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Abstract

The boundary eigenvalue problems for the adjoint of a symmetric rel&iona Hil-
bert space with finite, not necessarily equal, defect numbers, which are related to the selfad-
joint Hilbert space extensions &are characterized in terms of boundary coefficients and
the reproducing kernel Hilbert spaces they induce. © 2001 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Let Sbe a densely defined symmetric operator in a Hilbert sp#cevith de-
fect index(dy,d-),d = dy +d- < oo and letb : dom(S*) — C? be a boundary
mapping forSwith Gram matrixQ; for the definition, see Section 2. Consider the
following boundary eigenvalue problem: fore #, find f € # such that

fedomsS*), ($*—zf=h, UARb(f)=0, (1.2)

where%(z) is a holomorphic matrix function of£\R of sizedy x d if z € C*.
The aim of this paper is to describe the linearizatibrof this problem. We call
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A a linearization of (1.1) ifd is a selfadjoint extension @ in a Hilbert space#
containing#” as a closed subspace and if for ak C\R andh € #, the unique
solution of (1.1) is given byf = P, (A — z)~1h, whereP, is the projection in#
onto . Necessary and sufficient conditions @fiz) that (1.1) has such a lineari-
zation are given by#1)—(@5) in Definition 3.1; see Theorem 5.4. These conditions
are well known; see, for example, [5,11,13,19,20,26]. In [19], linear relations are
avoided. The proofs in [11,20] are based on the theory of characteristic functions
of unitary colligations. Here we give another proof. We use the reproducing kernel
Hilbert space#’ (K4 ) with the nonnegative reproducing kernel
U (2)Q MU (w)* _
—— 7& w.

—w
This space consists of holomorphic vector functions/R. The operatotS; of
multiplication by the independent variable in this space is a closed simple symmetric
operator with defect indekw—, wy), d1 — w4y =d_ —w_ =: 7 > 0; see Section
4. The linearizatiom of (1.1) is a canonical selfadjoint extension of the symmetric
direct sum operato§ & Sy in # = # & # (Ky) such that (in terms of graphs of
operators)

ANA#?=Sy,  ANAH(Ky)? =Sy, (1.2)

whereSp is at-dimensional symmetric extension 8fin #°. The method yields a
formula for A (see Theorem 5.4):

R eome aes:

Uob(f) =0, Bob(f) + I'b1(f1, 81) = 0},

Ku(z,w) =i

where

(a) thet x d matrixUg andw x d matrix Bg have maximal rank and determine the
operatorSp and its adjointsj as follows

So = {{f, S*f}. f edom(S*), Uob(f) =0, Bob(f) = 0},
Sg = {{f. S*f): f e dom(S*), Uob(f) = O};
(b) b1 is an arbitrary boundary mapping f8y, in 5 (K4) with Gram matrixQy;
(c) I'is an invertiblew x w matrix such thaQ; + F(BonlBS)*lf* =0.
The graph notation that we use here simplifies formulas like the ones in (1.2)
and (1.3), but also can hardly be avoided. For examplein #(K) need not

be densely defined, and if it is not, its adjofj} is multivalued and the boundary

mappingb; for Sz is not a mapping on do(f},), but on the graph of7,, that is,
b1: 8, — C* o= ws + w_. This permits us also to drop the assumption st

densely defined, which opens the possibility for more general boundary conditions

(1.3)
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including integro-differential and interface conditions for the case$faises from
a differential expression. See, for example, [4,15,18,27].

The connection betweet(z) and the formula for the linearizatiof is surpris-
ingly simple. By multiplying the boundary eigenvalue conditi@t)b( f) = 0 from
the left by a suitable invertible (and even holomorphic) matrix functiofr), this
condition can be row reduced to one of the form

Uo _
<%O(Z)Bo> b() =0,

whereUg andBg are as in the formula for the Iinearizatiéhand%g(z) IS anw+ x
o matrix valued function orC* with the same properties @(z) and one more,
namely, that for alt € C\R, thew x @ matrix

<@!o(z))
U0(2)
is invertible; see Theorem 3.2. The reproducing kernel Hilbert spaces associated with
the kernelsKy (z, w) andK4,(z, w) are isomorphic and under the isomorphism the
operators of multiplication by the independent variable coincide. An essential tool
to obtain the description of the linearization of (1.1) is the characterizatign 6f)
in terms of a boundary mapping f65, and a holomorphic basis of k&, — z); see
Proposition 4.2.

If %(z) is a polynomial and satisfieg/(l)—(%5) the theory of Bezoutians can
be applied to yield an explicit formula fof. This is also possible wher#/6) is
replaced by the condition that the kerri€),(z, w) has a finite number of negative
squares (then the extending spageis a Pontryagin space containing the Hilbert
space# as a regular subspace). Our results in this case include and supplement
those of Russakowskii in [21-23], who was the first to use Bezoutians in this context.
They will be published in another paper. For an introduction to the linearization of
Sturm-Liouville eigenvalue problems with boundary conditions which depend holo-
morphically on the eigenvalue parameter, we refer to the lecture series in [10], where
further references can be found. The main results of this paper were presented by the
first author at the International Workshop on Operator Theory and Applications held
in Groningen, Netherlands, June 30-July 3, 1998.

