Positive differential operators in Krein space L*(R")
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To Heinz Langer on the occasion of his 60th birthday.

We characterize a class of indefinite partial differential operators which are similar to
selfadjoint operators in the Hilbert space L*(R™).

1. Introduction

In this paper we consider the weighted eigenvalue problem

Lu = A (sgnz,)u (1.1)

on the whole space R™ where L = p(D) is a positive symmetric partial differential
operator with constant coefficients. Our goal is to characterize a class of nonnega-
tive polynomials p for which the operator associated with the problem (1.1) in the
Hilbert space L?(R") is similar to a selfadjoint operator. For example, our results
imply that the operator (sgnz,)A defined on H2(R") is similar to a selfadjoint
operator in L?(R").

The natural setting to study the problem (1.1) is the space L?(R") with the
indefinite inner product [u,v] = [u(z)v(z)sgnz,dr. The space L?(R™) with this
inner product is a Krein space. The operator A = (sgnz,)L is positive in this
Krein space. In order to apply H. Langer’s spectral theory of definitizable operators
in Krein spaces we need to prove that the resolvent set p(A) is not empty. In the
setting of this paper, a useful tool for this is a simple result stated in Lemma 2.1.
The spectral theory of definitizable operators is a generalization of the spectral
theory of selfadjoint operators in Hilbert spaces. In particular, a definitizable
operator in a Krein space has a spectral function. With exception of finitely many
critical points this spectral function has properties analogous to the properties of
the spectral function of a selfadjoint operator in a Hilbert space. Definitizable
operators in this paper are of the simplest kind: positive operators in a Krein
space with nonempty resolvent set. For such operators only 0 and oc may be
critical points. The projector valued spectral function G of a positive operator A
with nonempty resolvent set is defined on open intervals in R with the endpoints
different from 0 and oco. The ranges of projectors corresponding to intervals with
positive endpoints are Hilbert subspaces and the ranges of projectors corresponding
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to intervals with negative endpoints are anti-Hilbert subspaces of the Krein space
L?(R"). In general, for a definitizable operator 7' with the spectral function E in
a Krein space K a spectral point A is of positive type (negative type) if there exists
an open interval » such that A € » and the range E(2)K is a Hilbert (anti-Hilbert)
subspace of K. A spectral point of T is critical if it is neither of positive nor of
negative type. A critical point A is regular if the spectral function is bounded near
A. A critical point is singular if it is not regular. For a positive operator A the
points 0 and oo are the only possible critical points of A.

We are primarily interested in the case when neither 0 nor oo is a singular critical
point of A. In this case A is similar to a selfadjoint operator in L?(R"). When n = 1
and p(t) = t? we proved in [5] that A is similar to a selfadjoint operator in L?(R).
In [13] this result was extended to more general weight functions (see also Example
3.6 below) and in [6] the result was extended to more general polynomials p (see
also Corollary 3.5 below). In this paper we characterize a class of polynomials p
in n variables for which the corresponding operator A = (sgnx,,)p(D) is similar
to a selfadjoint operator in the Hilbert space L2(R™). The problem with a definite
discontinuous weight has recently been considered in [19].

The question of regularity of the critical point oo of definitizable operators in
Krein spaces has attracted considerable interest, see for example [2, 14, 15, 23].
Corresponding questions for the Sturm-Liouville problem and the elliptic eigen-
value problem with indefinite weight were also studied extensively, see the refer-
ences in [3, 4, 10, 11, 12, 24]. One of the reasons for this is the following: if a
definitizable operator 7" in a Krein space K has a discrete spectrum, only co may
be an accumulation point of spectral points of both positive and negative type.
In this case regularity of the critical point oo is equivalent to the existence of a
Riesz basis of K which consists of eigenvectors and generalized eigenvectors of T
(see [4, Proposition 2.3]). The regularity of the critical point oo of a definitizable
operator was characterized in [2] in terms of the operator domain. This was used
in [3] (case n = 1) and in [4] (case n > 1) to prove regularity of the critical point
oo for differential operators with more general weight functions and more general
differential expressions L.

Our main interest in this paper is the case when the operator A is positive (not
uniformly positive as in [4]) and this is why the critical point 0 may appear as a
critical point. If the spectrum of A accumulates at 0 from both sides, then 0 is
a critical point of A. To determine whether it is singular or regular we need to
investigate the range of A. This question is harder than the investigation of the
domain.

