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0. INTRODUCTION 

In this paper we consider spectral properties of the differential problem 

l(f)=(-l)“(Pof’“‘)‘“‘+(-l)“-‘(p,f’”-”)’”~”+ ... +p,f=A.rf 
(0.1) 

on a finite or infinite interval (a, b) with real, locally summable coefficients 
l/PO,Pl, ..-3 Pnv r under the assumptions that p0 >O and that the weight 
function r changes its sign on (a, b). If r is positive, problem (0.1) can be 
studied in the context of Hermitian and self-adjoint operators in the 
Hilbert space L*(r) with the inner product 

(0.2) 

which leads, e.g., to the definition of a (matrix) spectral function and 
expansion theorems. In our situation, when r is positive and negative on 
sets A+ and A _ , resp., of positive Lebesque measure, the inner product 
(0.2) is indefinite, and the space L2(lrl) equipped with this inner product 
becomes a Krein space (denoted also by L*(r)). However, independent of 
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sign of r, the operators which are usually related to (0.1) do still have the 
same symmetry properties with respect to the inner product (0.2). Thus, if 
r is indefinite, with the equation in (0.1) Hermitian and self-adjoint, 
operators in the Krein space L’(r) can be associated. We mention that, 
although the inner product (0.2) is indefinite, the topological structure of 
L’(r) is determined by the Hilbert norm 

1” Ml’ I4 dx)“‘. 
u 

For an arbitrary self-adjoint operator in a Krein space the spectrum can 
be rather general (see [4, 191 and also Sect. 1 of this paper). Fortunately, 
the self-adjoint operators A in the Krein space L2(r), which arise in connec- 
tion with (0.1) under some rather weak assumptions about the functons 
p,, . . . . p,, and r, have a particularly nice property. Namely, they are 
delinitizable; that is, the resolvent set of A is nonempty and for some 
polynominal p the relation Cp(A)f, f J > 0 holds for all functons f in the 
domain of p(A). This implies that these operators have some spectral func- 
tion with, possibly, a finite number of singularities, called “critical points.” 
Outside of these critical points the spectral theory of Eq. (0.1) has much in 
common with the spectral theory of problem (0.1) in the case r > 0. 

A particular question which arises for problem (0.1) if the weight func- 
tion r is indefinite, is that of half-range completeness of a certain system of 
root functions. It turns out that this question can be studied in a natural 
way in the context of the Krein space L2(r). Namely, for the half-range 
completeness and corresponding expansion theorems it is important to 
know whether cc is a regular or a singular critical point of the associated 
definitizable operator in L’(r). This question and, in particular, a related 
preprint of R. Beals’ paper [3], where a second-order problem is con- 
sidered, were the starting points of our studies. Later it became clear that 
also other spectral properties of problem (0.1) with an indefinite weight 
function (see, e.g., [22, 23, 21, 241 where a survey of the regular second- 
order problem (0.1) is given) can be obtained in a simple way from results 
about detinitizable operators in Krein spaces. In the particular case of a 
second-order Sturm-Liouville operator with a nonnegative potential this 
Krein space method was already used in [lo]. There also, the so-called 
Weyl’s coefficient and a spectral function of this indefinite problem were 
introduced. A partial extension of these results to higher order problems 
was given in [9]. 

The present paper is organized as follows. In Section 1 we repeat some 
definitions from the theory of Hermitian operators in Krein spaces. The 
basic result is Proposition 1 .l, which gives a sufficient condition for the 
delinitizability of the self-adjoint extensions of a Hermitian operator in a 
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Krein space. These extensions have delinitizing polynomials of a special 
form (see (1.2)) which has consequences for their spectrum. Some of these 
consequences are formulated in no. 1.3. In Section 2 we introduce the dif- 
ferential expression I( f ) (to be understood in the sense of M. G. Krein’s 
quasi-derivatives) and the operators associated with problem (0.1). 
Theorem 2.1 is more or less a reformulation of Proposition 1.1 for the mini- 
mal operator of (0.1). In the following no. 2.2 we formulate assumptions 
about p,, . . . . pn, r which assure that the conditions of Theorem 2.1 are 
satisfied. Then, obviously, the spectral properties, which were established in 
no. 1.3 for the self-adjoint extensions A of A,, hold true for the self-adjoint 
extensions of the minimal operator A0 = A,,,;, associated with (0.1). We do 
not formulate these properties explicitly as this would be just a repetition 
of the formulations of Section 1. We mention, however, that they generalize 
some statements which were proved in the second-order case in [22,23]. 
Some more special spectral properties are contained in Propositions 2.9 
and 2.10. In Section 3 we show that the critical point of the associated 
delinitizable operators is not singular if r satisfies some regularity condition 
at its turning points. The construction of the operator X in Lemma 3.2 is 
inspired by corresponding results of Beals [3] in the second-order case. 
Finally, in the last section we show that if the spectrum of A is discrete and 
m is not a singular critical point, full- and half-range expansions hold. For 
the second-order case under stronger assumptions about the differential 
operator results of this kind were proved in [3] and for more special cases 
in [17]. 

Some of the results of this paper were stated without proofs in [S]. As 
we have mentioned already, the detinitizability of the self-adjoint extension 
A of Ami, implies the existence of a projection or matrix spectral function 
with, possibly, a finite number of singularities. These questions, which are 
closely related to expansions of Green’s kernel and of elements of L2(r) in 
root functions of A, will be considered elsewhere. Also, in this paper we 
suppose that the weight function r is different from zero a.e. on (a, b). This 
condition can be weakened which, however, makes the definition of the 
operators more complicated (cf. [6, 10, 121). 

1. A CLASS OF DEFINITIZABLE OPERATORS IN KREIN SPACES 

1.1. In this section we collect some definitions and statements from 
the theory of linear operators in a Krein space which will be used in this 
paper. The reader can find more details in [4, 2, 20-J. A linear space x, 
equipped with an inner product [ ., .] is called a Krein space if there exists 
a decomposition 

x=x+[+] x- (1.1) 
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such that (X+, k[ .,.I) are Hilbert spaces and [X+ , JC ] = { 0 }. The 
decomposition (1.1) defines projections P, : Iff=f+ +f- , f* E X, , is the 
representation of fe 3? according to (1.1) we put P, f := f* . Then, with 
the operator J:= P, - P- , a Hilbert inner product ( ., , ) on 3’” can be 
introduced as follows: 

(J; g) := CJf, 81 (f, gEJf-1. 

The operator J is called a fundamental symmetry of the Krein space 37. All 
the topological notions in X are to be understood with respect to the 
topology of this Hilbert inner product, if not otherwise stated explicitly. 

The linear opeator A in the Krein space (X, [ .,.I) is called Hermitian 
if its domain 9(A) is dense in X and [Af, f ] is real for all f E 9(A). This 
is equivalent to A c A +, where A + denotes the Krein space adjoint of A 
defined on the set of all g E X such that f ++ [AA g] is a continuous linear 
functional on 9(A) by the relation 

[AL 81 = CL A ‘sl (feg(A)). 

It is easy to see that A is a Hermitian (in the Krein space (X, [ ., .I)) if 
and only if the operator B := JA or B, := AJ is Hermitian in the Hilbert 
space (X, (., .)). The densely defined operator A in (X, [ ., .]) is called 
self-adjoint if A = A+ or, equivalently, if the operator B := JA is self-adjoint 
in the Hilbert space (X, (., .)). The self-adjoint operator A in (.X, [., .]) 
is said to be definitizable if p(A) # 0 and there exists a polynomial p such 
that 

Cp(A)LflLO for all f E 9(A“), 

where k is the degree of p. Recall that a delinitizable operator admits a 
spectral function with, possibly, some critical points (see [20, 2, 41 and 
also no. 2 below). 

We say that the closed Hermitian operator A in the Krein space 
(X, [ ., . 1) has defect m ( 6 + co), if there exists a self-adjoint extension 
2 1 A in (37, [ ., .]) such that m = dim S(A”)/L@(A). This is equivalent to 
the fact that the operator B := JA” is a self-adjoint extension of the 
Hermitian operator B := JA in the Hilbert space (X, (., ‘)); that is, the 
operator B has equal defect numbers m + = m _ = m, or its defect index is 
h ml. 

Recall that an inner product on a linear space 9 is said to have a finite 
number rc of negative squares if it is negative definite on a K-dimensional 
subspace of 9 and there exists no (K + 1)-dimensional subspace with this 
property. 

1.2. The defmitizable operators we shall study in this paper arise as 
in the following proposition. 
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PROPOSITION 1.1. Let A, be a closed Hermitian operator in the Krein 
space (X, [ ., . ] ) with the properties: 

(a,) A, has finite defect m,. 
(a,) The Hermitian form [Aof, g] (f, gE9(Ao)) has afinite number 

(0 < K~ < + 00) of negative squares. 

(a2) A, has a self-adjoint extension A, in the Krein space (X, [ ., .]) 
such that p(A,) # 0. 

Then each self-adjoint extension A of A0 in (X, [ ., .]) is definitizable. 