2. Preliminaries

Recall that aelation from a setX to a setY is a subset of the Cartesian product
X x Y, and a relatiorF from X to Y is called afunctionif {x, y} € F, {x,z} € F
impliesy = z. A linear relation Tin a Hilbert space.#, (-, -) ») is a linear subset
of #% = # & #; Tis calledclosedif Tis a closed subset of’2. Theinverse

T ={{fg): g fleT}
and theadjoint
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T* = {{u, v} € #? (g, u)w — (f.v)r =OV{f, g} € T}

are also linear relations arftt is always closed. A linear relatiohis the graph of an
operator if and only if its multivalued paft(0) := {y € »#: {0, y} € T} is equal to
{0}; we often identify an operator with its graph; see, for example, (1.3) or (2.3). The
domaindom(T), rangeran(T) andkernelker(T) of a linear relationl are defined

by

domT)={xe #: Iy e H, {x,y} T},

ranT) ={ye #: Ix e A, {x,y} € T},

kelT)={x e #: {x,0} € T}.
ThesumT + S and thecompositionT' S of two linear relations andS are defined
by

T+S={fg+hh:{fgteT, {f h}eS}

ST ={{f,h}:3ge A, {f,g}eT, {g,h}eS}

Since we identify operators with graphs,
ol ={{x,ax}: x e #}, aeC,
and hence

T+oal ={{f.g+taf} {f.gteT}
ol ={{f ag}: {f. g} €T}

ThenT nal ={{f, g} € T: g = af} is an operator with domain daffi N« l) =
kerT — oI). We often identifya with «f. Occasionally, we use the sum of two
linear relationsT andSas linear subsets of’?:

T+S={{f+hg+k}: {f gteT, {hk}eS}

and this sum is calledirectif T N S = {{0, 0}} andorthogonalif 7 L S and then
we use the notatioff @ S. For a detailed account of linear relations we refer to the
recent book by Cross [6].

A linear relationT is calledsymmetridf 7 C T* andselfadjointif 7 = T*. A
relationT is calledisometricif 71 ¢ T* andunitaryif 7= = T*; in the first case
T is an ordinary isometric operator from d¢fM) to ran7T) and in the second ca3e
is a unitary operator op¢’. TheCayley transfornwith respect tqu € C\R

Cu(M) ={{g—nf.g—nf) {f.gleT}

defines a bijection on the class of linear relationss#nonto itself. Its inverse is
given by

Fu (T) = {{u — v, pu — pv}: {u,v} e T}
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The formulaV = C,(S) gives a one-to-one correspondence between all symmetric
relationsSin s and all isometric operatoi, in this case dotV) = ran(S — )
and raniV) = ran(S — ). The same formula gives a one-to-one correspondence be-
tween all selfadjoint relation& in s# and all unitary operatord, and the equality
A(0) = ker(U — I) implies that in this correspondenégs multivalued if and only
if 1 is an eigenvalue ofl.

A symmetric relatiorSis calledsimpleif

A =spar| ker(S* — z2): z € C\R}, (2.1)
equivalently if
[ rans —z) = {0}. (2.2)
zeC\R

If Sis simple, it is an operator. In gener&8,admits a unique decomposition into

a simple operator and a selfadjoint part: there exists a decomposition of the space
H = H1® AHpandS: S = 51 Sz, whereS; is a simple symmetric operator in

A1 and Sz is a selfadjoint relation in#’». A selfadjoint relatiorA has a ‘rectangu-

lar’ structure:A can be written agl = A1 @ A, WhereAy ;= {{0, x} € #HZx €

A(0)} is a selfadjoint relation in# ., = A(0) and A1 is a selfadjoint operator in
H1=H O He. Thus, the resolvertd —z) 1 = (A1 —2)"1®0,z € C\R, isa
bounded operator a¥’ whose kernel equals(0) and we have

A-—)t=A1—2) Py, # - H1CH, (2.3)

wherePy, is the orthogonal projection is¢” onto 1.
The adjoint of a symmetric relatiddcan be decomposed as

§* = S+(S* N zI)+(S* NzI), directsum in#?2,

wherez € C\R. The dimension dirgs* N zI) is constant on each of the open half
planesC* andC™~ and is denoted by., for z € C* andd_, for z € C~. The num-
bersd, andd_ are called the upper and lower defect numbelS tifie pair(d, d_)

is called the defect index. In the sequel, we assdmed, + d_ < oo.

A linear relationT in a Hilbert space# is called arextensiorof a linear relation
Sin a Hilbert space#” if # is a closed subspace of and S C T. The space
A & A is called theexit spaceif it is trivial T is calledcanonical A symmetric
relation always has selfadjoint extensions possibly with a nontrivial exit space (just
as an isometric operator always has unitary extensi@tss canonical selfadjoint
extensions ifand only ifl, = d_.

