QUASI-UNIFORMLY POSITIVE OPERATORS IN KREIN SPACE

BRANKO CURGUS and BRANKO NAJMAN

Definitizable operators in Krein spaces have spectral properties similar to those
of selfadjoint operators in Hilbert spaces. A sufficient condition for definitizability of a
selfadjoint operator A with a nonempty resolvent set p(A) in a Krein space (H,[-|-]) is the
finiteness of the number of negative squares of the form [Axz|y] (see [10, p. 11]).

In this note we consider a more restrictive class of operators which we call quasi-
uniformly positive. A closed symmetricform s is called quasi-uniformly positive if its isotropic
part N is finite dimensional and the space (D(s),s(-, -)) is a direct sum of a Pontryagin
space with a finite number 7(s) of negative squares and N,. The number (s) := dim N +
7(s) is the number of nonpositive squares of s; it is called the negativity index of s. A
selfadjoint operator A in a Krein space (H,[-|-]) is quasi-uniformly positive if the form
a(x,y) = [Ax|y] defined on D(A) is closable and its closure @ is quasi-uniformly positive.
The number (A) := k(@) is the negativity index of A. Such operators often appear in
applications, see [3, 4, 5] and Section 3 of this note.

It turns out that this class of operators is stable under relatively compact pertur-
bations, see Corollaries 1.2 and 2.3. The perturbations as well as the operators are usually
defined as forms, so the above definition is natural.

Most of the results in this note are known. In particular the perturbation results
from Section 2 are consequences of the results of [7]. We have found it useful to state the
results in the framework of quadratic forms and quasi-uniformly positive operators since
the proofs and the statements are simpler but still sufficiently general for several important
applications.

As an illustration of these results we consider the operator associated with the
Klein-Gordon equation
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we get a system of equations for (uy, uz). The associated operator is quasi-uniformly positive
in a Krein space suggested by the physical interpretation of the equation. The obtained



results are essentially known, see [8, 11].
In the first two sections of this note (H,[-|-]) is a Krein space, (H,(-]-)) is a
Hilbert space and J is the corresponding fundamental symmetry.

1 Quasi-uniformly positive operators

In this section we prove that quasi-uniformly positive operators in a Krein space are defini-
tizable.

PROPOSITION 1.1 A quasi-uniformly positive operator A in the Krein space (H,[-|-])
is definitizable.

PROOF ! Since S = JA is quasi-uniformly positive in (H, (- |-)), there exists a selfadjoint
operator Fy of finite rank such that S + Fj is uniformly positive. Since D(S5) = D(A)
is dense in H, perturbing F; we see that there exists a selfadjoint operator F' such that
R(JF) C D(S) = D(A) and such that H := S + F is uniformly positive. The operator
JH is uniformly positive in the Krein space H. Since 0 and all nonreal numbers are in the
resolvent set of JH, the resolvent identity yields

(JH —2)" = 2 HV2(HV2JHY? — ) Y2 ) 4 (JH)™Y, 2 4%

Therefore

sup [|(JH —in) ™' < oo. (1)
neR

From the resolvent identity and R(JF) C D(JH), for arbitrary real numbers n, no we get

(JH —in)" JF = (JH —in)~""(JH — ino) " (JH — ino)JF =
—t(n = o) H{(JH —in)™" = (JH — ino) ' HJH — ino)J F.

Now (1) implies
lim ||(JH — in)"'JF|| = 0.
n—too
Therefore, for sufficiently large || the operator I + (JH — in)~'JF has bounded inverse.
Since

A—in=JH —in—JF = (JH —in)(I + (JH — i)' JF), (2)

it follows that iy € p(A) for sufficiently large |n|. Consequently [10, (c¢) p. 11] implies that
A is definitizable. O

In the next proposition we use the concept of relative compactness for operators.
For its definition and properties see [9].

PROPOSITION 1.2 The class of quasi-uniformly positive operators in a Krein space is
closed with respect to relatively compact additive perturbations.

!The authors are grateful to Prof. Peter Jonas for providing this proof which is significantly shorter than
the original one.