Proof. According to (a2) there exists an open set A c p(A ,), A # a, 
which we can assume to be symmetric with respect to the real axis. For 
each z E A, the range W(A I - zl) is the whole space X, hence closed, and 
from (a,) it follows that also the ranges .B?(A, - zl), z E A, are closed. Now 
let A be an arbitrary self-adjoint extension of A, in (X, [ ., .I). Then its 
ranges %‘(A-zl), ZEA, are closed too, hence Acp(A)ua,(A)ua,(A) 
(for the definitions of these subsets of the spectrum of A see, e.g., [ll]). 
Moreover, by (ao) and (al) the Hermitian form [Af, g] (f, gEQ(A)) has 
a finite number rcA (rcO < rcA < rcO + m,) of negative squares. Therefore the 
statement follows from [20, 1.3(c)] if we only show that p(A) # 0. 

Assume p(A) = 125. Then, as z E a,(A) implies ZE a,(A), in at least one of 
the half planes an infinite number of points of A belongs to a,(A). Consider 
n := m, + K~ + 1 such (mutually different) eigenvalues with eigenvectors 
fi , . . . . fn. These are neutral and mutually orthogonal in the Krein space 
(X, [ ., .I). Moreover, there exist elements g,, . . . . g, in 9(A) such that 
[Afi, g,] = a,, i, j = 1, 2, . . . . n. Indeed, the vectors Afi , . . . . Af, and hence 
also JAfi, . . . . JAf, are linearly independent. We choose a system g; , . . . . g: in 
X such that 

(CAfji, &I = ) (JAfi, g;, = d,, i, j= 1, 2, . . . . n. 

As 9(A) is dense, the elements g;, . . . . gh can be changed slightly to 
elements g;, . . . . 81: E 9(A) such that still det( [Af; g;]); # 0. Now g,, . . . . g, 
are easily obtained as linear combinations of the g;, . . . . gi. On the 
2n-dimensional space spanned by fi, . . . . f,, g,, . . . . g,, the inner product 
[A ., .] is given by the Gram matrix 

0 ( ? z . 

with n x n-blocks. Hence it is nondegenerated. As it contains an 
n-dimensional neutral subspace it also contains an n-dimensional negative 
subspace, which contradicts the fact that the form [Af, g] has <n negative 
squares. Thus p(A) # 0, and the proposition is proved. 
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Remark 1.2. The condition (a,) is obviously equivalent to the condi- 
tion that for the closed Hermitian operator B, = JAO in the Hilbert space 
(X, (., .)), the Hermitian form (B,,f, g) (f, ge 9(B,)) has finite number 
rcO of negative squares. This is the case if and only if the operator B, has 
a self-adjoint extension B, in the Hilbert space (Xx, (., .)) such that 
( - co, 0) n a(B,) consists of a finite number of eigenvalues of finite multi- 
plicities. Similarly, K~ which was defined as the number of negative squares 
of [AL g] (f, gE9(A)), coincides with the number of negative squares of 
the form (Bf g) (f, g E 9(B) =9(A)) with B := JA, which is the total mul- 
tiplicity of the negative eigenvalues of B. 

Remark 1.3. In the proof of Proposition 1.1 we have actually shown 
that under conditions (ao) and (a, j the following statements are equivalent 
to (a,): 

(i) For some self-adjoint extension A i of A, and some 1, E C the 
range B(A i - &I) is closed. 

(ii) For some 1, E C the range %?(A, - &,I) is closed. 
(iii) For all self-adjoint extensions A of A, in the Krein space 

(Xx, E., .I) we have p(A)#@. 

COROLLARY 1.4. The conditions (a,), (a I)r (a*) of Proposition 1.1 are 
satisfiedfor the operator A, tf the operator B, = JA, has a finite defect index 
and a self-adjoint extension B, in (X, (., .)) such that for some E > 0 the set 
(-co, E) n o(B,) consists of a finite number of eigenvalues of finite multi- 
plicities. Zf, in addition, the spectrum of B, is discrete then the spectrum of 
each self-aa’joint extension A of A,, in (X, [ ., . ] ) is discrete. 

Proof: To prove the first statement we observe that 0 E p(B,) or 0 is an 
isolated eigenvalue of a(B,); hence, W(B,) = (ker B1)(l) where (I) denotes 
the orthogonal complement in (X, (., .)). Therefore 9(B), and also 
.%?(A) = J%?(B) are closed. Now the statement follows from Remark 1.3 (put 
I,= 0). If the spectrum of B, is discrete, then B, has a self-adjoint 
extension B, in (X, (., .)) with discrete spectrum and OE p(B,). The 
operator B;’ is compact. Consequently, B; ’ J is a compact operator and 
the spectrum of A, = JB, is discrete. The operator A, is a self-adjoint 
extension of A, in (X, [ ., . I). Since for an arbitrary self-adjoint extension 
A of A, in (X, [ ., .]) we have p(A) # 0, it follows that the spectrum of 
A is discrete. 

We mention that for the equivalence of (i), (ii), and (iii) in Remark 1.3 
the condition (ai) is essential; that is, (ao) and (a*) do not necessarily 
imply that p(A) # 0 holds for all self-adjoint extensions A and A,. In 
other words, there exist closed Hermitian operators A, such that (ao) and 



KREIN SPACE APPROACH 31 

(a2) hold and A, has a self-adjoint extension A whose point spectrum 
covers the whole complex plane and a self-adjoint extension A, with 
p(A,) # @. An example of a differential operator A, with those properties 
was given by F. V. Atkinson and A. B. Mingarelli [ 1 ] and also by the first 
author of this note (unpublished). An abstract version of this example is as 
follows: 

Let C be a closed Hermitian operator in a Hilbert space (2, ( ., .)) with 
defect index (1, 1) and such that the whole complex plane @ consists of 
points of regular type. Then a,(C*) = @. Consider the operator 

A,= 

in the Krein space 3J = Y? @ 2 with indefinite inner product [ ., -1 given 
by the fundamental symmetry 

J.= K O 
4 > 0 -I’ 

Then A, is a closed Hermitian operator in &? 0 3? and also in (X, [ ., .I). 
As dim 9(C*)/9(C) = 2 we can choose two elements e,, e2 E Q(C*) which 
are linearly independent with respect to 9(C). Define 

and B := JA,* 1 9. Then it is not hard to check that B is Hermitian in 
X @ 2 and considering the dimension of the defect subspaces, it follows 
that it is even self-adjoint. Hence A := JB is self-adjoint in the Krein space 
(X, [.,.I). If IE@ andf&?(C*) such that C*f=AJ then f=(f,f)=Eg 
and Af = If; hence the whole complex plane belongs to o,(A). It is not 
hard to see that there also exists a self-adjoint extension A, of A, in 
(X, II-, -1) such that p(A,)#0. 

Recall that for the closed Hermitian operator B, which is bounded from 
below in the Hilbert space (X, (., .)) the set 9[Bo] is defined as a set of 
all f E X for which there exists a sequence (cp,) c Q(B,) such that (P” -f 
in X and (B,(cp,-cp,), v,--,,J+O (n, m+ +co). Then 9[Bo] is the 
domain of the closure of the Hermitian form (B,f, g) (f, gE 9(B,)). 
Denote this closure by B,( ., .). It is easy to see that the Hermitian form 
(B, ., . ) has a finite number rcO of negative squares on 9(B,) if and only if 
the Hermitian form B,( ., .) has rcO negative squares on 9[B,]. For the 
Friedrichs extension B, of B. in (X, ( ., a )) we have 9[ BF] = 9[Bo] and 
BF(f, g) = B,(f, g) (J g E 9[BJ). Consequently lcsF = JC~, where iceF is the 
number of negative squares of the Hermitian form (BFf, g) (f, g E 9(BF)). 
More information about the number of negative squares of the Hermitian 
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form (Bf, g) (f, g E 9(B)) for an arbitrary self-adjoint extension B of B, in 
(X, (., .)) in the case when B, has a positive lower bound can be found 
in [18]. 

1.3. In this section we prove some spectral properties of a 
definitizable operator A for which the form [Af, g] (f, gE 9(A)) has a 
finite number of negative squares. First let A be an arbitrary definitizable 
operator. The spectral function of A is denoted by E; for its definition and 
properties we refer the reader to [20, Theorem 3.11. Here we repeat for the 
convenience of the reader the definitions of positive and negative type 
spectrum and of the critical points of A. 

If dp is a linear space with an inner product [ ., . 1, K + (9; [ ., -1) 
(~(9; [., .I)), denotes th e eas upper bound ( < + co) of the dimensions 1 t 
of the positive (negative, resp.) subspaces of 9’. Instead of K + (9; [ ., . ] ) 
we often write K -fr (9). Now, if 1 E R u {cc } we define IC& (A; A) as the 
minimum ( < + co) of the numbers K + (E(d)&-) where A runs through all 
neighborhoods of 1 such that E(A) is-defined, and we put 

~(2; A) :=min(rc+(& A), ~(2; A)}. 

If K(;~;A)=O and K+(&A)>O (K-(&A)>O) then 1 is said to be a 
spectral point of positive (negative, resp.) type; if rc(A; A) > 0 then A is said 
to be a critical point of A and u(A; A) is called the rank of indefiniteness 
of A. The set of the finite critical points of A is denoted by c(A); F(A) := 
c(A) u { cc } if cc is a critical point of A, too, and, finally, ?,(A) is the set 
of all LIZ?(A) with rc(A; A)= +oo. 