For the readers convenience in Section 2. we prove several simple lemmas that we
use later on in the paper. We give a sufficient condition for ran(B + V') = ran(B)
for a closed operator B. For further results related to the stability of the range
under additive perturbations see [7]. From [6] we recall a necessary and sufficient
condition for ran(B) = ran(C) for multiplication operators B, C in L*(R").

In Section 3. we prove several stability theorems for the regularity of the critical
points 0 and oc of positive definitizable operators in a Krein space. As a conse-
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quence we get a stability theorem for the similarity to a selfadjoint operator in a
Hilbert space. These results are improvements of the corresponding results in [6]
since they do not require a priori knowledge of nonemptyness of the resolvent sets
of the resulting operators. For related results in this direction see [14].

In Section 4. we consider partial differential operators with constant coefficients.
For polynomials p of the form p(%,z,) = q(&) + r(z,) we establish the formula
(4.5) expressing the spectral function of A in terms of the spectral functions of the

operators
(sgna) (r (2o ) +q(@)1
nr,) r{ -— T
& i dz, 4

For such polynomials we give a detailed analysis of the spectrum and the critical
points. We show that oo is a regular critical point and give sufficient conditions for
0 to be a regular critical point. These results about critical points are extended to
more general polynomials p using the perturbation results from Section 2. These
perturbation results are used in Section 5. to treat a variable coefficient operator.

The study of spectral properties of indefinite eigenvalue problems for differential
operators has been motivated by the investigation of the half-range completeness
property, see [1]. It follows from the general operator theory in Krein spaces (see
[3, 6]) that an operator which is positive in the Krein space (L*(R"),[-, -]) and
similar to a selfadjoint operator in the Hilbert space L?(R") has the half-range
completeness property. Therefore our results in Sections 4. and 5. give sufficient
conditions for the half-range completeness property for the problem (1.1).

For definitions and basic results of the theory of definitizable operators see [8, 17].

2. Preliminaries

We start with a simple lemma that assures preservation of nonemptyness of
resolvent sets under bounded additive perturbations. For a closed operator T' in
a Hilbert space H, p(T) denotes the resolvent set of T.

Lemma 2.1. Let A be an operator in a Hilbert space H which is similar to a
selfadjoint operator and let B be a bounded operator in H. There exists K > 0
such that X\ € p(A + B) whenever [ImA| > K.

Proof. Since A is similar to a selfadjoint operator there exists a constant C' > 0
such that ||[(A—X)71]| < C|Im A\|~! for all A € C\ R. Therefore, B(A—XI)"!isa
bounded operator with norm < 1 whenever [Im \| > C||B||. Thus, I+B(A—XI)~!
has a bounded inverse for all A € C such that |Im A\| > C||B||. Since A+ B— Al =
(I+B(A—=XI)"")(A—\I), it follows that A\ € p(A+ B) whenever |[Im \| > C||B]).

O

Lemma 2.2. Let A and B be definitizable operators in the Krein space (IC,[-, -])

3
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such that 0 is neither an eigenvalue of A nor of B. Assume that ran(A) = ran(B).
Then 0 is not a singular critical point of A if and only if 0 is not a singular critical
point of B.

Proof. Both operators A~! and B~! are definitizable and 0 is not a singular
critical point of A if and only if oc is not a singular critical point of A~'. Since
dom(A™1) = dom(B™1!), [2, Corollary 3.3] implies that oo is not a singular critical
point of A~ if and only if oc is not a singular critical point of B~1. Since oc is
not a singular critical point of B~! if and only if 0 is not a singular critical point

of B, the lemma is proved. O

Motivated by Lemma 2.2 we prove a result on the preservation of ranges under
additive perturbations. The following is a restatement of [16, Lemma VI.2.30].

Lemma 2.3. Let A and V' be closed densely defined operators in the Hilbert space
H. Let A be injective. Assume that dom(A*) C dom(V*) and that there exists
B > 0 such that

[[V*z|| < B||A*z|| for all x € dom(A*) . (2.1)
Then ran(V') C ran(A) and [|[A~'Vy|| < Byl for all y € dom(V).
Corollary 2.4. In addition to the assumptions of Lemma 2.3 assume that (2.1)
holds with B < 1. Then A+ V is injective and
ran(A + V) =ran(A) .

Proof. Lemma 2.3 implies that ran(A + V') C ran(A4). Next we prove the opposite
inclusion. We have dom((A + V)*) C dom(V*). Further it follows from (2.1) that

[VZ7ull < Bl A%ul| < Bl (A" + VF)ull + BV ull,

implying

P
1-p
Applying Lemma 2.3 to the operators A + V and —V we conclude that ran(A) =
ran((A+V)—V) Cran(A+ V).

