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Consider the weighted eigenvalue problem
Lu = )\ (sgn z)u, (1)

on the whole real line R where L = p(D) is a positive symmetric differential operator with
constant coefficients. This problem is a model problem for a more general problem Lu = A wu
with L a differential operator and w a function taking both positive and negative values.

Our starting point is the observation that the operator A = (sgn x)L is symmetric
and positive with respect to the indefinite inner product [u,v] = [u(z)v(r)sgnzdz. The
space L?(R) with this inner product is a Krein space. Once we prove that the resolvent set
p(A) is nonempty, H. Langer’s spectral theory can be applied. This spectral theory shows
that the spectrum of A is real and its properties on bounded open intervals not containing
0 are the same as the corresponding properties of a selfadjoint operator in a Hilbert space.
In particular, A has a spectral function defined on open intervals in R with the endpoints
different from 0 and oc. The positive (negative, respectively) spectral points are of positive
(negative, resp.) type. Therefore 0 and oo are the only possible critical points. A critical
point A is reqular if the spectral function is bounded near A. In that case the spectral function
can be extended to intervals with an endpoint A. A critical point is singular if it is not regular.
If neither 0 nor oo is a singular critical point, then A is similar to a selfadjoint operator in
L*(R). We used this fact in [5] to prove that A is similar to a selfadjoint operator in the case
p(t) =t

In this paper we generalize this result to more general polynomials p. The results
of this paper are used in the forthcoming paper [6] to extend the results of [5] to a class of
partial differential operators. For example, in [6] for n > 1 we prove the following.
The operator (sgn x,)A defined on H*(R™) is similar to a selfadjoint operator in L*(R").

The question of nonsingularity of the critical point oo has been considered in [4].

This question leads to the investigation of the domain of A. In the present case the operator



A is positive (not uniformly positive as in [4]) and this is why the critical point at 0 may
appear as a critical point of infinite type. If the spectrum of A accumulates at 0 from
both sides, then 0 is a critical point of A. To determine whether it is singular or regular
we are led to investigate the range of A. This question is harder than the investigation of
the domain. In Section 1 we give a necessary and sufficient condition for R(B) = R(C)
for multiplication operators B, C' in L*(R). We also prove several stability theorems for the
regularity of the critical points 0 and oo of positive definitizable operators in a Krein space.
As a consequence we get a stability theorem for the similarity to a selfadjoint operator in
a Hilbert space. For related results in this direction see [7]. In Section 2 we consider the
differential operators with constant coefficients in L?(R). We give a precise description of
the spectrum of the operator A. Under some additional restrictions on p, we prove that A
is similar to a selfadjoint operator in L*(R). It follows from the general operator theory in
Krein spaces that an operator which is positive in the Krein space (L*(R),[-|-]) and similar
to a selfadjoint operator in the Hilbert space L?(R) has the half-range completeness property.
We use this fact in Section 3 to show that our results in Section 2 give sufficient conditions
for the half-range completeness property for the problem (1).

The Sturm-Liouville problem with indefinite weight has attracted considerable
attention; we mention the references quoted in [3, 4] for a partial list. The problem of
nonsingularity of the critical points of definitizable operators in Krein spaces has been in-
vestigated in [2, 7, 8, 10]. For differential operators with indefinite weights the study of this
problem has been motivated by the investigation of the half-range completeness property,
cf. [1, 3]. The regularity of the critical point 0 has been considered in [5].

For definitions and basic results of the theory of definitizable operators see [9].

1 Abstract Results

In this section we use the method of [2, Lemma 1.8, Corollary 3.3 and Theorem 3.9] to
investigate the regularity of the critical points 0 and oo of a positive definitizable operator
A in the Krein space (IC,[-]-]).

The following two lemmas are restatements of [2, Theorem 3.9 and Corollary 3.3]

in terms of the critical point 0. We prove the first. The proof of the second one is analogous.

LEMMA 1.1 Let A= JP be a positive definitizable operator in the Krein space (IC,[-|-])
such that 0 is not an eigenvalue of P. Assume that v > 0 and the operator JP" is definitizable.