PROOF Let A be a quasi-uniformly positive operator in the Krein space (H,[-|-]) and
let V' be a symmetric operator in (H,[-|-]) which is relatively compact with respect to A.
For every A € p(JA) N p(A) the identity

JV(JA =A™ = JV(A—\I)"'J
= MV(A= M) J = [)(JA = \I)™!
— MV(JA= M) (T = D(A= M)

holds. Therefore the operator V' is A-compact it and only if the operator JV is J A-compact.
Since the operator JA is quasi-uniformly positive in the Hilbert space (H,(-|-)), it follows
from [9, Theorem IV.5.35] that the operator JA + JV is quasi-uniformly positive in the
Hilbert space. Consequently A 4+ V' is quasi-uniformly positive in the Krein space. a

PROPOSITION 1.3 Let A be a quasi-uniformly positive operator in the Krein space
(H,[-|-]) and let O be in the spectrum of A. Then 0 is an isolated eigenvalue of A of fi-
nite multiplicity. In particular, 0 is not a singular critical point of a quasi-uniformly positive
operalor.

PROOF Let H be the operator introduced in the proof of Proposition 1.1. Then 0 is in
the resolvent set of JH and A — JH is an operator of finite rank. The proposition follows
from the Weinstein-Aronszajn formulas, see [9, [V, §6]. O

PROPOSITION 1.4 Let S be a quasi-uniformly positive operator in (H,(-|-)) with dis-

crete spectrum. Then the spectrum of JS is also discrete.

PROOF Let H be the operator introduced in the proof of Proposition 1.1. From the
Weinstein-Aronszajn formulas it follows that the spectrum of H is also discrete. Therefore
H™' = (JH)™'J is a compact operator. The resolvent identity implies that the resolvent of
JH is compact. It follows from the equality (2) that the resolvent of JS is also compact. O

The converse of Proposition 1.4 is not true. As we show in the example below, there exists
a uniformly positive operator S in (H, (-|-)) with nonempty continuous spectrum such that
the spectrum of J.S is discrete.

EXAMPLE Consider the Hilbert space (2. Let ¢,, n = 1,2,... be the standard orthonor-
mal basis and (-|-) the standard scalar product in ¢*. Let Hy, k = 1,2,... be a subspace
of /? spanned by eyr_1, €. Then 2 = B,_, Hi. Let J be a fundamental symmetry on
(? such that the matrix representation of the restriction of J on Hj is 0 _(1) . This
and all the other matrix representations in Hj are with respect to the basis {egr_1, €2}

Let S be a uniformly positive operator in the Hilbert space (¢2,(-|-)) such that the matrix

representation of the restriction of S on Hj, is _(kk_ 1) _(kk_ D . Clearly 1 is an

eigenvalue of S of infinite multiplicity, i.e. the spectrum of S is not discrete. The operator
J S is uniformly positive in the Krein space (2, (J-|-)). The eigenvalues of .J.S are £/2k — 1
and the linear span of the corresponding eigenvectors is dense in (2. Therefore, the spectrum
of JS is discrete.

However, if co is not a singular critical point of JS, then the following proposition holds.



PROPOSITION 1.5 Let A be a quasi-uniformly positive operator in the Krein space
(H,[-]-]). Assume that oo is not a singular critical point of A. Then A has discrete spectrum
if and only if JA has discrete spectrum.

PROOF We only have to prove that the discreteness of the spectrum of A implies the dis-
creteness of the spectrum of JA. By [4, Proposition 2.3] there exists a Riesz basis consisting
of eigenvectors and associated eigenvectors of A. This implies that A has compact resolvent.
From the identity

(A=) = (JA— M)t =
(A= XN)™(1 = ))JA(JA - \I)™!

it follows that JA also has compact resolvent. O

The discreteness of the spectra of A and JA does not imply the nonsingularity of co. This
can be seen from the following example.

EXAMPLE In the notation of the previous example, let A be an operator in £ such that

2 JE— JE—
the matrix representation of the restriction of A on H, is ( k(kk— 1) k(_kk2 1) ) in Hg.

. . . . . k? —k(k—1
The matrix representation of the restriction of JA in Hy is ( —k(k—1) (k2 ) ) . The
operator JA is uniformly positive in (¢*,(-]-)) and it has discrete spectrum. Therefore, the
operator A is uniformly positive in the Krein space ((*,(J - |-)) and its spectrum is also
discrete. Since the cosine of the angle between the eigenvectors of A in Hj converges to 1,
the point oo is a singular critical point of A.

Quasi-uniformly positive operators have important spectral properties. We list
them for reader’s convenience.