From Lemma 2.3 it also follows that the operator A=V is defined on dom(V)

and bounded and with the norm is less than or equal to §. If z € dom(V') satisfies
(A+V)x =0, then z = —A~'Vz. Therefore z = 0. O

[V ul| < [(A* + V*)ul| for all u € dom((A+V)*) .

Corollary 2.5. Let A be selfadjoint and V a closed symmetric operator in the
Hilbert space H and dom(A) C dom(V'). Assume that (2.1) holds with < 1. Then

ran(A + V) =ran(A) and dom(A+ V)= dom(A) .
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Proof. It follows from (2.1) that ker(A) C ker(V). Denote the closure of ran(A)
by £. Then L is invariant under A and V and the restriction A, of A to L is
injective and it satisfies all the assumptions of Corollary 2.4. a

Let u be a Borel measure on R®. A p-measurable function f : R* — C is
nonnegative if f(xz) > 0 for p-almost all z € R”. Denote by M; the operator of
multiplication by f in the Hilbert space L?(R", u).

Lemma 2.6. Let g and h be nonnegative u-measurable functions on R™.
(1) The following statements are equivalent.

(a) dom(M,) = dom(Mp)

(b) There exists ¢ > 0 such that the functions % and 5 are p-essentially
bounded.

(2) The following statements are equivalent.

(a) ran(M,) = ran(Mp).
(b) There exists a constant C > 0 such that

g<Ch(l+g) p—ae and h<Cg(l+h) p—ae.. (2.2)

Proof. The statement (1) is evident. To prove (2), for a y-measurable function
f:R* — C denote by Ny the set {x € R"|f(z) = 0}. Note that the conditions
(2.2) imply that the symmetric difference of the sets N, and N, has py-measure
zero. Therefore ker(M,) = ker(Mjy). Let

Glz) = {01 if g(z)

= 0 if h(x)
e if g(z) #

h(x)

It follows from (1) that the condition (2.2) is equivalent to dom(M¢) = dom(Mpg).
Since dom(M¢g) = ran(M,) @ ker(M,), (2a) and (2b) are equivalent. O

We need the following simple lemma in Section 4.

Lemma 2.7. Let A be a uniformly positive operator in the Krein space (IC,[-, -]).
Let v > 0 be a lower bound of the uniformly positive operator B = JA in the
Hilbert space (KC,(-, -)). Then the interval (—~,7) is contained in the resolvent
set of A.

Proof. Clearly y~!' = ||[B7'|| = [|A7"||. Let |A\] < 7. Then A~' € p(A~"), hence
A€ p(A). O
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3. Similarity to selfadjoint operators

In this section we reformulate and improve some results from [2] and [6]. Let
(K,[-, -]) be a Krein space, let J be a fundamental symmetry in I and let (-, -) =
[J-,-] be the corresponding Hilbert space inner product.

Lemma 3.1. Let n > 0. The following statements are equivalent.

(a) The operator JP is positive in (K,[-, -]), p(JP) # 0 and oo is not a singular
critical point of JP.

(b) The operator JP" is positive in (K, [-, -]), p(JP") # 0 and oo is not a singular
critical point of JP".

Proof. Assume (a). Then J(P + I) is a uniformly positive operator in (K, [-, -]).
Since dom(J(P + I)) = dom(JP), [2, Corollary 3.3] (see also [8, Theorem 1.6])
implies that oo is not a singular critical point of J(P +1I). [2, Theorem 2.9] implies
that oo is not a singular critical point of J(P + I)". Since dom(J(P + I)") =
dom(J(P" +I)), and since both operators J(P +I)" and J(P" + I) are uniformly
positive, [2, Corollary 3.3] implies that oo is not a singular critical point of J(P7+
I). By [2, Theorem 2.5] (or [8, Theorem 1.6]) the operator J(P" + I) is similar to
a selfadjoint operator in (K, (-, -)). Lemma 2.1 implies that p(JP") # @, so JP"
is a definitizable operator. As dom(JP") = dom(J(P" + I)), the statement (b)
follows from [2, Corollary 3.3]. The implication (b) = (a) follows by applying (a)
= (b) to the operator JP" and the positive number 1/7. O

Corollary 3.2. Let n > 0. The following statements are equivalent.

(a) The operator JP is positive in (I, [, -]), 0 is not an eigenvalue of P, p(JP) #
¢ and 0 is not a singular critical point of the operator .JP.

(b) The operator JP" is positive in (K,[-,-]), 0 is not an eigenvalue of P",
p(JP") # 0 and 0 is not a singular critical point of the operator JP".