A selfadjoint extensiofl’ of Sis minimalif

# =spar{ A, ran((T —2)7] ,): z € C\R} (2.4)

or, equivalently, the only subspace # © # which is invariant unde(T — 7)1
for one, and hence for alt, e C\R, is the trivial subspace.

A boundary mappindor a closed symmetric relatio8 in 2# with defect in-
dex (d4,d_) is a surjective linear operatér: $* — C? with ker() = S. If b is



102 B. Curgus et al. / Linear Algebra and its Applications 329 (2001) 97-136

a boundary mapping fd8, then there is a uniqué x d matrix Q such that for all
{f. g}, {u, v} € %,

(g, u)r — (f.v)r = 1b(u, v)*Qb(f, 8). (2.5)

Q is a selfadjoint and invertible matrix and hds positive and/_ negative eigen-
values. The matrixXQ is called theGram matrixfor b, for if Q = (qj'k)?,kzl, then

qjk = [Ib"X(ex), b~1(e;)1l, wheree,; € C¢ is thejth unit vector and

1
[]:{fv g}v {Mv U}]] = T((gv M)y/) - (f? v)%’/) (26)
Combining (2.5) and (2.6) we get

i/, g}, {u, v} = b(u, v)*Qb(f, 8), {f. g} {u,v} € S™.

Note that ifb is a boundary mapping f@with Gram matrixQ and if B is an invert-
ibled x d matrix, thenBb is a boundary mapping f@with Gram matrix8 QB L.
For each selfadjoint and invertible matfxwith 4. positive andi_ negative eigen-
values there exists a boundary mappingSovith Gram matrixQ.

The form[[-, -] from (2.6) defines an indefinite inner product;zfﬁ2 with respect
to which the spacejfz, [, -1) is a Krein space. The inner prodytt -] appears
also in the definition of the adjoint of a linear relation. The extension theory outlined
here can be explained by the geometry of subspaces in Krein spaces; see Appendix
A. For the Krein space terminology which we use throughout the paper we refer to
the monographs of Azizov and lokhvidov [1] and Bognar [2]. For similar symplectic
algebra formulations we refer to the book of Everitt and Markus [16]. The extension
theory in this paper is closely related to the extension theory in [17, Chapter 3]: there
Sis a densely defined symmetric operator in a Hilbert sp#ceith equal (finite or
infinite) defect numberd... A triple (#o, I'1, I'2) consisting of a Hilbert spac# o
and mappings’; : dom(S*) — # is called aboundary value spacef Sif (i) for
all £, h e dom(S¥),

(S*f ) = (f. §*h) = (T'1f, T2h)wo — (I2f. T'1h) g

and (ii) the mappindl'y, I'2)" : dom(S*) — #73 is surjective. The definition im-
plies that domsS) = ker(I'1, I'>)T. Hence, ifdg = dy = d_ < oo and if we identify
Ao with C%, then the mapping = (I', I'2)T is a boundary mapping with Gram
matrix

(0 —I
Q=i (I 0)’
wherel denotes the identity matrix of appropriate size. Evidently, one can always
transform a given boundary mappibgs defined above into one of the types con-
sidered in[17]. In[17], dissipative extensions are considered; for some recent results,
see also [3]. The ‘boundary value space’ method is further developed in a series of

interesting papers by Derkach and Malamud, see, for example, [8,9], where further
references can be found. These papers are more focused on the description of the
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generalized resolvents & and Weyl functions with applications to moment and
other problems, than on the description of the boundary coefficients as presented
in this paper. Some of their results have been extended to the indefinite setting by
Derkach in, for example, [7].

3. Boundary coefficients

For a symmetric linear relatio8 in a Hilbert space#” and boundary mapping
b for Sthe formulation of the boundary eigenvalue problem, that is, the analog of
problem (1.1) is admittedly somewhat artificial:

Forh € o, find {f, g} € $* such thatg — zf = h and%(2)b(f, g) = 0. With
U (z), z € C\R, we associate the family of relations

T()={{f.g} €S U)D(f,g) =0}, zeC\R

Evidently,S C T(z) C S*forallz € C\R. A linearizationA of the boundary eigen-
value problem is a selfadjoint extensidrof Ssuch that

13%(;“_ Z)71|% =(T@) — Z)fl, z € C\R,

where P, is the orthogonal projection is# onto #. Because of this formuld is
also called a linearization df (z). As we shall show, if%(z) satisfies ¢/1)—(5)

in Definition 3.1, thenT' (z) admits a linearization and the converse also holds. In
[11,14]T (z) is called a Straus extension &f

Definition 3.1 (Boundary coefficieftLetQ be an invertible selfadjoinrt x d matrix
with d positive andi_ negative eigenvalues. ®-boundary coefficierfunction %
is a matrix valued function defined @i\ R with the following properties:

(1) U(z) is ady x d matrixif z e CT and%(z) is ad_ x d matrixifz € C™.
(%2) % (z) is holomorphic orC\R.