If a spectral point A E R of positive (negative) type is an eigenvalue of A 
then all its corresponding root vectors f have the property [f, f ] > 0 ( < 0, 
resp.). If ~(2; A) is finite and positive, then I is an eigenvlue of A. In this 
case, if, e.g., ~(2; A) is finite, the root subspace YA(.4) contains a 
IC- (A; A)-dimensional nonpositive subspace, and each Jordan chain of A in 
YA(A) is of length 62rcP(A; A)+ 1. Thus, if one of the numbers ~~(2; A) 
is positive and finite, it can be calculated from the signature of $,(A) with 
respect to the inner product [ ., .]. 

If 1 E R u {co i is a critical point of A, it is called a regular critical point 
if sup jlE(A)ll < + 00 where the supremum runs over all sufficiently small 
neighborhoods A of A. If the critical point A is not regular, it is called a 
singular critical point; the set of singular critical points of A is denoted by 
cs(A 1. 

If p is a detinitizing polynomial of minimal degree of the definitizable 
operator A, then the nonreal spectrum of A consists of the zeros of p. It is 
symmetric with respect to the real axis and the linear span of all root sub- 
spaces corresponding to 1 E @ + n o(A) is neutral (see [20,2] where also 
other spectral properties of detinitizable operators can be found). 
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Now suppose additionally that [Af, g] (f, g E 9(A)) has a finite number 
ICY of negative squares. Then it has a delinitizing polynomial p of the form 

P(Z) = zq.4(zM&) (1.2) 

with a polynomial qA, which can be chosen manic (that is, the coefficient 
of the highest power of z is one) and of minimal degree <K~. Then qA is 
uniquely determined. In this case, a real number L # 0 is a zero of qA if and 
only if it is a critical point (and also an eigenvalue of A such that 
A[f, f] < 0 for some corresponding eigenvector j), or if it is an eigenvalue 
of A with the property n[f, f] < 0 for each corresponding eigenvector $ 
Also, qA(0) = 0 implies that 0 is an eigenvaiue of A with a corresponding 
Jordan chain of length 22 and, consequently, a critical point of A. 
Moreover, we have z,(A) c (0, co }. These facts follow easily from [20]. 

Now consider the root subspace YO(A) equipped with the inner product 
[A ., .]; if A = 0 is not an eigenvalue, then we put YO(A) = (0). The dimen- 
sion of the isotropic subspace of YO(A) with respect to [A ., .] is denoted 
by K;( G +co). 

PROPOSITION 1.5. Let A be a self-adjoint operator in the Krein space 
(X, [ ., ‘1) with p(A) # 0 and the following properties: 

(a) Theform !I% 81 CL gf%f)) h as a finite number u, of negative 
squares. 

(b) ker A is of finite dimension. 

Then (0 < ) dim YO(A) < + co and in g(A) there exists a subspace Yb 
with dim g0 = ICY + K”, which is invariant under A and such that 
tc+(&; [A ., .I)=0 (that is, Y0 is [A ., .]-nonpositive). It can be chosen 
such that Im a(A I &) 2 0; then Y0 contains all root subspaces of A 
corresponding to eigenvalues in the upper half plane C +. Moreover, 
a(A I -%)n @\P)) consists of all real eigenvalues 2 such that there exists 
an eigenvector f with A[ f, f ] < 0, and a(A 1 &) coincides-with the possible 
exception of &with the set of zeros of qa. 

Proof. As in the proof of Proposition 1.1 [20, 1.3.(c)] implies that A 
is definitizable and according to [20, 1.3.(b)] it has a delinitizing polyno- 
mial p of the form (1.2). Therefore, by [20, Proposition 11.2.11, all the 
Jordan chains corresponding to the possible eigenvalue zero are of finite 
length, and (b) implies dim YO(A)< + 00. We choose a set A := 
{z~~:O~~~~~~~~~~)forsome~ 1, c2 > 0, containing all the zeros A # 0 of 
qa, and denote by E(A) the corresponding spectral projection of A. Then 
A, := A 1 E(A)X is a bounded and boundedly invertible self-adjoint 
operator in the Krein space (E(A).X, [ ., .I). Also, E(A)%’ equipped with 
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the inner product [Af, g] (f, g E E(d)X), is a 7tKA-space, 0 < rc; <K,,, and 
the difference KI(~ := K~ - K> is the number of negative squares of the inner 
product [A ., .] on E([ --cl, sl])X. Then YO(A)cE([ -cl, vl])X, the 
inner product [A ., .] has K: negative squares on go(A), and it degenerates 
on a +dimensional subspace of YO(A). We consider a decomposition of 
YO(A): YO(A) = LX&, i 91 where Z& is the [A ., . ]-isotropic part of YO(A) 
and 9, is, hence, a finite-dimensional with nondegenerate inner product 
[A ., .] having K> negative squares there. Consider a corresponding matrix 
representation of A ) YO(A): 

Ao A,, 
( > 0 A,’ 

Then 9, contains a rci-dimensional subspace Yo, _ which is invariant under 
A, and such that the inner product [A, ., . ] is nonpositive on Yo, _ . There- 
fore the subspace P&, $ y6, _ is of dimension K> + K:, [A ., .I-non- 
positive, and invariant under A. As A, has also a ic>-dimensional [A ., .]- 
nonpositive invariant subspace Ye, we can put Z. = P&, i Yo, ~ i LZ- . 
The special choice of Z. as indicated in the proposition is possible because 
$p_ can be chosen in this way (see [ 14, Theorem 12.11). The simple proofs 
of the last statements are left to the reader. 

COROLLARY 1.6. The operator A has at least tcA eigenvalues (counted 
according to their algebraic multiplicities) in the closed upper half-plane 
@ + v R with the following property: If 1# 0 then there exists a correspond- 
ing eigenfunction f of A such that n[f, f ] < 0. 

If L < 0 belongs to a(A 1 Yo), then K+(& A) coincides with the number of 
negative squares of the form [AE(A)f, g] (f, gEE(A)X), where A is a 
small negative interval around 1 such that it contains besides 1 no other 
zeros of qA. This follows easily from the fact that the operator 
-A, := -A ( E(A)X in E(A)X has a self-adjoint square root (-A,)“* 
in the Krein space E(A)X and from the relation 

CAE(A)f, gl= - CE(A)(-A,)“2S, (-Ad)1’2 81 (f, gEE(AW”). 

Similarly, if 2 > 0, 1~ a(A 1 PO), then K-(A; A) equals the number of 
negative squares of the form [AE(A ) f, g] (f, g E (A)%-), where A is now 
a positive small interval around il. These observations immediately give the 
following 

COROLLARY 1.7. We have 

>;o~+(j.;A)+ 1 K-(&A)+ c dim$(A)<K, (1.3) 
A>0 Isa(A) 

ImA> 
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with equality tf and only if q(0) # 0. In particular, the equality in (1.3) holds 

if 0 cf o,(A ). 

PROPOSITION 1.8. Let A be as in Proposition 1.4 and suppose additionally 
that K+(X) = K-(.X) = + co. Then A has positive and negative spectrum, 
both of infinite multiplicities; that is, on each half axis (- 00, 0) and 
(0, + co) there are infinitely many eigenvalues or points of continuous 
spectrum of A. Moreover, if q(1) #O and 1~o(A)n (0, +co) (noon 
(- co, 0)) then A is a spectral point of positive (negative, resp.) type of A. 

Proof. The last statement follows from the fact that the defmitizing 
polynomial p of A is nonnegative on (0, + 00) and nonpositive on 
(-co, 0). If, e.g., the negative spectrum of A would consist of a finite 
number of eigenvalues with finite multiplicities, for the linear span 9- of 
the corresponding root subspaces, we would have K -(E ; [ ., .]) -c + co. 

As zero is not an eigenvalue or is an eigenvalue of finite algebraic multi- 
plicity of A, for a small interval A around zero, on the subspace E(A)X 
the inner product [ ., .] will have a finite number of negative squares. If we 
choose a large positive interval A+ which contains all positive zeros of q, 
then the number of negative squares of [ ., .] on E(A +)X is given by the 
second term on the left-hand side in (1.3). Finally, as the total multiplicity 
of the nonreal eigenvalues is also finite, the assumption about the finite 
multiplicity of the negative spectrum implies that ~6” itself has the property 
K ~ (Xx) < + co, a contradiction. The proposition is proved. 

2. THE DIFFERENTIAL OPERATORS 

2.1. We consider the formal differential expression of order 2n on 
the interval (a, b), - co < a < b < + 00, given by 

l(f):=(-l)“(pOf(n))(n)+(-l)“~ypIf+ly-l)+ .‘. +p,f, 

f(i) := djf&‘, j= 1, 2, . . . . 