Corollary 3.3. Let n # 0. The following statements are equivalent:

(a) The operator JP is positive in (K,[-, -]), 0 is not an eigenvalue of P and JP
is similar to a selfadjoint operator in (IC, (-, -)).

(b) The operator JP" is positive in (K,[-, -]), 0 is not an eigenvalue of P" and
JP" is similar to a selfadjoint operator in (IC,{-, -)).

The following theorem is an improvement of [6, Theorem 1.4] since it does not
require a priori knowledge of nonemptyness of the resolvent set of the operator
Jh(S). It also can be considered as an abstract version of [6, Theorem 2.3].
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Theorem 3.4. Let S be a selfadjoint operator in the Hilbert space (K, (-, -)) and
let h: R = R be a nonnegative continuous function.

(1) Assume that there exists 1 > 0 such that the functions g(t) = [t|" and h satisfy
the conditions (1b) of Lemma 2.6. The following statements are equivalent.

(a) oo is mot a singular critical point of J(S* + I).
(b) p(Jh(S)) # 0 and oo is not a singular critical point of Jh(S).

(2) Assume that 0 is not an eigenvalue of S and that there exists n > 0 such that
the functions g(t) = |t|" and h satisfy the condition (2.2). Then the following
statements are equivalent.

(a) p(JS?) # 0 and 0 is not a singular critical point of J(S?).
(b) p(Jh(S)) # O and 0 is not a singular critical point of Jh(S).

Proof. The proof combines ideas used in the proofs of Lemma 3.1 and [6, Theorem
1.4]. We prove (2). The proof of (1) is similar. Note that Lemma 2.6 (2), with
n = 1, implies that for any Borel measure p the multiplication operators M, and
My, in L?(R, ) have the same range. The Spectral Theorem, see [25, Theorem
7.18], implies ran(]|S|"7) = ran(h(S)). Therefore, ran(.J|S|") = ran(Jh(S)). Assume
(2a). Corollary 3.2 implies that 0 is not an eigenvalue of J|S|7, p(J|S|") # § and
0 is not a singular critical point of .J|S|7. Therefore oo is not a singular critical
point of (J|S|7)~". Since (Jh(S))~"' +J is uniformly positive and since its domain
coincides with the domain of (J|S|7)~! we conclude that oo is not a singular
critical point of (Jh(S))™! + J, that is (Jh(S))~! + J is similar to a selfadjoint
operator in (K, (-, -)). Lemma 2.1 implies that p((Jh(S))™!) # 0. Consequently,
p((Jh(S))) # 0. The equality ran(J|S|") = ran(Jh(S)) implies that 0 is not an
eigenvalue of Jh(S) and 0 is not a singular critical point of Jh(S). This proves
(2b). The proof of the converse is similar. O

The combination of parts (1) and (2) of Theorem 3.4 gives sufficient conditions
under which the similarity to a selfadjoint operator of JS? is equivalent to the
similarity to a selfadjoint operator of Jh(S). If the function h is a polynomial this
takes a particularly simple form which we state in the following corollary.

Corollary 3.5. Let S be a selfadjoint operator in the Hilbert space (IC, (-, -)) and

let p be a nonnegative polynomial on R with 0 being its only root. The following
statements are equivalent.

(a) JS? is similar to a selfadjoint operator in the Hilbert space (K, {-, -)).

(b) Jp(S) is similar to a selfadjoint operator in the Hilbert space (IC, (-, -)).

Proof. Let 2k, k > 0, be the degree of p and let 25,5 > 0, be the multiplicity
of the root 0 of p. Let gi(t) = t?* and go(t) = t*/. Then g; and p satisfy the
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conditions (1b) in Lemma 2.6 and g2 and p satisfy the conditions (2.2) in Lemma
2.6. Therefore the equivalence of (a) and (b) follows from Theorem 3.4. m

5 d
Example 3.6. Let w(t) = [t|"sgnt, 7 > —1, and S = —i\t|77/za. Let
K = L2(]R \w\) be a Krein space with the indefinite inner product [f,g] =

Ja f( )(t)dt. The operator (Jf)(t) = (sgnt)f(t) is a fundamental symmetry
on IC By [13 Theorem 2.7] the operator JS? is similar to a selfadjoint operator
in the Hilbert space L?(R,|w|). Let p be a nonnegative polynomial on R with 0
being its only root. Corollary 3.5 implies that the operator Jp(S) is similar to a
selfadjoint operator in L?(R, |w|). Using [6, Proposition 2.4] we can extend this
result to nonnegative polynomials with exactly one real root.