(%3) Each matrixi(z), z € C\R, has maximal rank.

U8 U()Q U @)* =0,z € C\R.

(5) The kernel

U )Q U (w)*

Ku(z,w) =1 , 7#w, z,w e C\R,

Z—w
is nonnegative.
The kernel condition5) means that for any choice of the natural numband

A1, ..., A € C\R, the selfadjoint block matrixK (2, )\k))’;’k:l is nonnegative.
In particular, '

UDQ M U()* >0 ifzeCt and %()Q U (z)* <0 ifzeC™. (3.1)
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The kernel condition is used to describe the exit space of the linearization of the
family of extensions determined b3¥(z). In this section, we only make use of the
special cases (3.1).

A Q-boundary coefficien#(z) is said to beminimalif

U(z)
U ()

Note that ¢/3') implies @3).
A boundary coefficien# (z) is said to baow reducedo a boundary coefficient
Y (z) if

A ()U(z) =7 (2)

for some invertible matrix function/(z) on C\R which is of sized+ x dy for z €

C*. In the boundary eigenvalue problem in which the boundary coeffidigny ap-

pears, the variableis the eigenvalue parameter. The following theorem says that any
boundary coefficient can be row reduced to a boundary coefficient whose top rows
are independent of the eigenvalue parameter and the remaining rows are essentially
determined by a minimal boundary coefficient. The theorem shows that in this case
</ (z) can even be chosen holomorphic©kRR.

(#3) thed xd matrix( ) is invertible,z € C\R.

Theorem 3.2. LetQ be a selfadjoint invertible x d matrix withd,. positive and
d_ negative eigenvalues. Lét(z) be aQ-boundary coefficient function. There exist
a unique integerr, 0 < T < min{d4, d_}, and a holomorphic function/(z) on
C\R whose values are invertible matrices of sizex d.. for z € C* such that

010 = (g ) (52) (3.2)

wherel is thet x 7 identity matrix and withwy :=dy — 7, w :=d — 2t = w4 +
w— the matricedJo, %0o(z), andBg have the following properties

() Ugis aconstant x d matrix of maximal rank

(I) Bg is a constaniw x d matrix such thaBOQ*183 is invertible and haso
positive ando_ negative eigenvalues

(1) the equality

Uo\ ~_1(Uo\" _ (0 0
(50)(5) =6 o @
holds withQo := (BoQ *B%)~%;
(IV) %o(z) is a minimalQq-boundary coefficient of size. x w.

The right-hand side of (3.2) is callechainimal representatioof % (z).
In the proof of the theorem we use the following well-known lemma whose short
proof we include for completeness.
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Lemma3.3. Let.#; and.#, be Hilbert spaces and |&k : Q — ¥ (#1, #2) be

a holomorphic(anti-holomorphi¢ contraction valued function defined on an open
connected se® C C. There exist decomposition ; = Jf? <) JF} j=1,2,such
that K (z) has the matrix representation

_ (Ko O A A9
o= (0 (79~ (%) o

in which Ko : @ — 2(#9, #9) is a holomorphic(anti-holomorphi¢ strict con-
traction valued functionV : #1 — #71 is unitary and the subspaces

H1=kerl — K(2)*K(z2),  H3=kerl - K(2)K ()"
are independent af.
Proof. Choose a pointg € © and set#] = ker(I — K (z0)*K (z0)). Forx € #1,
the functionf (z) = (K (z0)*K (z)x, x) is a holomorphic function in € 2 and
£ @I < Ix11? = 1K zo)x ]I = f(z0).
By the maximum modulus principlg(z) = f(zo0) € Rforall z € Q, and hence
0< [IK(2)x — K (zo)x]|?
= K @x]1* - 1K (zo)x |12
= 1K ()x )% — ||x||?
<0,
which implies thatk (2)| 1 = K (z0)] ,2 and#'1 = ker(I — K (2)*K (2)) forall z €

Q. Hence,V := K ()| 41 is @ unitary mapping from#1 onto #'3 := V.#1. The
equalities

(K@#, VHTL), = (KA, K()HT),
= (#9. K()*K (2)#1),
<ff°, #Y,y

imply thatKo(z) := K (2)] 40 maps#9 into #9 := #, © #3. This proves the ma-

trix representation (3.4) fak (z). Moreover, ket — Ko(z)*Ko(z)) = #1 N #9 =
{0}, and therefor&K(z) is a strict contraction. The last equality in Lemma 3.3 fol-
lows from considering the operator

Ko)* 0\ (9 A9
K@)* = ( 1> ( ) - (
o v A A}
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iﬂa similar way. In casK is anti-hoAIomorphic, the statement follows by considering
K :Q— P(AHo, A1) defined byK (z) = K(z)*. O