Then the following statement are equivalent:
(a) The point 0 is not a singular critical point of the operator JP.

(b) The point 0 is not a singular critical point of the operator JP".



PROOF The point 0 is not a singular critical point of JP if and only if it is not a singular
critical point of the operator P.J which is similar to JJP. Further, 0 is not a singular critical
point of P.J if and only if oc is not a singular critical point of the operator JP~'. It follows
from [2, Theorem 3.9] that oc is not a singular critical point of JP~" if and only if oo is not
a singular critical point of JP~". Clearly, oc is not a singular critical point of JP~" if and
only if 0 is not a singular critical point of P”J. Because of the similarity of the operators, 0
is not a singular critical point of P”.J if and only if 0 is not a singular critical point of JP".
This sequence of equivalent statements proves the lemma. O

It follows from [2, Lemma 1.8] that the operator JP~" is definitizable for v = 2™
with m being a positive integer.

LEMMA 1.2 Let A and B be definitizable operators in the Krein space K such that 0
is neither an eigenvalue of A nor of B. Assume that R(A) = R(B). Then the following

statements are equivalent.

(a) The point 0 is not a singular critical point of A.
(b) The point 0 is not a singular critical point of B.

Let p be a measure on R, g and h nonnegative py-measurable functions on R. Denote
by M, the operator of multiplication by g in L*(R, 1). We will repeatedly use the following
result, which gives necessary and sufficient conditions for the equality of the domains and
the ranges of M, and M,

LEMMA 1.3 Let g and h be nonnegative measurable functions on R.

(a) The following statements are equivalent:

(i) D(M,) = D(My)

(ii) The functions % and 14 are essentially bounded.

(b) The following statements are equivalent:

(1) R(M,) = R(Mp).
(ii) There exists a constant C > 0 such that

g <Ch(l1+g) pae. and h<Cg(l1+h) p-ae.. (2)

PROOF The statement (a) is evident.

(b) For a p-measurable function f denote the set {x € R|f(z) = 0} by N;. Note that
each of the conditions (a) and (b) implies that N, = N, = N. Therefore N'(M,) = N (M},)
consists of functions f € L?(R, 1) with the support contained in N. Let

1

1
el H(z) = — (r €R\N) .

G(x) = H(z) =0 (x € N) ,G(z) = h(x)



It follows from (a) that the condition (ii) is equivalent to D(M¢) = D(Mpy). Since D(Mg) =
R(M,) ® N (M,), we conclude that (i) and (ii) are equivalent. O

A polynomial p is nonnegative if p(xz) > 0 for all x € R.

EXAMPLE 1 Let h be a nonnegative polynomial of degree 2k in one variable. If g(t) = 2,
then h and g satisfy the conditions of Lemma 1.3 (a).

EXAMPLE 2 Let h be a nonnegative polynomial. Then h(t) = ag(t)h(t), where a > 0,
h is a positive polynomial without real roots and g(t) = (t — ;)% -+ (t — 7)) %™. Then h
and ¢ satisfy the condition (ii) of Lemma 1.3 (b).

THEOREM 1.4 Let S be a selfadjoint operator in the Hilbert space (IC,(-|-)) such that
JS? is a definitizable operator in the Krein space (K,[-|-]). Let v > 0 and let h be a non-

negative continuous function. Assume that the operators J|S|” and Jh(S) are definitizable.

(a) Assume that the functions g(t) = |t|” and h satisfy the conditions of Lemma 1.3 (a).
Then the following statements are equivalent.

(i) The point oo is not a singular critical point of JS?.

(ii) The point oo is not a singular critical point of Jh(S).

(b) Assume that 0 is not an eigenvalue of S and that the functions g(t) = |t|¥ and h satisfy

the condition (2). Then the following statements are equivalent.

(i) The point 0 is not a singular critical point of JS.
(ii) The point 0 is not a singular critical point of Jh(S).

