSx = JSx' . Hence, for ~ 6 N O 

we have 
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(S*W~,x) = (W~,Sx) = [W~,JSx] = [~,WJSx] 

= [~,JSx'] = (~,Sx') = (S*~,x') = 0 . 

Since x 6 D(S) was arbitrary, and D(S) is dense in K we 

conclude that W~ 6 N O . We have seen that D[S F] is also 

invariant under W . Hence, D[S K] is invariant under the 

positive, bounded and boundedly invertible operator W and 

Proposition 3.5 yields ~ ~ Cs(JSK) 

3.2. The following theorem is an extension of Theorem 

2.9 for an operator with a nonempty resolvent set which is posi- 

tive and selfadjoint in the Krein space. 

THEOREM 3.9. Let A be a positive, selfadjoint opera- 

tor in the Krein space K such that p(A) % 0 , and put 

P = JA . If ~ 6 (0,+~) is such that p(jpU) % ~ then 

~ Cs(A) if and only if ~ r Cs(JP~) 

PROOF. Suppose p(JP~) ~ ~ ( ~ 6 (0,+~)) In this 

case the operator jpU is definitizable. The equality (1.3) 

implies that D((P + I) ~) = V(P ~) and, according to 

Corollary 3.3, ~ ~ Cs(JP~) if and only if ~ ~ Cs(J(P + I) ~) 

Theorem 2.9 yields ~ ~ Cs(J(P + I) U) if and only if 

~ Cs(J(P + I)) Since A is a definitizable operator 

Lemma 3.1 implies that ~ ~ Cs(J(P + I)) if and only if 

~ Cs(A) These equivalences prove the theorem. 

According to Lemma 1.8 the condition p(JP~) # ~ in 

Theorem 3 9 is satisfied for ~ 2 m . = , m a positive integer. 

PROPOSITION 3.10. Let A be a definitizable operator 

in the Krein space K and put P = JA . Suppose that for some 

m 6 {n,1/(2n+1) : n = 1,2,...} the operator jpm is def~ni- 

ti~able. Then ~ ~ Cs(A) if and only if ~ ~ Cs(JP m) 

PROOF. Lemma 3.1 implies that ~ ~ Cs(A) if and only 

if ~ ~ Cs(J(IPl + I)) Theorem 2.9 yields ~ ~ Cs(J(IPl + I)) 

if and only if ~ ~ Cs(J(IPl + I) m) The equality (1.3) implies 

the first of the following equalities 
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V((IPJ + I) m) = V(JPI m) = V(jpml) = ~(pm) = D(jpm) 

By assumption the operator jpm is definitizable, and 

Corollary 3.3 yields ~ ~ Cs(J(JPJ + I) m) if and only if 

~ Cs(JP m) . This sequence of equivalences proves the propo- 

sition. 

PROPOSITION 3.11. Let A be a positive, selfadjoint 

operator in the Krein space K such that p(A) ~ ~ , 0 ~ ~ (A) , 
P 

and put P = JA . Suppose that p(jpV) % ~ for some 

V 6 ~ ~ {0} Then A is fundamentally reducible if and only 

if JP~ is fundamentally reducible. 

PROOF. The operators A , A -I , JP~ and JP-~ are 

positive and selfadjoint in the Krein space K and these 

operators have nonempty resolvent sets. Therefore, only 0 and 

can be critical points of these operators. For ~ > 0 

Theorem 3.9 implies that ~ ~ Cs(A) if and only if ~ ~ Cs(JP~). 

0 r Cs(A) if and only if ~ ~ Cs(A-1 ) Because of Further, 

A-I = j(jp-Ij) and (jp-Ij)~ = jp-~j , according to Theorem 3.9, 

we have ~ ~ Cs(A-1) if and only if ~ ~ Cs(P-~J) Since 

(p-~j)-1 = JP~ , we conclude that 0 ~ Cs(A) if and only if 

0 ~ Cs(JP~) Hence, for ~ > 0 , we have proved that Cs(A) = 

if and only if Cs(JP~) = ~ For ~ < 0 the last equivalence 

follows from the equivalence: c (A) = ~ ~ c (A -I ) = ~ For a 
s s 

positive, selfadjoint operator B in the Krein space K such 

that p(B) �9 @ , the fundamental reducibility is equivalent to 

c (B) = @ (see [10]). The proposition is proved. 
s 

4. ADDITIVE PERTURBATIONS 

In this section we show that the regularity of the 

critical point ~ is "stable" under certain "additive" perturba- 

tions. This question was also considered in [22], [I0], [11]. 