4. Partial differential operators with constant coefficients

In this sec‘rion K denotes the Krein space L?(R™) with the inner product [f, g] =
Jun f(x)g(x)sgn x, dz, where x = (x1,... ,x,). The multiplication operator

(Jy) () = (sgnwn)y(z)

is a fundamental symmetry on (LZ(IR”) [-, -]) and the corresponding Hilbert space
inner product is ( fRn x)dzx. The points £ € R” are denoted by
x = (&,t), where Z = (’L“1, T 1),t = x,. The partial Fourier transform with

respect to T is denoted by F. It is a unitary operator in L2(R™).
We study partial differential operators with constant coefficients. Let p be a
nonconstant polynomial of degree m in n variables,

p) = Y canttoal,

lo|<m

where (z1,...,2,) € R*, a = (a1,...,aq,) is a multiindex, ¢, € R and |a] =
> a;. Denote by D* the partial differential expression

1 ‘a‘ aal aan
1 ox! oxy

and let B be the closed operator associated with the differential expression
p(D) = Z caD®

lo|<m

in the Hilbert space (L*(R"),(-, -)). Instead of B we will often write p(D) to
emphasize its dependence on p. The operator B is selfadjoint in the Hilbert
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space (L?(R™),{-, -)). The operator A = JB is selfadjoint in the Krein space
(L*(R"),[-, -]). We will prove that, under certain assumptions on the polynomial
p, the operator A is similar to a selfadjoint operator in (L?(R"), (-, -)).

Definition 4.1. Let p be a nonnegative polynomial in n variables, let ¢(z) =
p(2,0), let agt®®, ag > 0, be the leading term of the polynomial p(0,t) — p(0,0)
and put

p=pi+p  with pi(z) =at?® +q(&) and py(z) = p(z) — pi(z). (4.1)
The polynomial p is weakly separated if there exist v1,7v2,0 > 0, 71 < 1 such that
—np(z) = B < pa(x) < vapn () + B (4.2)

The polynomial p is strongly separated if (4.2) holds with 8 = 0.

Lemma 4.2. Let p(y,t) = ay® + byt + ct> + pt + v, with a,c > 0,0 := \‘7— <1

and not both p and v equal 0. Then
(i) p is weakly separated.
(i) If 4cv < p?, then p is not strongly separated.
(iii) If 4(1 — 8)2cv > p?, then p is strongly separated.
Proof. By Definition 4.1 py (y,t) = ct® + ay? —H/ and po(y,t) = byt + pt. To prove

(i) mote that [byt| < 52
[b]

2\/—+6<1 Choosmg7>4

(ct? + ay?). Since T < 1, there exists € > 0 such that

, we get that |ut| < ect? + 7. Therefore

€ec’

pay, )] < (2\—} N ) (cf? +ay?) +7 = (2'7 " ) .t) + 8
for some real number 3. Thus p is weakly separated.

To prove (ii) assume that p is strongly separated. Then for some 0 < vy < 1
we have —v(ct? + ay? + v) < byt + pt. With y = 0, this inequality implies
u? —4yicv < 0, and therefore p? < 4dev.

To prove (111) assume that 4(1 — §)?cv > p?. Then v > 0 and there exists € > 0
such that y? —4(1—8§—¢€)%cv < 0. Consequently |ut| < (1—8—¢)(ct?+v). Together
with the first inequality used in the proof of (i), this yields

byt + pt| < 8(ct® + ay®) + (1 =8 —e)(ct? + ay®* +v) < (1 —€)pi(y,t) .

Thus p is strongly separated. |

Lemma 4.3. Let p be a nonnegative polynomial in n variables and let p, be the
polynomial introduced in Definition 4.1.
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(a) Assume that p is weakly separated. Then p does not depend on t if and only
if p1 does not depend on t.

(b) If p is weakly separated, then the multiplication operators M, and M, have
the same domain in .

(c) If p is strongly separated, then p(z) = 0 if and only if p1(x) = 0.

(d) If p is strongly separated, then the multiplication operators M, and M,, have
the same range in K.

Proof. The statements in (a), (c) follow directly from Definition 4.1. Note that
p1 does not depend on ¢ if and only if ag = 0. Assume that p is weakly separated.
Then p and p; satisfy the conditions in (1b) of Lemma 2.6 with ¢ = 8+ 1 > 0.
Indeed, the condition (4.2) yields

D1 1 p
< and ———
B+1+p - 1-—a B+1+mp

<l+ax+p.