Let E be the spectral function of the quasi-uniformly positive operator A (see
[10]). Let A € o(A)NR. Then A is of positive type (negative type, respectively) if there exists
an open interval A containing A such that (E(AYH,[-|-]) (E(AYH,—[-|-]), respectively)
is a Hilbert space. Further A is a eritical point if [-]-] is indefinite on E(A)H for every
open interval A containing A. The set of all spectral points of A of positive type (negative
type, respectively) is denoted by o4 (A) (0_(A), resp.). The set of all critical points of A is
denoted by ¢(A).

A critical point A is said to be of finite negative (positive, respectively) index
k_(A) (k4 (N),respectively) if (E(AYH,[-|-]) is a Pontryagin space with a finite number
k_(A) (k+(A), respectively) of negative (positive, respectively) squares for all sufficiently
small open intervals A containing A.

A critical point is of finite index if it is of finite positive or finite negative index. In
the terminology of [1] such a point is said to be of finite type. Every critical point of finite
index is an eigenvalue.

Recall that the negativity index x(A) of the quasi-uniformly positive operator A
equals the total multiplicity of the nonpositive eigenvalues of the selfadjoint operator JA in
the Hilbert space (H,(-]-)).

If 0 is an eigenvalue of A then by Proposition 1.3 it is an isolated eigenvalue of
finite algebraic multiplicity. From the canonical form of a Hermitian operator in a finite



dimensional Krein space [6, Theorem 3.3] it follows that in the corresponding algebraic
eigenspace there exists a basis consisting of mutually orthogonal Jordan chains {1, ..., 2., },
i =1,...,p with the property that [z;;|x;,,] # 0. We denote &; = sgn [1|2;,,].

Note that while the Jordan chains are not unique, the number p of the chains,
their lengths n;,2 = 1,...,p and the signs ¢;,2 = 1,...,p are invariants. We say that
{pini, oy npi €1, e €51 18 the Jordan chain data of A at 0.

The following proposition follows from the results in [10] and [3, Section 1.3].

PROPOSITION 1.6 Let A be a quasi-uniformly positive operator in the Krein space
(H,[-|-]) with the negativity index k(A).

(a) The set of nonreal eigenvalues of A with positive imaginary parts consists of finitely
many eigenvalues with finite total algebraic multiplicity k,.

(b) The sets o, (A)NR_ and o_(A) N Ry consist of finitely many isolated eigenvalues of
finite total (geometric) multiplicities k; and ki .

(c¢) All finite critical points of A are of finite index; the set ¢(A)NR_ (¢(A) N R4, respec-
tively) consists of negative (positive, resp.) critical points of finite positive (negative,
resp.) index. If 0 is a eritical point than it is a critical point of finite both positive and
negative index. Moreover, in that case k_(0) + £4+(0) equals the algebraic multiplicity
of the eigenvalue 0.

(d) Let {p;n1,...,np5€1,...,6,} be the Jordan chain data of A at 0. Let n=(0) denote the
number of indices i with the property (—1)" ¢; = —1, and n™(0) the number of indices
v with the property ¢; = —1. Then

b ri A Y et Y a0 (0 = k(4),  (3)

X€c(A)N[0,00) Aec(A)N(—o0,0)
and
Ry D SR ) bt (0) = w(4). (1)
Xec(A)n(0,00) Aec(A)N(—c0,0]

(e) FEvery Jordan chain of A is of finite length. There are finitely many linearly independent
Jordan chains of length > 2; the sum of the lengths of these Jordan chains does not
exceed 3K(A).

The proof of part (d) uses the canonical form of the Hermitian operators JP
and JAP in the finite dimensional Krein space (PH,[-|-]), where P is the orthogonal
projection onto the algebraic eigenspace of the eigenvalue 0. The formulas (3) and (4) explain
how the nonpositive squares of the form « are “used”. The estimate in (e) is very crude.
Note that x(A) is the maximal codimension of a subspace of D(A) on which « is uniformly
positive definite. Therefore, parts (d) and (e) can be used to estimate the respective spectral
quantities.



2  Quasi-uniformly positive forms

In this section we consider sesquilinear forms a and v in the Hilbert space (H, (- |- )) satisfying

(A) The form a is closed and uniformly positive.

(B) The form v is relatively a-bounded with the a-bound I' < 1.