Proof of Theorem 3.2. In this proof, we conside€? equipped with the indefinite
inner product

[x,y1=y*Qx, x,yecC’
The spacegC?, [-, -]) is a Krein space. Le€¢ = 2, [+]2_ be a fundamental de-
composition ofC¢. For example 2, can be the subspace 6f generated by the
eigenvectors of) corresponding to its positive eigenvalues ahd the subspace
of C? generated by the eigenvectors@torresponding to its negative eigenvalues.
Whatever the choice of the fundamental decomposition we have tha2dim= d...
Denote byP, and P_ the orthogonal projections ontd, and2_. We consider the
subspaces

R(z) :=ran¥(z)*), z e C\R.
For definiteness we assume that(fn> 0. The constructions for Iffz) < O are
similar. Forx = % (2)*u, y = U(z)*v, u, v € C%, we have

[x, y] = (U(2)*v)* QMU (2)*u = v* U()Q U (2)*u.
Since In(z) > 0, Assumption (3.1) implies tha#(z) is a nonnegative subspace of
(C4, [+, -]). From dim#(z)) = d.., it follows that Z(z) is a maximal nonnegative
subspace of?. Therefore, the operataf, % (z)* is surjective, and hence invert-
ible. If K(z) is the operator from the Hilbert spa¢2,, [-, -]) to the Hilbert space
(2_, —[-, -] defined by

K(z) = P-UQ)*(P+ ("),
thenkK (z) is a contraction and

R(2) = {Us, + K(2))x4: x4 € 24} (3.5)

The operatoiX (z) is called theangular operatorof Z(z); see [2]. Since¥ (z) is
holomorphic K (z) is anti-holomorphic. In particular, we have that foe C%+ there
exists ancy € 2, such that

U2)*a = (Io, + K(2)x4.
Solving forxy € 2, we getxy = P.%(z)*a. Therefore,
Uz)*a = (I, + K@) (P+U(z)")a foralla e C. (3.6)

It follows from Lemma 3.3 with(s#'1, (-, -)1) = (24, [, -] and (H#2, (-, -)2) =
(2_, —[-, -], that there exist decompositiots. = 2%[+]12L such that

Koz) 0) (2 22
0 VJ\2t 2t

whereKo(z) : 22 — 2° is a strict contractionKo(z) is anti-holomorphic and” :
2t — 9% is a unitary operator. Let = dim(2}) = dim(2}), w+ =ds — 7, and
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o = wy + w_ = d — 21. Since the spaces are finite-dimensiokig{z) is a uniform
contraction, that is||Ko(z)| < 1. The subspac@?[+]12° is a Krein subspace of
(C4,[-, -] of dimensionw. The decompositiorﬁ?r[ir]ﬂg is a fundamental decom-
position of this Krein space. We hawg = dim(2%) andw_ = dim(22).
Now equality (3.5) becomes
A(z) = {xo+x1 + Ko(2)xo+ Vx1: x0 € 2%, x1 € 2%} = Ro[+124(2).
where by (3.6),
Ro = {x1+ Vxr: x1 € 2L} = w(@)* (Pyu(2)*) "2t
is a neutral subspace and
R+ (2) == {x0+ Ko(2)x0: xo € 23} = U(2)* (P4 U (2)*) 12
is a maximal uniformly positive subspace@? [+12°, [-, -]).
It follows from (%4) that the subspaces 1@n(z)*) and rari% (z)*) are orthogonal
with respect to[-, -]. The subspace?(z) = ran%(z)*) is a maximal nonpositive
subspace ofC?,[-,-]). The angular operator fo#(z) is given by
K(Z) = K(Z)* : (Q—v _[" ]) - (Q+7 ['7 ])’

thatis,2(z) = {x— + K(z)*x—: x_ € 2_}. It follows that
R(@) = Rol+12-(2),

whereZ_(z) is a maximal uniformly negative subspace(ﬁﬁ[+]£9, [-,-D. Thus,
R1+H12° = 2, +12-@) 3.7)

and the right-hand side of (3.7) is a fundamental decompositioabit+122, [, -1).
Moreover,

Ro[L129[+12°.

Select a basis of the-dimensional space? [+]12°. (Note that29 [+]2° c C7.)
Let the columns of thé x » matrixBj be the vectors of this basis. The Gram matrix
BOQ*183 of the columns oB; with respect to the indefinite inner produget-] is
invertible and has positive andv_ negative eigenvalues. Hend, has property
(I1). The Gram matrixBoBg of the columns oBg with respect to the Euclidean inner
productis invertible and the matqu*)(BoB(”g)*lBo is the orthogonal projection with
respect to the Euclidean inner productisf onto 29 [+]2°..

Letas, ..., a; be abasis of the subspag. Then(l,1 +V)aj,j=1.2,....7,
is a basis o#o. Let the columns of thé x T matrix Uj be thed x 1 vectors(lﬂi +
Vyaj, j=1,2,...,t. ThenUg has property (I).