The coefficients pk, k = 0, 1, 2, . . . . n are supposed to be real valued functions 
on (a, b) such that l/p,,p,, . . . . pn are locally integrable and p,, > 0 a.e. on 
(a, b). These assumptions do not allow a direct definition of l(f ), even if 
derivatives off up to the order 2n exist. In order to give a meaning to l(f) 
according to M. G. Krein [ 183 (see also [25, par. 151) quasi-derivatives 
f rkl of orders k = 0, 1, . . . . 2n are defined by the formulae 

f [Ol :=f, f Ckl := df Ck- ‘I/&, k = 1, 2, . . . . n - 1, 

f cn’ :=po df Cn- “/dx, (2.1) 

f Cn+kl :=pkfCn-kl -df b’+k--ll/dx, k = 1, 2, . . . . n, 
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and we put 

l(f) :=fC*n’. (2.2) 

In this way, the differential expression 1 on (a, b) is defined for all functions 
f such that fcol fcil fc2”- ‘1 exist and are absolutely continuous over 
compact subintervals’ ;;‘f (a, 6). For such f the formulae (2.1), (2.2) define 
l(f) a.e. on (a, b). 

In this paper we study spectral properties of the equation 

Z(f)-nrf=o on (4 b), (2.3) 

where r is a real (weight) function on (a, b) which is locally integrable on 
(a, b) and idefinite; that is, the sets 

A + := {x E (a, b): r(x) > O} and A ~ :={x~(a,b):r(x)<O} (2.4) 

are both of positive Lebesque measure. For the sake of simplicity we 
assume that r # 0 a.e. on (a, b). The elements of the set 2, n a- are called 
turning points of r. 

Besides (2.3) we shall consider the equation 

l(f)-2 Irlf=O on (a, b). (2.5) 

Problem (2.3) (or (2.5)) is called regular if --cc <a< b< + cc and 
l/P,, Pl? *..3 Pn, t-E L’(u, b); otherwise it is called singular. The boundary 
point a (b) is called singular if a = - cc (b = + co) or at least one of the 
functions l/p,, p,, . . . . p,, r is not summable at a (b, resp.). 

By L*(a, b; r) or, for short, L’(r) we denote the Krein space of all 
(equivalence classes of) measurable functions f defined on (a, b) for which 
F2::bFe2 Ir(x)l d x < + co. The indefinite and definite inner products on 

Cf, 81 :=fbk?rdx and (f, 8) := fbfi Id dx, resp. (2.6) 
a a 

Evidently, the operator J 

(Jf )(x) := (sgn r(x)) f (x) (x E (a, b,)) (2.7) 

is the fundamental symmetry connecting the inner products in (2.6). By 
L’(lrl) we denote the Hilbert space (L*(a, b; r), (., .)). 

Let 9:;” be the set of all f E L*(r) for which the differential expression 1 
is defined, which vanish identically in neighborhoods of a and b and are 
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such that Z(f) = Irl g holds with some gE L*(r). On 9Li, we define the 
operators BL,, and Aii, as follows: 9(Bii,) = 9(AO,,) = 9kin, 

BO,,,f :=g if f 09zin, l(f) = Irl g, g E L*(r), AZ, := JB:,. 

Evidently AL,,f= g if and only if for SE 9Lin, g E L*(r), we have 1(f) = rg. 
Since r # 0 a.e. on (a, b) it is easy to see that these definitions are correct. 
The closures of Aii, and BL, in L*(r) exist and are denoted by Ami, and 
Bmin, respectively. Obviously Amin = JBmin. The operator Amin (B,i”) is 
called the minimal operator associated with problem (2.3) ((2.5), resp.). 
Since the operator Bmin is Hermitian in the Hilbert space L*( Irl ), A, = Amin 
is Hermitian with respect to the inner product [ ., .]; i.e., it is Hermitian in 
the Krein space L*(r), and it has self-adjoint extensions in L*(r). In fact, A 
is a self-adjoint extension of Amin in L*(r) if and only if the operator 
B := JA is a self-adjoint extension of the operator Bmin in the Hilbert space 
L2( Irl). Therefore, if there is more than one self-adjoint extension of Ami, in 
L*(r), all these extensions are completely described by boundary conditions 
at a and b, which are the same for A and B = JA (see [25] ). 

The defect index of Bmin is (m, m), 0 <m < 2n; therefore the operator 
A, = Amin satisfies condition (a,) of Proposition 1.1. Thus Proposition 1.1 
immediately yields the following: 

THEOREM 2.1. Suppose that the closed Hermitian operator A,, := Amin 
satisfies assumptions (a,) and (az) of Proposition 1.1. Then every self-adjoint 
extension A of Amin in L’(r) is definitizable. 

In no. 2.2 we shall give sufficient conditions for (ai) and (a*) to hold for 
Amin. 

To conclude this section, we mention that for a self-adjoint extension A 
of Amin, associated with (2.3), the resolvent (A-M-’ in the Krein space 
L’(r) is an integral operator of Carleman type; that is, there exists a kernel 
G(x, y; A) (x, y E (a, b), A E p(A)) such that 

((A-Il)-'f)(x)=SbG(x, Y;~)~(Y)~(Y)~Y. ll 

The kernel G has the properties 

(3x7 Y; 2) = G(Y, x; 2) = G(x, (x, Y E (a, b), 2 E P(A )I, 

s b 

IW, Y; ~)I* Ir(Y)I & < + ~0 (XE (a, b)). a 
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If the operator Amin has defect index (2n, 2n), it holds that 

b b ss IG(x, Y;  AlI’ W)l Ir(~)l dx dy < + 00. 
a a 

These results can be proved in the same way as the corresponding 
statements for the case r = 1 in [25, Par. 19, Theorem 11. 

2.2. PROPOSITION 2.2. If problem (2.3) is regular, conditions (a,) 
and (a*) of Proposition 1.1 are satisfied for the operator A, = Amin. 

Proof As was first shown by M. G. Krein (see [18, 251) the assump- 
tion p0 > 0 a.e. on (a, b) implies that B,,, is bounded from below and that 
the spectrum of an arbitrary self-adjoint extension of Bmin in L2(]r]) is 
discrete. Now, the statement follows from Remarks 1.2 and 1.4. 

With the operator A, = Amin we introduce on Eli” the inner product 

{L g} := [Aof, gl=(Bminf, P)=~~b~(f)~dx=,$O~ub Pn-,f”‘g”‘dx. (2.8) 

Some properties of the inner product { ., .} are given in Proposition 2.6 
below. First we consider condition (a, ). 

PROPOSITION 2.3 (cf. [ 13, Theorem 1.281). Condition (a,) of Proposi- 
tion 1.1 is satisfied for the operator A, = Amin tf and only if for each singular 
boundary point a or b of problem (2.3) there is a point a’ E (a, b) or 6’ E (a, b) 
such that the inner product in (2.8) is positive on the set of all functions 
f E 9$,, which vanish outside of (a, a') or (b’, b). 

Proof We use I. M. Glazman’s decomposition method [13]. Suppose, 
e.g., that only b is a singular boundary point. We first consider the inner 
product { ., .} on the set 9’ of all functions f E gki, with the property 
f[“‘(b’)=O k=O 1 2n - 1. Let A’ = [a, b’] and A” = [b’, b). Then the 
spaces L2(i’; Irl) Hnh”t’(A”; Irl) can be considered as subspaces of L'(lrl) 

and 

L2(Jr()=L2(A’; Irl) -k L’(A”; Irl), 

9’=(L2(A’; Irl)nW) -i- (L’(A”; Irl)nW), 

where both sums are orthogonal with respect to the Hilbert space inner 
product (., .) and the second sum is also orthogonal with respect to { ., }. 
By Proposition 2.2 the inner product { ., . } has a finite number, say K~, of 
negative squares on 9’ n L’(A’; jr1 ). It is easy to see that the inner product 
{ ., .} does not degenerate on 9n L’(A’; Irl) and LB'n L’(A”; Irl). Since 
we assume that { ., } is positive on 9’ n L2(A”; Irl), it follows that { ., .} 
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has rcl negative squares on 9’. As dim giin/g’ = 2n, { ., . } also has a finite 
number of negative squares on Eli,. 

Assume now that for each c E (a, b) there exists f, E Eli, which vanishes 
on (a, c) and {fc, f,} < 0. It follows that there exist functionsf, E QL,, with 
disjoint supports and such that {fk, f,} < 0, k = 1,2, . . . . Hence, ( ., .} has 
an infinite number of negative squares, which contradicts condition (al) of 
Proposition 1.1. The proposition is proved. 

Proposition 2.3 shows that (if p0 > 0 a.e. on (a, b)) condition (ai) implies 
some restrictions about the coefficients pj, j = 1, 2, . . . . n, only at the singular 
boundary point a or h. 

Remark 2.4. If (a, ) holds, the operator Bmin is always bounded from 
below in L*( Irl ). According to the remark in [ 18, p. 3471 the assumption 
p,, > 0 a.e. on (a, 6) which we have imposed from the beginning, is a conse- 
quence of (a, ). 

Now we include also condition (a2). 

PROPOSITION 2.5. Suppose that the operator A, = Amin satisfies condition 
(a,) of Proposition 1.1. Then A, satisfies assumption (a*) of Proposition 1.1 
if for each singular boundary point a or b there is a point a’ E (a, b) or 
b’ E (a, b) such that the weight function r is of constant sign a.e. on (a, a’) or 
(b’, b). 