PROOF We prove (b). The proof of (a) is similar. Lemma 1.1 implies that 0 is not a
singular critical point of JS? if and only if it is not a singular critical point of J|S|".

It follows from Lemma 1.3 (b) that for any Borel measure p the multiplication
operators M, and M), in L?(R, u) have the same range. The Spectral Theorem, see [11, The-
orem 7.18], implies R(|S") = R(h(S)). Therefore, R(J|S|") = R(Jh(S)). The conclusion
follows from Lemma 1.2. O

COROLLARY 1.5 Let S be a selfadjoint operator in the Hilbert space (IC, (-|-)) such that
0 is not an eigenvalue of S and such that JS? is a definitizable operator in the Krein space
(K, [-]|-]). Let n and v be positive numbers and let h be a nonnegative continuous function.
Let g1(t) = [t|" and go(t) = |t|". Assume that the functions g, and h satisfy the conditions
of Lemma 1.3 (a) and that the functions g, and h satisfy the condition (2). Assume that
the operators J|S|", J|S|” and Jh(S) are definitizable. Then the following statements are
equivalent.

(i) The operator JS? is similar to a selfadjoint operator in (IC, (-]-)).

(ii) The operator Jh(S) is similar to a selfadjoint operator in (IC,(-]-)).



2 Differential Operators with Constant Coefficients

In this section we apply the results from Section 1 to a class of positive ordinary differential
operators with constant coefficients.

In the following, a root of multiplicity m of a polynomial is counted as m roots.
Denote by C, (respectively C_) the set of all complex numbers z such that Imz > 0
(respectively Im z < 0).

We consider an even order polynomial

2n—1

p(2) = ap2® + a1z + -t ag, 12+ ag, . (3)

with real coefficients a;.
For the reader’s convenience we give a proof of the following lemma.

LEMMA 2.1 Let p be a polynomial of degree 2n with real coefficients. Let o be a complex

number.
(a) If v is nonreal, then the polynomial equation
p(z) —a=0 (4)
has exactly n solutions in C, and ezxactly n solutions in C_.

(b) If av is real, then the equation (4) has at most n solutions in Cy.

PROOF (a) Let ny(«a) be the number of solutions of (4) in C,. Since (4) has no real
solutions, it follows that n(«) is constant for o € C,. Note that the equation agz*" = «
has exactly n solutions with positive imaginary parts, an application of Rouche’s theorem

shows that ny (a) = n for || sufficiently large.

The claim (b) is evident. O
Denote D = —i%. We consider the spectral problem
p(D)f(z) = Asgna)f(z), = € R, (5)

For a polynomial ¢ of degree k, ¢(D) denotes the constant coefficient differential operator in
the Hilbert space L?(R) defined on the Sobolev space H*(R).
Let .J be the multiplication operator defined by

(JF)(@) = (sgna) f(2), 5 € R
Then the problem (5) can be written in terms of operators as

p(D)f=NIf, feH"R), (6)



or, equivalently,

Tp(D)f = Xf, feH"(R). (7)
It is natural to study the problem (7) in the Krein space K = L*(R) with the scalar product

1f.9l = [ f(z)g(x)sgn z dz. The multiplication operator J is a fundamental symmetry on
KC and the corresponding positive definite scalar product is the standard scalar product in
L*(R).

Since p has real coefficients the operator p(D) is selfadjoint in the Hilbert space
L*(R). Therefore, the operator Jp(D) is selfadjoint in the Krein space K. A selfadjoint
operator in a Krein space may have empty resolvent set. In the next theorem we show that

this is not the case for the operator Jp(D).