Property (lll) now follows from the fact tha# is a neutral subspace o, [, -]
and orthogonal t@% [+12% in [, -].

We now construc#o(z). Letby, ..., b, be abasis of the spae:é{. Then(Iﬂg +
Ko(@)bj, j =1,2,..., 0wy, is a basis 0f2,(z). Let the columns of thel x w,
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matrix # 1(z)* be thed x 1 vectors(lgg + Ko(2))b;, j =1,2,..., wy. Since the
function Ko(z) is anti-holomorphic, the functiow1(z)* is anti-holomorphic. Put

Uo(z)* = (BoBg) 1Bo# 1(2)*.

Clearly, %o(z)* is anw x w4+ matrix and the functiof/o(z)* is anti-holomorphic.
Since the columns of the matrik 1 (z)* belong t029 [+]12° we have

B570(x)* = B§(BoBE) 'Bo# 1(2)* = #1(2)".
Thus, the columns of the matriXly Bj#%o(z)*) form an anti-holomorphic basis for
A(z) = ran%(z)*). Another anti-holomorphic basis of this space is formed by the

columns of(z)*. Denote by.<Z(z)* the ‘change of coordinates matrix’ between
these two basis o#(z), that is, the matrix with the property

U2)* A (2)* = (U§ ByZo(2)*).

By (3.6), we have«(2)* = (Py%(z)*)~L. Clearly, o/ (z) is ady x dy invertible
matrix and the function(z) is holomorphic onC*. An analogous construction
leads to thel x w_ matrix #°(z)* and to thew x w_ matrix Zo(2)* := Bo# (2)*
and finally to thed_ x d_ matrix.«Z(z)* such that

U@ A @)* = (U B5U(R)*).

Thus,% (z) has the minimal representation (3.2).

It remains to show property (1V). Propertieg1) and (#2) follow from the con-
struction of o(z). Thed x o matrix (By%o(z)* By#o(z)*) consists of the basis
vectors of%2, (z) and of Z_(z). Since these two subspaces form a fundamental de-
composition onﬁ[—i—]Q‘Z the columns of(Bj#o(z2)* By#o(z)*) are linearly in-
dependent. Thus, the matmg(%o(z)* %o0(z)*) has rankw and therefores x »
matrix

Uo(z)
is invertible z € C\R,
U0(2)

thatis, 3') holds.
From (3.2) and (3.3) we obtain the equalities

0 0 UoQ~1U} UoQ™ B % o(w)*
0 %o(Z)Qal%O(w)* - %o(z)BonlUS %o(z)BonlBé%o(w)*

L P )
- Q-
Uo(z)Bo Uo(w)Bo

= o (2)U(2)Q U (w)* o (w)*. (3.8)
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Properties44) and @5) of %q(z) follow from (3.8) and from the corresponding
properties /4) and @5) of %(z). Thus,%o(z) is a minimalQg-boundary coeffi-
cient. O

Lemma3.4. Let S be a closed symmetric linear relation with defect, d_), d =
dy +d_ < oo, lett be anintegerwitl) < t < d, and let b be a boundary mapping
for S with Gram matrixQ. Equivalent are

(a) For a closed linear relation T we havec T c S*, anddim(7/S) = r.
(b) There exists & — t) x d matrix A of maximal rank such that
T ={{f g} €S Ab(f, g) =0}
(c) There exists a x d matrix B of maximal rank such that
T" ={{f, g} € S*: Bb(f,g) =0}.
If (a}(c) hold, thenBQ~*A* = 0 and the matriced andB are determined uniquely
up to multiplication from the left by invertible matrices.
(d) If (a}«c) hold and ifCis at x d matrix of maximal rank such th&@Q1A* = 0
and
V={{f g eS: Cb(f g =0}
thenT* = V.

Proof. We use the same setting as in the proof of Theorem 3.2. We corisidebe
equipped with the indefinite inner produat, y] = y*Q~1x, x, y € C?. The space
(C?, [, -] is a Krein space with signatuté., d_). The mappindb : §*/S — C¢

is an isomorphism between the Krein spacgy s, [[-, -1) and(C?,[-, -]). Forama-
trix M x M* we denote the adjoint d¥l with respect to the Euclidean inner product.
For ad x r matrix M* whose columns are vectors@f we have

x € ker(MQfl) & y*MQ*lx =0 (Vy e Cd)
& Q7 IM*y =0 (¥yeCY
& x e (ranM* ),

where[ L] denotes the orthogonal complemen(@?, [-,-D. Thus,

ker(MQ™1) = (ran(M*))I*. (3.9)
If T={{f g}eS*" Mb(f g =0}, and M has maximal rank, the@b(T) =
kertMQ™1). Since Qb(T*) is the orthogonal complement of k&4Q~1) in
(C4, [, -]) equality (3.9) implieQb(T*) = ran(M*). Thus,

Qb(T) = ker(MQ™Y) if and only if Qb(T*) = ran(M*). (3.10)
If (@) holds, then dinQb(T)) = r and dimQb(T*)) = dim(Qb(T)H) =d — 7.
SetA* to be ad x (d — t) matrix whose columns are basis vectorQo{ 7*). Then
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(3.10) withM = A implies that (b) holds. The implication (B} (a) follows from
the fact thatS = ker(b). The equivalence (a}> (c) follows from the fact that (a) is
equivalent to

ScT*cS* and dimT*/S)=d—r,

which follows from (3.10).