Proof We suppose that b is the only singular boundary point of 
problem (2.3) and use again Glazman’s method. Denote by A;, and A&, 
the minimal operators in L*(d’; r) and L*(4”; r) associated with problem 
(2.3) on the intervals A’= [a, b’] and A” = [b’, b), respectively. By 
Proposition 2.2 and Theorem 2.1 there exists a I, E C\ R such that 
a(A~i” - &Z) is closed. Since the operator A~i, is Hermitian in the Hilbert 
(or anti-Hilbert) space L*(A”; r), the %?(A;,, - &,I) is also closed. Hence, 
for A^ = ALi,@ ALi,, the range .%?(a -&Z) is closed, too. As the factor 
space W(A,, - &Z)/B(A^ -&Z) is finite dimensional, @(A,i, - &Z) is 
closed, and the statement follows from Remark 1.3. 

Let B be a self-adjoint extension of Bmin in L*( Irl). Conditions which 
imply that ( - co, E) n o(B), E > 0, consists of a finite number of eigenvalues 
are given in [13, nos. 12, 39, 401 and [25, Par. 241. In light of 
Corollary 1.4 these conditions imply that the operator A, = Amin satisfies 
(a,) and (a*) of Proposition 1.1 and consequently each self-adjoint 
extension A of Ami, in L’(r) is definitizable. If the operator Bmin is bounded 
from below in L2( Irl ) and the spectrum of B is discrete, then the spectrum 
of each self-adjoint extension A of Ami, in L*(r) is discrete. 

If the operator Bmin is associated with a regular problem (2.3) then 
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each self-adjoint extension B of Bmin in L*( Irl ) is determined by linearly 
independent boundary conditions 

kE, ajkf[k- l’(a) + ; #llJkfCk- ‘l(b) = 0, j = 1) . ..) 2n. (2.9) 
k=I 

If the rank of the matrix 

( 

aI,, ... a1,2n B 1,n “. s 1,2n 

A= f 

aZn.* ... a2,,, 2n :> P,,n . . . i%,.2n 

is d, by linear transformation of conditions (2.9) we can always obtain a 
matrix A having only zeros in the first 2n - d rows. Then the boundary 
conditions 

k$l ajkfCkpl’(U) + i /?jkfCk-“(b) = 0, j= 1, . . . . 2n - d, (2.10) 
k=l 

are called the essential boundary conditions of B. (See [18, 51.) 
It was shown by M. G. Krein [18], that the set 9?[B] consists of those 

functions f~ L2( jr1 ) for which f, f I, . . ..f’“- I) are absolutely continuous on 
[a, bl, J: lf(‘?* PO d x < + co, and which satisfy the essential boundary 
conditions (2.10). In [ 181 the case r E 1 was considered, but the methods 
used there extend to the case r > 0 a.e. on [a, b]. In particular the set 
~[CB,i”] = 9[BF], B, being the Friedrichs extension of Bmin in L*(lrl), is 
determined by the essential boundary conditions 

fck’(a) =fCk’(b) = 0, k = 0, 1, . ..) n - 1. 

PROPOSITION 2.6. The number no of negative squares of the inner product 
{ ., .} in (2.8) does not depend on the weight function r. If problem (2.3) 
is regular then the number ICY= nA, B = JA, of the inner product 
@A g) = CAf; sl U g 6 g(B) = WA )) is completely determined by the dif- 
ferential expression I and the essential boundary conditions of the self-adjoint 
extension B; i.e., tcg = tcA does not depend on the weight function r. 

Proof: By the above characterization of the sets ~ [ Bmin J and 9 [B] in 
the regular case of problem (2.3) these sets do not depend on the weight 
function r. In [ 18, part II, Par. 81 it is shown that we have 

B(f,g)= i j” pn-jf(i)g(i’dx+rrr(f, g) CL g~~CBl), 
j=O a 
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where r,( ., .) is the Hermitian form defined on 

(f= (f(a), . ..) f’“- l’(a), f(b), . ..) f@- ‘)(b)):fe 9[B]}. 

Hence the Hermitian form B( ., .) does not depend on r. It is easy to see 
that ~[&,,,] = g[&] is the domain of the closure of the Hermitian form 
( ., .} in (2.8). Hence the number K,, is equal to the number of negative 
squares of the form BF( ., .) on g[BF] which does not depend on r. 
Analogously ug does not depend on r. 

Suppose that problem (2.3) is singular and let a linear subspace .Y of 
Eli, be such that dim 5? = K~ and (f,f} < 0 (f~ 9). It follows that there 
exist a’, b’ E (a, b) such that the functions from 5Z vanish outside of (a’, b’). 
Since problem (2.3) is regular on [a’, b’], the already proved part of 
Proposition 2.6 implies that K,, does not depend on r. The proposition is 
proved. 

More information about the number JC~ in the case when Bmin has a 
positive lower bound can be found in [ 18, Part II, Par. 93. 

2.3. If the Hermitian operator A, = Amin in Theorem 2.1 satisfies 
assumptions (al) and (az) of Proposition 1.1, then for each of its self- 
adjoint extensions all the conclusions of Proposition 1.5, Corollary 1.6, 
Corollary 1.7, and Proposition 1.8 hold (observe that the positivity of the 
Lebesque measure of A + and A- implies for X = L*(r) that K+(X) = 

u-(.x-)= +a). 

Under more special conditions the results and methods of the previous 
sections yield more information about the spectrum of the self-adjoint 
extensions of Amin in L2(r). As examples, we prove two more propositions. 

PROPOSITION 2.7. Suppose that for each singular boundary point a or b 
of problem (2.3) there exists an a’ E (a, b) or a 6’ E (a, b) with the following 
properties: 

(a) The inner product { ., .} in (2.8) is positive on the set of all 
f E ~“,i, which vanish outside of (a, a’) or (b’, b); 

(b) The weight function r is positive ae. on (a, a’) or (b’, b), respec- 
tively. 

Then for every self-adjoint extension of Amin in L’(r) the set 
o(A) n (- co, 0) is discrete with the only accumulation point - co. 

Proof It follows from Proposition 2.5 and Theorem 2.1 that every self- 
adjoint extension A of A,,, in L*(r) is definitizable. For the sake of sim- 
plicity we suppose that b is the only singular boundary point of problem 
(2.3) and we use the notation from the proof of Proposition 2.3. Denote by 
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Bki, (Z?&) the minimal operator associated with problem (2.3) on the 
interval A’ (A”) and by BI, (B;) the corresponding Friedrichs extension in 
L*(d’, Irl) (L*(d”, Ir]), resp.). Put A’= JB; and A”= JB;. The space 
L*(d”, r) is a Hilbert space and A = BF is a self-adjoint operator in this 
Hilbert space. Since the inner product ( ., . } in (2.8) has a finite number of 
negative squares on 9(Amin) n L2(d”; r), the essential spectrum of A” is 
contained in [0, + co). 

Problem (2.3) is regular on A’ and Proposition 2.2 and Theorem 2.1 
imply that the operator A’ is delinitizable in L*(d’, r) and that its spectrum 
is discrete. The operator A’OA” is delinitizable in L*(r) and its spectrum 
in (-co, 0) is discrete with the only accumulation point - co. Therefore 
K-(0; A’OA”) < + co. 

Now, let A be an arbitrary self-adjoint extension of Amin in L*(v). There 
exists a A~p(A)np(A’@,4”) and for such a A we have 

dim((A-AZ)-‘--(A’@A”-AZ))‘)< +co. 

It follows by the arguments used in the proof of Theorem 1 in [l5] that 
K-(0; A) < + co. The operators A and A’OA” have the same essential 
spectrum. Consequently, the spectrum of A in (-co, 0) is discrete. Since 
K-(0; A) < + co, zero is not an accumulation point of a(A) n (-co, 0). 
The proposition is proved. 

For a special case the structure of a(A) as in Proposition 2.7 was 
established in [21, Lemma 11. 

PROFWITION 2.8 (Cf. [25, Par. 24, Theorem 33). Assume that for 
problem (2.3) the boundary point a is regular and that 

Further, suppose that there exists a CE (a, b) such that 

p120,...,p,_,>0, r>O a.e. on (c, b). 

Then for each self-adjoint extension A of Ami, in L*(r) the spectrum a(A) 
is discrete in (- CO, [). 

Proof: For E > 0 there exists a 6’ E (c, b) such that 

p&)/r(x) > i - E for almost all x E (b’, b). 

We use the notation of the proof of Proposition 2.7 and consider again the 
operators A’ and A”. Let fe9Lin, f(x) =0 on [a, b’]. Then we have 
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tA’% f) = CA’% fl = CAmin.L fl=5,” tAminf)fi dx 

= I” z(f) fdx = i j” pi If(n-i)12 dx 
b’ j=o b’ 

s~b~(p~/r)lf12rdx=)^h(Pni~)l~121~ldx~(~-~~(f,f~~ (2.11) 
(I 

It follows that the operator A,,, satisfies the assumptions of Proposi- 
tion 2.3. Moreover, inequality (2.11) implies cr(A”) c [[ - E, + cc ). There- 
fore cr(A’@ A”) is discrete in ( - co, i -E). Since A and A’ @A” have the 
same continuous spectrum, and E > 0 is arbitrary, the statement follows. 