Therefore (b) follows from Lemma 2.6. If p is strongly separated, then (4.2), with
B =0, implies

P1 1 P
< and ——— <1+ as,
p(I+p1) ~ 1-a pi(1+p) — ?
and (d) is a consequence of Lemma 2.6. O

Denote by P the operator 7% in L?(R) on H2(R). By [6, Theorem 2.5] (see also
Example 3.6) for any b > 0 and k a natural number the operator (sgnt)(P* + bI)
is similar to a selfadjoint operator in L?(R).

Lemma 4.4. Let p be a nonnegative polynomial such that ps = 0. Assume that
p(A) #0. Then A = Jp(D) is similar to a selfadjoint operator in the Hilbert space

(L2(R™), (-, )

Proof. Let p(z) = q(2) + aot®*, ag > 0. If ay = 0, the operator A commutes
with the fundamental symmetry J and consequently A is similar to a selfadjoint
operator in the Hilbert space (L2(R™), (-, -)).

If ag > 0 without loss of generality we can assume that ag = 1. Since we assume
that p(A) # 0, we only have to prove that the points 0 and co are not singular
critical points of A. Let y € dom(A) and A € C\ R. It follows from the basic
properties of the partial Fourier transform F' that

(A= ADy)(z) = (F~'(JP* +q(2)] = AI)Fy)(z). (4.3)

Denote by E the spectral function of A and by G, the spectral function of the
operator J(P* 4+ aI). Consider an interval 1 = (a,b) with 0 < a < b. It follows
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from the definition of the spectral function and (4.3) that
(E(y)(z) = (F~ Gy (1) Fy)(z) - (4.4)

Let a > 0. The operator J(P* + «al) is uniformly positive in the Krein space
(L*(R™),[-, -]) and the lower bound of P* + al is a. Lemma 2.7 implies that
the interval (—a, ), belongs to the resolvent set of .J(P* + al) and consequently
G,(1) =0 for b < a. Thus, it follows from (4.4) that

IE@)y|* = / 1(Gya) () Fy) (2, )|Pdi . (4.5)
Jq(2)<b
Denote by U(d), § € R\ {0} the dilation operator: (U(d)f)(z) = f(dz), z € R™.
Then U(4) is a bounded operator with the bounded inverse U(1/4). We have
UO)f,Ud)f) = [o]""(f, f) (4.6)
and
U(8) "' PFU(6) = a®* PF . (4.7)
From

J(P* +al) = aU(a® ) J(PF + NU(a7 %)
it, follows that
G.(1) = (a%) G1(10)U (ofﬁ) , (4.8)

where 1, = (£,2). From (4.5) and (4.8) we conclude

IE@yl* = G (143))U( (&)~ ) Fy @) dz. (49
IR ICCER (@) ) 2.0

Since U (t) is a multiple of an isometry, it follows from the Plancherel theorem that

6 (o550 )| < o e (2.2)]
q(z) q(2) 0<a<b a o

A similar formula holds for a < b < 0. Since .J(P* + I) is similar to a selfadjoint
operator in the Hilbert space L?(R), it follows that both 0 and oc are not singular
critical points of A. O

|E(a,b)|| < sup
q(2)<b

Corollary 4.5. Let p be a nonnegative polynomial and assume that po = 0. Then
A = Jp(D) is similar to a selfadjoint operator in the Hilbert space (L*(R™), (-, -)).
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Proof. The polynomial p+1 is strictly positive. The operator p(D)+1 is uniformly
positive in (L?(R"), (-, -)). Therefore the operator .J(p(D) + I) is uniformly pos-

3

itive in (L%(R"),[-, -]) and consequently 0 € p(J(p(D) + I)). Lemma 4.4 implies

3

that J(p(D)+ 1) is similar to a selfadjoint operator in (L?(R"), (-, -)). By Lemma

2.1 the operator Jp(D) has a nonempty resolvent set. Applying Lemma 4.4 again
yields that Jp(D) is similar to a selfadjoint operator in (L?(R"), (-, -)). O

Theorem 4.6. Let p be a nonnegative polynomial and A = Jp(D).

(a) Ifpis a weakly separated polynomial, then A is a positive operator in the Krein
space L2(R™), p(A) # 0 and oo is not a singular critical point of A.

(b) If p is a strongly separated polynomial, then 0 is not a singular critical point
of A. The operator A is similar to a selfadjoint operator in (L2(R™), (-, -)).