Now assume that (a)—(c) hold. It follows from (3.10) tgi(7*) = ran(A*) =
kerBQ™Y). ConsequentlyBQ~1A* = 0. The uniqueness statement abAwind B
follows from (3.10).

Statement (d) follows from the fact that kBy = ran(Q 1A*) = kerC). O

Lemma3.5. Let S be a closed symmetric linear relation with defegt, d_), d =
dy + d_ < oo, and let b be a boundary mapping for S with Gram ma@ibAssume
that (a)~(c) in Lemma3.4 hold. Then T is symmetric if and onlyBiQ—1B* = 0.
In this caset < min{d,, d_} and the defectindex of T (®+, w_), wx = dy — 7.
The(d — ) x d matrixA can be chosen to be of the form

A=(m)

whereBg is anw x d matrix of maximal ranke = d — 2z, such thatBQ‘lB(’; =
and BOQ_lB(’; is invertible. Thenbg = Bob|r+ is a boundary mapping for T with
Gram matrixQo = (BoQ 1B§) L.

Proof. We use the notation and facts from the proof of Lemma 3.4. The rel@ii®n
symmetric if and only ifQb(T) C Qb(T*), and consequentl@Rb(T) = ran(B*) C
kerBQ™Y) = Qb(T*). The last inclusion is equivalent ®Q1B* = 0. Hence T is
symmetric if and only iBQ™B* = 0.
Assume thaT is symmetric. Then
ran(B*) c Qb(T*) = ran(A*) (3.11)
and the columns of the matriX* can be chosen to be any basis vector<Ib(7*).
In particular, we can choos&* to be of the form(B* Bg), where the columns of

d x o matrixBg are chosen to complete the basiQaf( 7*). It follows from Lemma
3.4 that

0=BQ 'A*=BQ ! (g()) = (BQ!B* BQ'B}).

In particular,BQ*183 = 0 or, equivalently,(rarB*)[_L](ramBy). Thus, Qb(T*) =
(ranB*)[+](ranBg). SinceQb(T*)!*! = ran(B*), we conclude that the inner prod-
uct[-, -] is nondegenerate on réBp). This implies thaBOQ*183 is invertible and
we putQp := (Bonlsg)—l. Further, (ran(By), [+, -]) is a Krein space of dimen-
sion w = d — 2t and thereforgran(Bf)*, [, -]) is a Krein space of dimension
27. Since it contains the neutratdimensional subspace @), the signature of
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(ran(BH, [, 1) is (z, 7). The equalityC? = ran(B})!*/[+]ran(B}), implies that
the signature ofran(By), [+, ) is (w4, w-), w+ = d+ — 7. This also implies that
the signature of the matri®q is (w4, w-).

Putho := Bob|7+. SinceQb(T*) > ran(Bf) and since the x » matrixBoQ 1B}
is invertible we conclude thadk : T* — C¢ is surjective. Considerinbg as a map-
ping from thew + r-dimensional spacg&*/S ontoC® we see that its kernel must be
r-dimensional. Sinc&b(T) = ran(B*) andBoQ 1B* = 0, we havel' /S C ker(b).
Now dim(7/S) = t implies thatl" = ker(bg). Thus,bg is a boundary mapping far.
SinceQb(T*) = ran(A*) = ran((B* By)), for { f, g}, {u, v} € T* there exist, y €
C™* such thaQb(f, g) = (B* B)x andQb(u, v) = (U§ By and we have

i/, g} {u, v}l = (b(u, v)*Qb(f, &)

s (BYa-1an-1(BY
Qo)

0 0
=" (0 Qal>x- (3.12)

We also calculate

(Bob(u, v))*Qo(Bob(f. §)) = y* BO) Q"BQoBoQ ! <§o> !

0o 0 )x. (3.13)

Combining (3.12) and (3.13) we get

[{f. g} {u, v} = (Bob(u, v))"Qo(Bob(f. ) forall {f, g}, {u,v} € T,

and therefore the Gram matrix of the boundary mappimne: Bob|7+ is Qp. Since
the signature of the matri®q is (w4, w—), the defectindex of is (w4, w_). O

Corollary 3.6. Let S be a closed symmetric linear relation with defekt, d-),
d=d; +d- < o0, and let b be a boundary mapping for S with Gram ma®ix_et

9 (z) be aQ-boundary coefficient and assuz) has the minimal representation
(3.2). Then
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(a) TherelationSy := {{f, g} € S*: Uob(f, g) =0, Bob(f, g) = 0} is a closed lin-
ear symmetric extension of S with defect index, w_) anddim(Sp/S) = 7.