This means (see [9, page 319]) that D(v) 2 D(a) and that for all v > I' there
exists C > 0 such that

[v(z,2)] < ya(e,2) + Cllz|)*, = € D(a). ()

Let B be the positive operator associated with the form « in the Hilbert space
(H,(-|-)), see [9, Theorem VI.2.1]. Then D(B'?) = D(a) by [9, Theorem VI1.2.23]. It
follows from [9, Lemma VI1.3.1] that there exists a bounded selfadjoint operator D on H
such that

v(z,y) = (DB?2|B"?y), 2,y € D(a). (6)

By [9, Theorem VI.3.9] the form a; = a + v is closed, symmetric and bounded from below.
Let By be the selfadjoint operator associated with the form a; in the Hilbert space (H, (- |-)).
Then

D(|Bi[!1?) = D(B2) 7

Let A = JB and A; = JB;. The operator B is uniformly positive and 0 € p(B). Conse-
quently, 0 € p(A) and A is definitizable in the Krein space (H,[-]-]).

PROPOSITION 2.1 Assume that the selfadjoint operator Ay is definitizable in the Krein
space (H,[-|-]). Then oo is not a singular critical point of Ay if and only if it is not a
singular critical point of A.

PROOF This follows from (7) and [2, Corollary 3.6]. O

It remains to find sufficient conditions to establish the definitizabilty of the oper-
ator Aj.

In the next proposition we need the notion of relative compactness of quadratic
forms. We refer to [12, page 369]. It is equivalent to the compactness of the operator D in

(6).
PROPOSITION 2.2 1. [f there exists v < 1 such that the relation (5) holds with C' = 0,

then ay = a+v is a uniformly positive form. Therefore the operator Ay is uniformly positive
in the Krein space (H,[-|-]).

2. If the form v is a-compact, then the form a; = a + v is quasi-uniformly positive in
the Hilbert space (H,(-|-)). Therefore Ay is a definitizable operator in the Krein space

(- [-])--

PROOF 1. The form a + v is uniformly positive. Hence B is uniformly positive.

2. Since v is a-bounded with the a-bound < 1, the form a 4 v and therefore also the operator
B, is bounded from below. By [12, page 369] the operators B and B; have the same essential
spectrum. Therefore B is quasi-uniformly positive in (H,(-|-)) and A; is quasi-uniformly
positive in the Krein space (H,[-|-]). By Proposition 1.1 the operator A; is definitizable. O



COROLLARY 2.3 Let s be a quadratic form in a Hilbert space (H,(-|-)). The following

statements are equivalent:
(i) s is a quasi-uniformly positive form.

(ii) s is a relatively form-compact symmetric perturbation of a uniformly positive form in

(H,(-1-))-

PROOF The implication (i) = (ii) follows from the corresponding statement about
operators. The converse implication is the statement 2 of Proposition 2.2. a

In the next corollary we summarize the results of this section.

COROLLARY 2.4 If any of the two assumptions of the Proposition 2.2 is satisfied, then

oo is not a singular critical point of Ay if and only if it is not a singular critical point of A.

PROPOSITION 2.5 If the form v is a-compact, then the essential spectra of A and A

coincide. Additionally, Ay has compact resolvent if and only if A has a compact resolvent.

PROOF From (6) and the definition of By it follows that for all @ € D(B;) and for all
y € D(BY?) we have

((By = A)zxly) = (I + D — AB~Y2] B~Y2)BY2¢| BY/%y). (8)

The operator Q = B~Y2JB~'/2 is a bounded selfadjoint operator in the Hilbert space H.
From (8) we have

(By — M)z = BY*(I+ D = \Q)BY*x, x € D(By). (9)
For A € p(A1)\R its conjugate X is also in p(A;). Therefore the range of the operator
I+ D —XQ contains D(B'?) and consequently its adjoint [+ D — AQ is injective. Since the

operator I —AQ) is bounded and boundedly invertible it follows from the Fredholm alternative
that the injective operator I + D — AQ has a bounded inverse. Inverting (9) we get

(B = A)™ =B YHI+D—-)\Q)"'B~'/2, (10)
We also note that A € p(B) and
(B—= M) =B Y1 - Q)" 'B~V2 (11)
It follows from (10) and (11) that
(Bi—AJ) = (B=M)"' =B P[(I+D-XQ)™ = (I -AQ)"|B™/* =

= B VX1 -XQ)"'D(I +D - \Q)'B~Y2
Thus the operator (A; — M)~ — (A — AI)™! is compact. By [9, Theorem 1V.5.35] the

operators (A — AI)™" and (A; — M )~! have the same essential spectrum. As a consequence
the operators A and A; have the same essential spectrum. a



3 Klein-Gordon equation

Let G be a Hilbert space with a scalar product (-|-), H a positive selfadjoint operator in
G such that H > m?I > 0. For —1 < o < 1, let G, be the Hilbert space completion of
(D(H*),(H> - |H*-)). Denote by || - ||» the norm of this Hilbert space.