COROLLARY 2.9. If, in addition to the assumptions of Proposition 2.8, we 
have c = + co, then for each self-adjoint extension A of Amin in L2(r) the 
spectrum a(A) is discrete. 

This corollary can be proved in the same way as Proposition 2.8. It 
follows from [25, Par. 24, Theorem 21 and Corollary 1.4, as well. 

3. REGULARITY OF CRITICAL POINT INFINITY 

3.1. In this section we show that co is not a singular critical point 
of the delinitizable operator A, associated with the differential problem 
(2.3), if the number of turning points of the weight function r is finite and 
p0 and r satisfy some assumptions in neighborhoods of these turning 
points. 

DEFINITION 3.1. A nonnegative (nonpositive) function w  is said to be 
n-simple from the right at x0 if there exists a 6 > 0 such that w  is defined 
at least on [x,, x0 + S] and 

w(x) = b - %YP(X) (w(x) = -(x - xo)‘p(x), resp.) 

holds a.e. on [x,, x0 + S] with some r L= - 1, p E Cn[xO, x0 + S], p(x,) > 0, 
and, if n > 1, p’(x, + ) = . . = p (n - i )(x,, + ) = 0. A function w  is said to be 
n-simple from the left at x0 if the function x H w( -(x - x,,) + x,,) is 
n-simple from the right at x,,. A function w, defined in a neighborhood of 
x,,, is said to be n-simple at x0 if it is n-simple from the right and n-simple 
from the left at x0 (with, possibly, different numbers T). 

LEMMA 3.2. Let A = [a, /?I and let w, PE L’(A), w, p>O a.e. on A. 
Denote by 9 the set of all f E L2(A; w) for which f, f’, . . . . f(“-l) are 
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absolutely continuous on A and such that Jd ( f(“)12 p dx < + 00. Suppose 
that the function w is n-simple from the right at a and that p and l/p are 
essentially bounded in a neighborhood of a. Then there exists a bounded 
and boundedly invertible, positive operator X in L2(A; w) such that 

X9c {f~~:f(a)=f’(a)= . . . =f+‘)(ct)=O} 

and such that the function f - Xf vanishes in the fixed neighborhood of fi for 
every f E L2(A; w). 

Proof: Without loss of generality we can suppose that a = 0; that is, 
A = [O, p]. Choose cp E C”(A), 0 < 40 d 1, which is equal to 1 in a 
neighborhood of zero and vanishes outside of [O, d/2], where 6 < /3 is from 
Definition 3.1 and such that p and l/p are essentially bounded in [0, S]. 
We define a linear operator Y in L2(A; w) as 

(Yu)(x) := F a,sju(sjx)(p(x), XEA, (3.1) 
j=l 

where sj, 1 < !i < 2, j= 1, . . . . 2n, are mutually different and LYE, . . . . a2,, are 
reals to be chosen below. Put 

hi(x) := (w(X)/W(sjX))cP(X) = (P(x)/s~P(sjx))cP(x)~ 

XEA, j= 1, 2, . . . . 2n, 
and let 

c,=max{Ih~)(x)I:x~A, k=O, 1, . . . . n,j= 1, 2 ,..., 2n}, 

~,=max{Jcp~~~(x)l:x~A, k=O, 1, . . . . n,}, 

cj = ess sup{p(x): XE (0, S)}/ess inf{p(x): XE (0, S)}. 

The operator Y is bounded in L’(A; w). Indeed, 

( Yu, YU)A = S, / P(X) j$l ajsjU(sjX) 1 2 w(x) dx 

d2n J:, Ill’ (j$, ImjI*$ IUCSjXJ12) w(x)dx 

< 2n 5 Iaj12 sj’ J:‘* Iu(s~x)~~ hj(x)W(sjX) dx 
j=l 

< 2nc, 5 laJ2 S; /:‘2 lu(sjx)l* W(S~X) dx 
j=l 

<2nc* Cf laj12Sj) (k U)d. 
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It is easy to see that the adjoint Y* of the operator Yin L2(d; w) is given 
bY 

(Y*u)(x) = 5 Uj(hjU)(X/Sj), x E A. (3.2) 
j= I 

It follows from (3.1) and (3.2) that 

(Yu)(x) = (Y*u)(x) = 0, u E L2(A, IV), x E [S, j?]. (3.3) 

If UE 9, then the functions ( Yu)‘~‘, (YOU), k= 0, 1, . . . . n - 1, are 
absolutely continuous on A and we have 

( YU)(yX) = .p (F) p(yX) k$l ais;+ W(SjX), XEA, 

( YOU) = j;, ajs,-” (f. (:) hjibdk - i)) (x/s,), x E A, 

k = 0, 1, . . . . n - 1, n. 

Moreover, 

I 
J(Yu)‘“‘12pdx< +al, I( Y*upq2p dx < + co. 

A I A 

We prove, e.g., the second inequality: 

JA ijl ajs;" (i. (y) hj"u'"-") (x/sj) 12Ptx) dx 

<2n(n + 1)~: 1:” z jail2 s,T2” i (Y)l IzPi)(x/sj)12 
j=l i=O ’ 

X (P(X)/P(X/Sj)) P(X/Sj) dx 

< 2n(n + l)sfc, fi2 5 i laj12 s,TZn+l (y)’ lu’“-i’(x)12p(x) dx 
j-1 j=l) 

+ 2n(n+ l)c:c, ldn)(x)12 p(x) dx. 

This expression is finite since u E 9. Thus, Y9 c 9 and Y*9 c 9. 
Now we determine aI. . . . . a2,, E R such that for u~9 we have 

( Yu)(~)(O+ ) = dk)(O+ ), ( Y*u)(~)(O+ ) = -dk)(O+ ), k = 0, 1, . . . . n - 1. The 
first n equalities are equivalent to 

g ai++’ = 1, k=O,l,..., n-l. (3.4) 
j=l 



52 hJRGUS AND LANCER 

Because of p’(O+)= . . . =p +“(O+)=O we have hj’)(O + ) = 0, 
j= 1, 2, . . . . 2n, i= 1, . . . . n- 1; i.e., 

(Y*U)‘k’(O+)= g CtjSFkU(k)(O+)hj(O+), k=O,l,..., n-l, 
j=l 

where hj(O+ ) = sir. Hence ( Y*u)‘~)(O+ ) = -z&“‘(O+ ), k = 0, 1, . . . . n - 1 is 
equivalent to 

5 @.jsyk-’ = - 1, k=O, 1, . . . . n-l. (3.5) 
j=l 

Equations (3.4), (3.5) determine a,, . . . . a*,, uniquely, since the determinant 
of this system is a generalized Vandermonde determinant which is different 
from zero. 

The operator Y* Y maps 9 into 9, 

(Y*Ylqk)(o+)= -dk’(O+), for k=O, 1, . . . . n- 1, UE~, 

and it is a bounded and nonnegative operator in L*(d; w). Moreover, (3.3) 
implies 

( Y* Yu)(x) = 0, x E [S, p-J, 24 E L2(d; w). 

Thus, the operator X= Y* Y + Z has all the properties stated in the lemma. 

Remark 3.3. If w  is n-simple from the left at 8, a corresponding result 
holds. 

If n = 1, the conclusion of Lemma 3.2 holds if the function w  (defined on 
A = [0, /J]) instead of l-simplicity at zero from the right has the following 
properties: w  is absolutely continuous in a neighborhood of zero, there 
exists si # 1, si > 0, such that limXl, w(x)/w(six) #s, and such that the 
function (w(x)/w(s,x))’ is bounded in a neighborhood of zero. In this case 
we can choose s2 = 1 and the function cp such that supp cp c [0, S,] where 
6, max{s,, l/s, > < 6. The rest of the proof remains unchanged. 

We also mention that the condition p’(O+ ) = . . . = p’“- “(O+ ) = 0 was 
used in the proof of Lemma 3.2 only in order to assure that the system 
(3.4), (3.5) has a solution ai, . . . . aZn. 

3.2. In order to prove that co is not a singular critical point of a 
delinitizable extension A of the operator A,i, we use the following 
criterium given in [7, Proposition 3.53. 

PROPOSITION 3.4. The point co is not a singular critical point of the 
definitizable operator A in the Krein space (X, [ ‘, . 1) IY and only if there 
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exists a positive, bounded, and boundedly invertible operator W in the Krein 
space X such that 

W9[JA] c ss[JA]. 

If problem (2.3) is singular on (a, b), the boundary conditions at the 
singular boundary point(s), which determine a self-adjoint extension A of 
Amin in L*(r), depend on the values of the first 2n - 1 quasi-derivatives of 
f~ g(A,,,) in a neighborhood of this (these) point(s). In this case, we call 
the boundary conditions which determine a self-adjoint extension A of Amin 
in L*(r) separated if the following is true: IffE 9(A), g E g(A,,,), f =g in 
the neighborhood of one endpoint a or 6, and g = 0 in the neighborhood 
of the other endpoint then g E 9(A). 