THEOREM 2.2 Let p be an even order polynomial with real coefficients. Let A = Jp(D).
(a) The spectrum of the operator A is real.
(b) The operator A has no eigenvalues. Its residual spectrum is empty.
(¢) The continuous spectrum of A is given by
0c(A) = (—o00, —m,| U [m,, +00), where m, = min{p(z) : z € R} . (8)

PROOF (a) Let ¢ be an arbitrary nonreal complex number. We have to prove that the
operator A — (I has a bounded inverse. Since the operators J and p(D) are closed, it is
sufficient to prove that p(D) — (J is a bijection of H*"(R) onto L*(R). Let g € L*(R). The
special restriction of p(D) defined in L?(R+) with the domain consisting of all functions f in
H?(Ry) such that f0)(0) =0, j =0,...,n — 1, is selfadjoint in the Hilbert space L*(R:).
Therefore, the boundary value problems

(p(D)y)(z) £ Cylz) = g(z), z€Rs, ye H™(Ry)
y(0)=0, j=0,...,n 1

have unique solutions y+ in H*"(Rz).
Now consider the homogeneous equation

p(D)y —Cy=0, ye€ H™Ry). (9)

In order to find the fundamental set of solutions of (9) we have to solve the polynomial
equation p(—iz) — ¢ = 0. Since ( is nonreal, we can apply Lemma 2.1 (a) and conclude

that this equation has n roots z;-',j =1,...,n, with negative real parts. These roots in the
standard way lead to n linearly independent solutions L/);-“, j=1,...,n of (9) which are in
H™(R,).

To find the fundamental set of solutions of the homogeneous equation

p(D)y+Cy =0, ye H"(R_). (10)



we have to find the roots of p(—iz) + ¢ = 0 with positive real parts. By Lemma 2.1 (a) there
are n such roots; denote them by z;, 7 = 1,...,n. These roots in the standard way lead to n
linearly independent solutions ¢;, j = 1,...,n of (10) which are in H**(R_). Since the set
{z;-',j =1,...,n} is disjoint from the set {z;,j = 1,...,n}, the set {1/);',1/);, j=1,...,n}
is linearly independent and moreover it is a basis of solutions of the homogeneous equation

q¢(D)y = 0, where ¢(t) = H(t + iz} )(t +iz; ). Therefore the Wronskian of {7, ¢, j =
j=1
1,...,n} does not have zeros.

Every solution f € H**(R) of the equation

p(D)f —CJf=yg (11)
must satisfy

y (z)+ Zr;w;(T), r € R

flx) = 0

y+ (@) + Z(‘jwf(f), r € Ry
7=1

for some complex numbers ¢, ¢;, j = 1,...,n. The continuity of f9, i =0,1,....2n—1
at 0 leads to a system of 2n linear equations in ¢;, cj, j = 1,...,n. The determinant of
this system is the Wronskian of the functions w;-L, Y;, 7 =1,...,n evaluated at (. Since this
determinant is not 0, the system has unique solution. Therefore, the equation (11) has a
unique solution, i.e., p(D) — ¢.J is bijection of H**(R) onto L?(R). Consequently, ¢ is in the
resolvent set of A.

(b) Let ¢ € R and let y € H**(R) be a solution of the equation

p(D)y —CJy=0.

The restriction yy (y_, resp.) of y to Ry( R, resp.) satisfies the equation (9) ((10),
respectively). Applying Lemma 2.1 (b) and arguing as in the proof of (a), we conclude
that the equation (9)((10), respectively), has ky < n (k- < n, resp.) linearly independent
solutions L/);-“, j=1,....ky (¢;,j=1,...,k, resp.). Moreover, the Wronskian of

(ol Y )

is nowhere 0. Since y, (y_, resp.) is a linear combination of w;-L, jg=1 ks (¥, =
1,...,k_, respectively) the continuity of y™ form =0,1,..., k. +k_ —1 at 0 impliesy, = 0
and y_ = 0. Hence y = 0. Since A is selfadjoint in K it cannot have real numbers in residual
spectrum.

(¢) We use I. M. Glazman’s decomposition method. Define Ay in L*(Ry) by D(Ay) =
H?"(Ry) N HY(Ry) and Ary = +p(D)y, y € D(AL). The operator A (A, respectively)
is a selfadjoint operator in L?(R_) (L*(R,), resp.). The continuous spectrum of A_ (A,



respectively) is (—oo, —m,| ([m,, +oc), resp.). The operator A @ A, is selfadjoint in L*(R)
and its continuous spectrum is the union of the continuous spectra of A and A,. The

operators A and A_ @ A, have the same continuous spectrum. Therefore, by (b), o(A4) =
0(A) =0 (A YU (Ay). O

THEOREM 2.3 Let p be a nonnegative polynomial. Let A = Jp(D).