If & <0 the space G, coincides with D(H®). The operator H can be extended to
an isometry between G, and G,_;.

Denote by ‘H the Hilbert space Gy /4 G_1,4 and by (-|-) its natural scalar product.
If x € Gia then |(z]y)] < ||z|l1/4llyl|=1/a (y € G). Therefore the scalar product (-|-) can
be extended by continuity from G4 X G to Gi/s X G_y/4 and similarly from G x G4 to
G_1/4 X Gi/4. Define an indefinite scalar product on H by

[z]y] = (z1]y2) + (22|11), = = (z1,22), ¥y = (y1,Y2) € H.

The space ‘H with the indefinite scalar product [-|-] is a Krein space. The fundamental
symmetry is
0 H—1/2
J= [ /2 0 ]
Define the operator A in ‘H on D(A) = G54 & Gi/4 by
0 I
A= [ ol ] |
The operator A is a selfadjoint operator in (H,[-|-]). Since
[Az|z] = (Haq|er) + (22]2s), @ = (21,22) € D(A), (12)
the operator A is uniformly positive in (H,[-]|-]). The form [Axz|y], =,y € D(A) is closable.

Let a be its closure. Let B be the uniformly positive operator associated with the form a in
the Hilbert space (H, (-|-)). It follows from (12) that the domain of a is D(a) = Hy(A) =
Gi/2 © G and that

a(:z;,y):<P:1;|Py>, 51?731691/2@@

with

P:BW:[HI/4 0 ]

0 H1/4

The following lemma follows from the fact that the operators A and J commute.
LEMMA 3.1 Infinity is not a singular critical point of A.
Let V be a H'?-bounded symmetric operator in G. We define the form
v(z,y) = (Vailyz) + (22| Vyr), = (21,22),y = (41,92) € G128 G.

LEMMA 3.2 LetV be a H'?*-bounded symmetric operator with the relative bound 3y. Then
the form v is a-bounded in H with the relative a-bound < \/fy.



PROOF Let g > fy. Then there exists C' > 0 such that
[Varl[* < BIHY a1 |)? + Cllaa] .
Noting that v(x, ) = 2Re (Vay|xz) it follows that
1
NE

Since H is uniformly positive, ||z1]|? can be replaced by || H'/*x||>. Therefore

C
V(e o)l < V/Ba(e, @) + ﬁ<x|x>-

V(e o) < 2Vl ool < V/Bllwal® + =z Var .

a

COROLLARY 3.3 If the H'?>-bound of V is < 1 then the form a+v defined on G206

is closed, symmetric and bounded from below.

PROOF This follows from [9, Theorem VI.3.9]. O

In the rest of this section we assume that the operator V is H'/?-bounded with
the relative bound < 1.

Let By be the selfadjoint operator associated with a + v in the Hilbert space
(H,(-]-)) and let Ay = JB;. The operator Aj is selfadjoint in the Krein space (H,[-]|-]).

From Proposition 2.1 we conclude:

PROPOSITION 3.4 If the selfadjoint operator Ay is definitizable then oo is not its sin-

qular critical point.

It follows from the symmetry of V' that it can be extended to a bounded operator
from G, to Go_1/2 for 0 < o < 1/2. A calculation shows that

v(z,y) = (DPz[Py), 2,y € Gip® G

with
0 H=34Y H=1A
D= iy 0
The operator D is bounded in H and
D[ = [[VH2). (13)

If the operator V is H'/?-compact than it is H'/>-bounded with the relative bound
0. Moreover H'/4V H='/* is a compact operator from Gi1/4 into G_q /4 and H3MHYVH Y s a
compact operator from G_; /4 into Gy /4. Consequently D is a compact operator in H. From
(13), Lemma 3.1, Corollary 2.4, Propositions 2.2 and 2.5 we conclude:

THEOREM 3.5 Let V be a symmetric HY?-bounded operator with the relative bound < 1.
Let Ay be the selfadjoint operator in the Krein space (H,[-|-]) defined above.

1. Assume that |V H=Y?|| < 1. Then Ay is a uniformly positive operator which is similar to
a selfadjoint operator in the Hilbert space (H,(-|-)).

2. Assume that VH™'? is compact. Then Ay is a definitizable operator and oo is not its
singular critical point. The essential spectrum of Ay equals the essential spectrum of A and
this is the set of all X such that \* is in the essential spectrum of H.
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