A characterization of the set 9[cJA], for the regular case of problem 
(2.3), is given in no. 2.2. If problem (2.3) is singular, to our knowledge, 
there is no explicit description of 9[JA]. Some particular cases for 
which a characterization is available are mentioned in Remark 3.7. Denote 
by $ the set of all f E L*(r) such that f, f ‘, . . . . f + ‘) are locally absolutely 
continuous on (a, 6) and f(“) E Lf,,(a, b;p,). The set 9[JA] is said to be 
separated if the following is true: If f E 9[JA], ge $, f =g in the 
neighborhood of the one endpoint a or b, and g=O in the neighborhood 
of the other endpoint then gE9[CJA]. We call the essential boundary 
conditions (2.10) separated if each equality in (2.10) contains derivatives at 
only one boundary point. Obviously, if problem (2.3) is regular, the set 
9[JA] is separated if and only if the essential boundary conditions of A 
are separated. 

The following lemma is not hard to prove. 

LEMMA 3.5. Suppose that the Hermitian operator Amin is associated with 
a (singular) problem (2.3) on (a, 6). Then we have: 

(i) 9[JA] c 9. 

(ii) Iffeg[CJA] andf vanishes on a closed interval [a,, b,] ~(a, b), 
then there exist functions f, E 9(A), n = 1,2, . . . . which vanish on [a,, b,] and 
aresuch thatf,,+f inL*(lrl), [(A(f,-f,)),f,,-f,]-+O (n,m+ +a). 

(iii) If the boundary conditions which determine A are separated, then 
the set 9[JA] is separated. 

The main result of this section is: 

THEOREM 3.6. Assume that in problem (2.3) the weight function r has a 
finite number of turning points at which it is n-simple, and that pO, l/p0 are 
essentially bounded in neighborhoods of these turning points. Further, suppose 
that the Hermitian operator Ami,, associated with (2.3), satisfies conditions 
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(a,), (az) of Proposition 1.1. Then co is not a singular critical point of the 
self-adjoint extension A of A,,+,, in L’(r) in each of the following cases: 

(i) The set 9[JA] is separated. 

(ii) The number of turning points of r is even and A is an arbitrary 
self-adjoint extension of A,i, in L’(r). 

(iii) Problem (2.3) is regular, r is n-simple from the right at a and 
n-simple from the left at 6, and A is an arbitrary self-adjoint extension of 
Ami, in L’(r). 

Proof: Let 

a<t,<t,< ... <t,,-,<t,,<t,,+,<b 

be a partition of the interval (a, b) such that tzj, j= 1, . . . . v, are the turning 
points of r. Then 

L2(lrl)=L2(a, tl; 14) i L’(t,, t2; Irl) 
i ... i L2(tZv, f2Y+1; b-1) i L2(t2,+,,b; Irl), 

the sum being orthogonal with respect to (., .). Let A be a self-adjoint 
extension of Amin in L2(r) and B = JA. According to Theorem 2.1 the 
operator A is definitizable and the operator B is bounded from below in 
L2(lrl). In what follows we use the properties of 9[B] =9[JA] stated in 
no. 2.2. If [cr, b] c (a, b) we denote by 9[B] I [a, /I] the set of the restric- 
tions of the functions from 9[B] to [a, /.I]. It follows from Lemma 3.2 and 
Remark 3.3 that for i= 1, . . . . 2v there exists a positive, bounded, and 
boundedly invertible operator Xi in L2( ti, ti+ , ; It-) such that 

Xd~lIBl I Ctl, ti+11) 
c {fe9[B] I [tl, ti+,]:f(i)=f’(t^)= ... =f'"-"(i)=O}, 

where tag { ti, ti+ 1} is a turning point of r, and Xi does not change the 
functions in a neighborhood of the other boundary point of [ti, ti+ 1]. We 
introduce the operator 

X=I,@X,@X2@ ‘.. ox,,oz2, (3.6) 

where I, and Z, are the identities on L’(a, t,; Irl) and L2(t2v+l, b; Irl), 
respectively. Then X is positive, bounded, and boundedly invertible in 
L2( Irl) and X9[ B] c G&,[B], where zT@,[B] denotes the set of all functions 
f~ 9[B] such that 

f(ty)=f’(tzj)= ... =f(n-‘)(t2j)=0, j = 1, 2, . . . . v. 
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Suppose now that problem (2.3) is regular. It is easy to see that for 
fe $&,[B] the function Jf has absolutely continuous derivatives up to the 
order n - 1, that Jf@) = (Jf)‘k), k = 0, 1, . . . . n, and, consequently, that 
SS: I(Jf)‘“‘12 p0 dx < + co. Hence Jf E 9,,[B] if and only if Jf satisfies the 
essential boundary conditions of A. 

If the number of turning points is even, the function r has the same sign 
on [a, t,] and [tzv+ 1, b]. Hence 

(JfW =fW or (JfMx) = -f(x) for XE [a, fll u CtZv+l, bl. 

In both cases Jf satisfies the essential boundary conditions if fe G&,[B]. 
Therefore JC&[B] cG&,[B], Put W := JX. It follows that W9[B] c 
gOIB] c 9 [B] and that W is a positive, bounded, and boundedly 
invertible operator in L’(r). According to Proposition 3.4 it follows that 
CG @c,(A), and (ii) is proved if (2.3) is regular. 

If 9[B] is determined by separated essential boundary conditions, it is 
obvious that we have Jfe 9JB] for SE&,[B] and it follows again that 
Wg[B] c 9,JB-J c 9[B]. This proves (i) in the regular case of (2.3). 

Suppose now that problem (2.3) is singular and put d = [a’, b’] c (a, b). 
Problems (2.3) and (2.5) restricted to d are regular. Denote the associated 
minimal operators by A,i”,d, B,i,,d: A,,,,d = JB,i,,A. It follows from the 
definition of the set ~[CB,,“,,] that ~[CB,i,,.] c 9[B], if we consider the 
functions f E ~[B,i,,d] to be zero on (a, a’) u (b’, h). Recall that 
fe L@[CB,,,,~] satisfies the essential boundary conditions 

f(a’) =f’(a’) = . . . =f’“- [‘(a’) =f(b’) =f’(b’) = . . =f’“- “(b’) = 0. 

Now let a < a’ < t’, < tl, t2,,+ 1 < tiY+ 1 < b’ < b and choose the function 
@~C”(a,b) such that O<@,<l, @(x)=1 (xE[&;,&+,]), and @(x)=0 
(x E (a, a’] u [b’, b)). Iffe 9[B], according to Lemma 3.5(i) the functions 
(@f)@‘, k=O, 1, . . . . n- 1, are locally absolutely continuous and 
jd I(@~f)‘“)1~p,,dx< +a~. Hence @f&2[BF,,]c~[B], where B,,, is the 
Friedrichs extension of Bmin,A. Since f0 =f- @f vanishes on [t’, , tiY + ,] we 
have foe 9,,[B]. It follows that Xfo =fo and X(@f) E~,,[B~,~] c 2$,[B]; 
hence also Xf=Xfo+X(@f)=fo+X(@f)e90[B]. Evidently W(@f)= 
Jx(~f)E~OIBF,d]C~~[B], and whether Wf= Wfo+ W(@f)=Jfo+ 
W(@f) belongs to C@,[B] or not depends only on Jfo. If the number of 
turning points of r is even we have Jfo =fo or Jfo = -f. and in both cases 
Jfo E 9,,[ B] since f. E .@,[ B]. Consequently Wf E %,[ B] c .9[ B]. It follows 
that W9 [ B] c 9[B] and the proof of (ii) is complete. 

Let Q[JA] = 9[B] be separated. We have fo=fo,o+fO,b, where 
fdx)=fo(x) (x~(a, tl)), fo.,(x)=O (x~ Ctl, b)), fo,dx)=O (x~(a> til), 
fO,b(x) =fo(x) (XE (tl, b)), and the functions f& and fo,b belong to 9[B] 
since f. G~[B]. Obviously, Jfo,., =fo.= or Jf& = -fo,n and Jfo,b=fo,b or 
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JEW = -fO+. Consequently, Jfo,, , Jh,b E WBI. Thus, Jf = Jf,, + Jfo b E 
9[B]. This implies that Wf= Jfo+ W(@f) belongs to 9[Z3], i.e., 
W9[B] c 9[B]. This completes the proof of(i). 

It remains to prove (iii). In this case, according to Lemma 3.2 and 
Remark 3.3, there exist positive, bounded, and boundedly invertible 
operators X0 and X2”+ 1 in L*(a,t,; Irl) and L’(t,,+ 1, b; Irl), respectively, 
such that 

~o(wa I CG t1)l 
c {fE’[B] ( [a, tl]:f(a)=f’(a)= ... =f’“-‘$z)=O} 

and 

x Z”+I(~rBI I t2v+1, bl)c U-EWBI I Ct2v+lr bl:f(b) 
=f’(b)= . . . =f’“-“(b)=()}. 

Now, in definition (3.6) of X, we replace the operator I, by A’, and Z, by 
x 2V + i . Then X is positive, bounded, and boundedly invertible and 

XcQ[B]c {fd$[B]:f(a)= ... =f’“-“(a)=f(b)= . . . =f’“-“(b)=O}. 