(a) The operator A is a positive definitizable operator.
(b) The point oo is a regular critical point of A.

(¢) The point 0 is a critical point of A if and only if 0 € o(A), or equivalently, if and only
if m, = min{p(z)|z € R} = 0.

PROOF (a) The definitizability of the positive operator A follows from Theorem 2.2.

The positivity of A and the equality (8) imply the statement (c) and the fact that
oo is a critical point of Jp(D).

Since the operators A = Jp(D) and JD?" are definitizable the operator D satisfies
all the assumptions for S in Theorem 1.4 (a). By [5], oo is not a singular critical point of
JD?. By Example 1 the functions h = p and ¢(t) = ¢*" satisfy the conditions of Lemma 1.3
(a). Therefore we can apply Theorem 1.4 (a) to conclude that oo is not a singular critical
point of A. O

It follows from Theorem 2.3 that A is similar to a selfadjoint operator in L*(R)
if m, > 0. The same is true if m, = 0 and 0 is a regular critical point of A. In the next
theorem we give a sufficient condition for p under which 0 is a regular critical point of A.

Let a be an arbitrary real number. Denote by V' (a) the multiplication operator on
L*(R) defined by (V(a)f)(x) = " f(x), z € R. Simple calculations show that the following
proposition holds.

PROPOSITION 2.4 The operators JD** and J(D + al)** are similar:
V(a) YID*V(a) = J(D + al)*.

THEOREM 2.5 Let p be a nonnegative polynomial with exactly one real root. Then 0 s

a reqular critical point of A = Jp(D). The operator A is similar to a selfadjoint operator in

L2 (R).

PROOF Let a be the single real root of p. By Proposition 2.4 the operators .JD? and
J(D —al)?* are similar. Therefore the operator J(D —al)? is similar to a selfadjoint operator
in L?(R). Put S = D — al and ¢(z) = p(z + a).

Then ¢ satisfies all the assumptions for h in Corollary 1.5 and Jq(S) = Jp(D).
Since JS? is similar to a selfadjoint operator in L*(R), Corollary 1.5 implies that Jq(S) =
Jp(D) is similar to a selfadjoint operator in L*(R). O



3 Half-range Completeness

Let A be a positive operator in the Krein space K = (L*(R),[-|-]). Assume that A has a
nonempty resolvent set. Let K1 be the set of all functions f in L?*(R) which vanish on the
set Ry. Then K = K4 @ K_ is a fundamental decomposition of K.

Assume that neither 0 nor oo are singular critical points of A. Let E be the spectral
function of A. Then the operator A is a selfadjoint operator in the Hilbert space (K, [(E(Ry)—
ER.))-, -]); see [9, Theorem 5.7]. The corresponding fundamental decomposition is K =
L, &L, where L = F(Ry)K. This fundamental decomposition reduces A. Let Py be the

orthogonal projection in K to 4. Then the restriction
T, = Pj:|£j: Zﬁi _>[Ci

is a bounded and boundedly invertible bijection of £ onto K4. Let fi € Ky. Then T ' f1 €
L. Therefore

T2 e [ BT

Since Py is continuous we get

fe = / AP E(T fs = / AFL ()]s
R4 R+

where F(2) = P:E(:)T.", for 2 an open interval in R.. Then Fy is a projection valued
measure on Ry .

We have proved that the elements f from K. can be represented as integrals over
Ry with respect to the measure F(-)f+ which is obtained by orthogonally projecting the
spectral measure F(-)T; " f1 onto K. This is exactly the continuous analogue of the familiar
concept of half-range completeness property in the discrete spectrum case; see [1].

This property holds in particular for the operators from Theorem 2.5.
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