3

Proof. If p does not depend on t the operator A commutes with the funda-
mental symmetry J and consequently A is similar to a selfadjoint operator in
(L2(R™),(-, -)). By Lemma 4.3 (a) p does not depend on ¢ if and only if ag = 0.
Thus, in the rest of the proof we can assume that p;(z) = aot?* + q(2), where
ag > 0. Put Ay = Jpi(D). By Corollary 4.5 the operator A; is similar to
a selfadjoint operator in (L?(R"™),(-,-)). The operator A = Jp(D) is posi-

tive in (L*(R"),[-, -]). Lemma 4.3 implies that dom(M,) = dom(M,,). Apply-
ing the inverse Fourier transform we conclude that dom(A) = dom(A;). Clearly
the operator J(p(D) + I) = A + J is uniformly positive in (L*(R"),[-, -]) and

dom(A + J) = dom(A) = dom(A;). Since oc is not a singular critical point of Ay,
[2, Corollary 3.3] implies that oo is not a singular critical point of A + J. Therefore
A+ J = J(B+1) is similar to a selfadjoint operator in (L*(R"),(-, -)). Lemma
2.1 implies that p(A) # 0§ and consequently A is a definitizable operator. Since
dom(A + J) = dom(A), [2, Corollary 3.3] implies that oo is not a singular critical
point of A. This proves part (a).

We prove part (b) for a strongly separated polynomial p. It remains to prove
that 0 is not a singular critical point of A. By Lemma 4.3 the ranges of the multi-
plication operators M, and M, coincide. Applying the inverse Fourier transform
we conclude that ran(A) = ran(A4;). Note that 0 is not an eigenvalue neither of A
nor of A;. Since 0 is not a singular critical point of 4;, we conclude that 0 is not
a singular critical point of A. This proves the theorem. |

Proposition 4.7. Let q be a nonnegative polynomial in n — 1 variables, r a
nonnegative and nonconstant polynomial in one variable and p(x) = q(&) + r(t).

Let A = Jp(D). Then:
(a) The operator A has no eigenvalues.
(b) The spectrum of A is given by
7(A4) = (~00, —1my) U [imps +30) , (410)
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where my, = min{p(z) : z € R" }.

Proof. (a) The operator A is definitizable by Theorem 4.6. Let A € R and
y € dom(A) satisfy Jp(D)y = Ay. Let z = Fy be the partial Fourier transform of

y. Then
J <r G%) + q(;m) (@, 1) = Az2(@,1) .

[6, Theorem 2.2 (b)] implies that z(#,-) = 0 for all # € R*~'. Thus y = 0.

To prove (b) we extend the argument of Lemma 4.4. Denote by E the spectral
function of A and by G, the spectral function of the operator J(r(—z’%) + al).
The equalities (4.4) and (4.5) hold true for newly defined G,.

We prove that for all positive a, b such that b > m,, and a < b we have E(a,b) #
0. Note that m, = m, +mg. Let g be such that m, + ¢(Zo) < b. By [6, Theorem
2.2] the spectrum of the operator J(r(—iZ) + q(20)I) is (—o0, —m, — q(&o)] U
[my + q(Zo), +00). Therefore there exists h € L*(R) such that Gy,)(a,b)h # 0.
The function « — ||G4(a, b)h|| is continuous on Ry by [18, Theorem 3.1. part 3)].
Therefore the function

T = [|Gya)(a,b))h]]
is continuous on R?~'. Hence the set
O={ze€ R ||Gq(i)(a,b)h|| > 0}

is open. This set is nonempty since zo € O. The set O is contained in {z €
R : g(#) < b}. Choose z € L%(R"1) such that z # 0 almost everywhere. Let
y(z) = h(t)(F~'2)(%). From (4.5) it follows

W@MW=.AKﬁ®N%MMWWi
qlr)s

v

| 2@PIG s e bblPde > 0.
O

We have proved that for arbitrary b > m, and 0 < a < b we have E(a,b) # 0.
This implies that the spectrum of A in Ry contains [m,,+o00). If m, > 0 and
0 < A < my, then (4.5) implies that A € p(A). In this case 0 € p(A4) since A
is a uniformly positive operator. Therefore the spectrum of A in Ry coincides
with [m,, +00). Similarly one proves that the spectrum of A in R_ coincides with
(—o0, —my). O

Corollary 4.8. Let g be a nonnegative polynomial in n — 1 wvariables, r a non-
negative and nonconstant polynomial in one variable and p(z) = q(&) + r(t). Let
A= Jp(D).

(a) The point oo is a regular critical point of A = Jp(D).
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(b) Assume that the polynomial r has at most one root. The following statements
are equivalent:

(i) p has a zero.
(ii) 0 € o(A4).