Here, however, we suppose that the perturbed operator has a 

definitizable extension. This allows us to weaken the condi- 

tions on the perturbing operator slightly. 
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THEOREM 4.1. Let A be a definitizable, and let B be 

a symmetric operator in the Krein space (K,[.,.]) satisfying 

the following conditions: 

(I) D(B) ~ D(A) and D(B) is a core of JJAJ I/2 ; 

(2) [AX,X] ~ y i]xil 2 ( x 6 D(A) ) for some y 6 m 

(that is JA is bounded from below); 

(3) There exist al,a2,81,82 ~ 0 , 81 < I such that 

- alJiXlJ 2 - BI(JJAJx,x) $ [Bx,x] 

a21ixiJ 2 + 82(JJAix,x) ( x 6 D(B) ) (4.1) 

Then the operator J(A + B) is bounded from below. If its 

Friedrichs extension S has the property that T = JS is 

definitizable, then ~ ~ Cs(A) if and only if ~ ~ Cs(T) 

PROOF. It is easy to see that for a $ y , a $ 0 the 

inequality 

2 
(iJAIx,x) $ (JAx,x) - 2a lJxll ( x 6 D(A) ) (4.2) 

holds. The left inequality in (4.1) and (4.2) imply for 

x 6 D(B) and ~ ~ y , ~ ~ 0 : 

(J(A + B)x,x) ~ (JAx,x) - 81(JJAlx,x) - el flxll 

2 2 
(JAx,x) - 81(JAx,x) + 281~ ]Jxll - al ilxlJ 

2 
((I - 81)y + 281~ - ~i ) ilxii (4.3) 

Hence, the operator J(A + B) is bounded from below in 

(K,(.,.)) Denote its lower bound by 6 Subtracting 

Bi]xlJ 2 , 8 < ~ , from the first and the third term in (4.3), 

for x 6 D(B) , we get 

2 
(J(A + B)x,x) - BJlxlf 

> (I - 81 ) (JAx,x) + (2B1a - al - 8)JJxJJ 

Further, (4.4) together with (4.2) and 1 - B I > 0 , for 

8 < 2~ - ~I and x 6 D(B) implies that 

(4.4) 
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2 
(J(A + B)x,x) - 8 lixli 

(1 - 81) (iJAix,x) + (2~ - ~I - 8)lixll 2 

= (I - 8 I) IJAI + I x (4.5) 
I - 81 

The right inequality in (4.1), for B' < ~ , 8' < e 2 , x 6 0(B) , 

yields 

0 ~ (J(A + B)x,x) - 8' llxll 2 

(JAx,x) + 82(IJAlx'x) + e2 llx]I2 - 8' lIxll 2 

(1 + 82) (IJAlx,x) + (~2 - 8')llxll 2 

= (I + 921 IJAI + I x . (4.6) 
1 + 82 

The norms on the right hand sides in (4.5) and (4.6) are equiva- 

lent to the norm II (IJAl + I)I/2.11 on D[JA] . Since we have 

D[JA] = 0(IJAi I/2) , the assumption that D(B) is a core of 

IJAI 1/2 implies that ~(B) is dense in D(IJAI I/2) in the 

graph norm. According to Proposition 1.1, the set ~(B) is 

dense in ~[JA] N . Now, the inequalities (4.5) and (4.6) imply 

that ~[JA] is the domain of the closure of the sesquilinear 

form [(A + B).,.] defined on ~(B) (see [23, p.122]). 

The Friedrichs extension S of the operator J(A + B) 

is bounded from below and the domains of the closures of the 
0 

sesquilinear forms (J(A + B).,-) and (JS-,.) coincide. From 

the previous considerations and Remark 1.5 it follows that 

V[JA] = ~[JT] . Since the operator T is definitizable, Corol- 

lary 3.6 implies that ~ ~ Cs(A) if and only if ~ ~ Cs(T) 

The theorem is proved. 
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