The last set we denote by .9b[B]. It is obvious that J9&[B] c &,[I?]. 
Hence, for W= JX we have W9[B] cg&[B] c9[B], and W is a 
positive, bounded, and boundedly invertible operator in L2(r). This com- 
pletes the proof of the theorem. 

The remarks in the last t-wo paragraphs of no. 3.1 allow one, in some 
situations, to prove the conclusion of Theorem 3.6 under weaker conditions 
about the behavior of the weight function at its turning points. 

Remark 3.7. For indefinite Sturm-Liouville problems which are con- 
sidered in [3, 17,261, it is not difftcult to see that for the corresponding 
operator A the set SB[JA] is separated. Classes of 2nth order singular 
problems for which the corresponding operator A has the separated set 
9[JA] can be found in [27]. 

4. FULL- AND HALF-RANGE COMPLETENESS 

4.1. In this section we suppose that for the operator Ao=Amin, 
associated with the differential problem (2.3), conditions (a,) and (al) of 
Proposition 1.1 are satisfied and that the spectrum of one and hence of all 
self-adjoint extensions A of Amin in L’(r) is discrete. Then the operator A 
is delinitizable in L*(r) and all finite critical points of A are regular. 
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Moreover, we suppose that cc is not a singular critical point of the self- 
adjoint extension A which we consider here. Recall that sufficient condi- 
tions for this last assumption to be satisfied were given in Theorem 3.6. 

Denote by A,+ (A,:), j= 1,2, . . . . the nondecreasing (nonincreasing) 
sequence of the real eigenvalues of A such that K-(jl,+;A)=O 
(K + (2,: ; A) = 0, resp.); that is, ‘1,: (A,: ) are the eigenvalues of positive 
(negative, resp.) type of A. Then 

{Af,n;,j=1,2 ,... )=(a(A)nR)\c(A). 

It follows from Corollary 1.6 that the total number of negative eigenvalues 
among the A,?, j= 1, 2, . . . . and positive eigenvalues among the A,7 is at 
most rcA. Since 2: 4 c(A), j= 1,2, . . . . the eigenvalues A,* of A are semi- 
simple; that is, the corresponding root subspaces and geometric eigenspaces 
coincide. 

A set {vi, j = 1, 2, . ..} in the Hilbert space 2 is called a basis if each ele- 
ment of 2 is the limit (in norm) of a unique series C ujuj, a, E C. The basis 
{ vJ, j = 1, 2, . . . } is a Riesz basis if there exists a bounded and boundedly 
invertible operator T in 2 such that {TV,, j= 1, 2, . ..} is an orthonormal 
basis in 2. 

Denote by Xc the finite-dimensional linear span of the root subspaces of 
A corresponding to the critical and nonreal eigenvalues of A. Then X, is a 
nondegenerate, hence orthocomplemented, subspace of L*(r): L*(r) = 
&.[ i ] X, , with a nondegenerate subspace Xi, and we have AXc c Xc, 
AXI c Xi. As cc $ c,(A), it is not a singular critical point of the operator 
A i := A 1 X1 and A, has no finite critical points; moreover 
a(A,) = {A,+, A,-, j = 1, 2, . ..}. It follows from Propositions 11.5.2 and 11.56 
in [20] that the closed linear span of ker(A -2: I) (ker(A -2,-Z)), 
j = 1, 2, . . . . is a maximal uniformly positive (negative, resp.) subspace of 
(Xi,, [ ., .I); denote it by A+ (4-, resp.). Then the decomposition 
Xi = 4, [i I]&- holds and both subspaces A+ are invariant under A. 
The spaces (A- + , +_ [ ., .]) are Hilbert spaces and A ) &* are self-adjoint 
operators in these Hilbert spaces with 

a(A 1 A,)= {A,*, j= 1, 2, . ..}. 

The norm topology of (A*, + [ ., .]) coincides with the norm topology of 
(A* 2 t.3 .I). 

Let (e,* , j = 1,2, . ..} be an orthonormal basis of (A+, f [ ., .]) which 
consists of eigenfunctions of A 1 .4?*. Then for arbitrary g E Xi we have 

(4.1) 
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where both sums converge in the topology of (Xi, [ ., .I), and therefore 
also in L*(lrl). If Ji, . . ..fk is a basis of XC, it follows from (4.1) and 
L*(r) = XC [i ] Xi that the functions 

f,, . . ..fk. e,“, ei, j= 1, 2, . ..) (4.2) 

form a basis of L*( (~1). Obviously, fi , . . . . fk can always be chosen such that 
they are root vectos of A. 

The basis in (4.2) is even a Riesz basis. Indeed, using the decomposition 
X, = A+ [i ] A+%- a Hilbert space inner product (., .)i can be defined on 
x and the norm induced by (., .)i on X1 is equivalent on Yi to the norm 
of L*( lrl ). The system e,* , j= 1, 2, . . . . is orthonormal in (Xi, ( ., .)i). The 
inner product (., .)i can be extended on L*(r) in such a way that XC and 
Xi are orthogonal, fi, . . . . fk form an orthonormal basis in (s$, (., .)i), and 
the norm induced by ( ., . ), is equivalent to the norm of L*( Irl ). The basis 
(4.2) is orthonormal in (L*(lrl); (., .)1); h ence it is a Riesz basis of L*( lrl ). 

Summing up, we have 

PROPOSITION 4.1. The functions (4.2) f orm a Riesz basis of L*( I r) ). Each 
f E L*(r) has a unique expansion of the form 

(4.3) 

with a,, . . . . ak E @ and both sums converge in the norm of L*( It-1 ). 

Because of Theorem 3.6 Proposition 4.1 contains the full-range expan- 
sions considered in [16, 171. 

4.2. Let 

L*(r)=X+ [-i-l X- (4.4) 

be the fundamental decomposition corresponding to the fundamental 
symmetry J of (2.7). Then, with the sets A, of (2.4) 

Y+ = {f e L2(r): fxd f = 0 a.e. on (a, b)} = L*(A * ; r). 

Denote by P, the orthogonal projections onto X+ in L*(r). Then 
(P&f)(x)=0 (xEA~) and (P, f)(x)=f(x) (xEA+) f&feL*(r). 

PROPOSITION 4.2. Let Z+(Z) be a nonnegative (nonpositive) subspace 
of (XC, [., .]) such that 

dim Y+ = rc+(XC, [., .]) =: K, (dimZ=Ic_(x; [.,.])=:K-) 
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and let g:, . . . . gz+ (g; , . . . . g;- ) be a basis of 2’+ (X , resp.). Then the 
functions 

p, g: 9 . . . . p, g:+ and P+e,+, j= 1, 2, . . . . (4.5) 

(P- $7; , ..., p- g, and Ppel:, j = 1, 2, . ..). (4.6) 

form a Riesz basis of X+ = L2(A + ; r) (X = L2(A ~ ; -r), resp.). 

We mention that according to a finite-dimensional version of a theorem 
of L. S. Pontrjagin the subspaces Y+ and Z- can be chosen such that they 
are invariant under A. Hence also g: , . . . . gJ+ and g; , . . . . g;- can be chosen 
as root functions of A (corresponding to the critical points or to nonreal 
eigenvalues of A). Here, of course, the functions g,? need not be linearly 
independent of g,: . 

Proof of Proposition 4.2. The subspace Y+ [i ] A+ is maximal non- 
negative closed subspace of L2(r) [4]. It follows that P+(Y+ [i ] A+) = 
X+ and the restriction P, := P, 1 (Y+ [ $1 A,) is a bounded and 
boundedly invertible operator between the Hilbert spaces (Y+ [ i ] A+, 
(., .)) and (X+ , (., .)) [4, Lemma IV.7.11. In the same way as in the proof 
of Proposition 4.1 we find that {g: , . . . . gz+ , ej+ , j = 1, 2, . ..} is a Riesz basis 
in Y+ [ i ] A+. Since a bounded and boundedly invertible operator maps 
a Riesz basis onto a Riesz basis, the basis (4.5) is a Riesz basis of 
x+ =L2(A+; r). The proof of the second part of Proposition 4.2 is 
analogous. 

It follows from (4.3) and the proof of Proposition 4.2 that the unique 
expansion of the function f + E X+ = L2(d + ; r) with respect to the Riesz 
basis (4.5) has the form 

f+= z ajP+g~+~Cp”f+‘e~lP+e~, (4.7) 
j=l j-1 Ce,+,e,+l 

with al, . . . . aK+ E @, depending on f + , and the sum converges in L2( A + ; r). 
If K, denotes the angular operator of Y+ [i ] A+ with respect to the 
decomposition (4.4) we have P; ‘f, = f + + K, f + (f + E X+ = L2(A + ; r)). 
The expansions of the functions f- E X- = L2(Ap ; -r) with respect to the 
Riesz basis (4.6) are analogous. 

On account of Theorem 3.6 Proposition 4.2 generalizes the half-range 
expansions considered in [3, 16, 173. 

Remark 4.3. Propositions 4.1 and 4.2 of this section can easily be for- 
mulated for an arbitrary definitizable operator A in a Krein space which 
has no singular critical points: c,(A) = 0. This holds true if A also has a 
continuous spectrum. Then, of course, the sums in the expansions (4.3) and 
(4.7) have to be replaced by integrals. 
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