(iii) 0 is a regular critical point of A.

5. Variable coefficients®

In this section we use Corollary 2.5 to extend results from Section 4. To illus-
trate the method, we consider the Schriodinger operator with indefinite weight
(sgnzy,)(—A +¢) on R".

Let H = —A be defined on its natural domain in L?(R"). Its inverse is an
unbounded integral operator.

Proposition 5.1. Let 5 < n < 8 and q € L"/*(R"). There exists ko > 0 such
that for all real k with |k| < ko the operator (sgnz,)(—A + kq) is similar to a
selfadjoint operator in L*(R™).

Proof. Since n < 8, it follows from the Sobolev embedding theorem that
dom(H) = H*(R") C dom(q) .

We show that the operator ¢H ' is bounded by a constant multiple of ||g||,, /2.
Note that H—! = h(—iV) with h(z) = |z|=2. Therefore h € Li/*(R"), see [21,
Example 1X.4.2] . By [22, Theorem 4.2] q(z)h(—iV) € LTJ/Q(]R”), and moreover

lg(2)h(=iV)l/2,0 < Cllallny2llblln/2,0

where || - ||, are the functions defined in [22, p. 13] and [21, Definition IX.4].
Hence (see [22, p. 13]) |lg(x)h(=iV)|ln 2,0 < Cillglln/2- Next we can use the
inequalities on p. 13 of [22] to conclude

llg(z)h(=iV)[| = llg(@)h(=iV)]l < Collg(@)h(=iV)]ln/2,0 < Csllalln/z -

It follows from [16, Theorems IV.1.1, IV.2.14, IV.3.1 and VI.3.1] that for ||
sufficiently small we have that the operator J(H +kq) is positive in (L*(R"), [+, -]);

the resolvent set p(J(H + kq)) is nonempty and dom(J(H + kq)) = dom(H). The

"For the case of a more general elliptic operator with indefinite weight %(L + ¢) we can use
the results from [9].
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conclusion of the proposition follows from Theorem 4.6, Lemma 2.2, Corollary 2.5
and [2, Corollary 3.3]. O

Note that we needed n < 8 only to prove that the operator gH ! is densely
defined. However, the Gagliardo-Nirenberg inequality implies that dom(H) C
dom(g) (and also that gH ! is bounded) as soon as n > 5. This shows that the
assumption n < 8 is in fact redundant.

We prove a strengthening of Proposition 5.1 .

Theorem 5.2. Let n > 5 and

> byDV

0<i+j<2
be a partial differential operator with the coefficients b;; satisfying
bij €L® if i4+j=2,b;e€L™R") if i+j=1, and by € L"*(R").

Further assume that B is symmetric in (L2(R"), (-, -)).
Then the operator B, defined on dom(B) = H?*(R") is a closed operator in
L?(R™). There exists ko such that if

o Mbii —sgnzalloe + Y Mbilloe + D il + boollyz < ko

1<i<n i+i=2, i i+i=1
then (sgnwx,)B is similar to a selfadjoint operator in (L*(R™), (-, -)).

Proof. The first statement easily follows from the Sobolev embedding theorem.
Let Ag = (sgnzy)(—A) = JH, defined on dom(Ap) = dom(B), V = JB — 4. By
Theorem 4.6 the operator Ay is similar to a selfadjoint operator in L?(R"). Note
that

JV = Z ’UijDij
0<i+j<2

with v; = by —sgnwzy,,l < i < n, v;; = b;; for all other 4, 7. It is sufficient to
show that JVAE1 or equivalently VH ! is a bounded densely defined operator.
To this end, we show that v;; D% H " is bounded and densely defined. In fact, it
is sufficient to show that

||vijDiju|| < Cyjl|Au|] we HZ(]R") (5.1)

for all i,j Wlth i+j <2 Ifi+j =2, the estimate (5.1) is evident. If i = j = 0, let
1

5 =3 . Holder’s inequality ylelds

lgullz < llgllns2llull, (v e LP(R™)),
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From the Gagliardo-Nirenberg inequality, see [20, p. 125], it follows that

lully < CllAully  (u€ H*(R")) .

This implies (5.1) if 4 + j = 0. Finally, if i + j = 1, then v;;D¥ = byD* for
some k € {1,...,n}, where by = byo or bog. Let p = % From Hoélder’s and
Gagliardo-Nirenberg inequality we again find

[[0ij DY ul| = [|bg D" ul| < [|bg ||| D ull, < C[lbg]|nl|Aul] ,

and this proves (5.1). O
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