(b) The mappinghg := Bob|53 is a boundary mapping fosp with Gram matrix
Qo = (BoQ 'By) ™.

(c) For all z € C\R, we have{{f, g} e S* U()b(f. g) =0}={{f g} eS;
Uo(z)bo(f. g) = 0}.

4. Representation of minimal boundary coefficient and reproducing
kernel Hilbert spaces

We begin with a lemma about the existence of a holomorphic basis of eigenfunc-
tions of the adjoint of a symmetric relation.

Lemma4.1l. Let S be a closed symmetric linear relation in a Hilbert spa€avith
defect indexd,, d—). There exists a holomorphic row vector functidn ct >
A% such that the components®tz) constitute a basis foker(S* — z), z € C\R.

Proof. Let nge any selfadjoint extension &fin #.Let P, denote the orthogonal
projection ins# onto#. Foru € C™ let

O() = (P1()s - - - b, (1)),
O() = (P1(), - - -, pa_ (1))

be row vectors whose entries form a basis fork&r— 1) and ket S* — 7x). Define
forz e CT,

B(2) = (I + (z — W) Pr(A —2) ) d()
= ((I + @ — W Pr(A -2 (),
(T @ =W Pr(A =2 N ga (W)
andforz € C7,
B(2) = (I + (2 =W Pr(A — ) ) O(m).

We show thatb(z) has the desired properties. We restrict the proaf &C™*; the
casez € C~ can be treated similarly. For arbitragy, v} € S we have that

(14 @ = Pr(A=2Ne;i(w), v —Zu)
= (¢ (w). v —Zu) + 2 — g ). (A — 2~ — 7))
= (¢j (), v —Zu) + (z — W (pj (), u)
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= (¢ (), v — fu)
=0

asv — u € ran(S — ;) = (ker(S* — w))*. It follows that the components of the
vector

(I+G@—wPyr(A—2) b

are orthogonal to ra8 — z) = (ker(S* — z)). This proves that the components of
@(z) belong to ketS* — z). To show that they are linearly independent it suffices to
show that ifp € ker(S* — ) and

(I+G@—-wPr(A—2)"1)p =0, (4.1)
then ¢ = 0. If (4.1) holds, then there is a e o A such that(z — ,u)(A -
2) 1o —h ¢ or, equivalently,{(z — )¢, h—¢te(A—z2Yor{h—¢,zh —
uol e A.FromA = A* we get

0=[[{h — ¢.zh — pug}. (K — p. 2h — g}l

=2Im@)[1A]1 + 2 Im(w) [ $1I.

As Im(z), Im(un) > Owe seep = 0. [

If, as in Lemma 4.1, the components &z) form a basis, we shall simply say
that®(z) is a basis; if additionally the components are holomorphic we&gl) a
holomorphic basis. In the sequel, we also use the following notatiane IE* and
®(2) = ($1(2), . . .. da. (2)) is a basis for keiS* — z), thend(z) stands for the basis
for $* N zI given by

O(2) = (11(2), 201D}, - - - (P (2), 200, (2)})
and, ifb is a boundary mapping f@, b(®(2)) is thed x d+ matrix

b(@(2) = (b($1(2), 201(2)), - . ., b(@a, (2), 294, (2))).

If (o, (-,-)) isaninner productspace andit= (v1, ..., vy) andw = (wy, ..., wy)
are vectors with entries i, then(v, w) stands for the x m matrix

(v, w1) (v2, w1) - (U, w1)

(v, w2) (v2, w2) - (Um, w2)
(v, w) =

(v1, wy) (v2, wp) -+ (U, wp)

In the following proposition, we construct minimal boundary coefficients from
a boundary mapping for a symmetric relati@and a holomorphic basis of
ker(Ss* — z2).
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Proposition 4.2. Let S be a closed symmetric linear relation in a Hilbert spae

with defect indeXd,,d_), d = dy +d_- < oo.

(a) Letd(z) be a holomorphic basis fder(S* — z), z € C\R, and let b be a bound-
ary mapping for S with Gram matri@. Then the matrix valued functio#(z) :=
(Qb(@(2)))*, z € C\R, is a minimal(—Q)-boundary coefficient.

(b) Let @1(z) be another holomorphic basis fder(S* — z), z € C\R, and let
by be g\nother boundary mapping for S with Gram mattix and %1(z) :=
(Q101(91(2)))*, z € C\R. Then

U(z) = A (D)UL(D)A

for some invertible matrix function/(z) of sized+ x T if z e C* and a con-
stant invertibled x d matrix A such thatAQ 1A* = Q7

Proof. (a) Forz e C* the row vectordi(z) hasdy components which are vec-
tors from $* Nz/. The mappingQb maps each component fro(z) to ad x 1
vector in C¢. Thus, Qb(d)(z)) is adxdg matrlx and%(z) is ad¢ xd ma-
trix. This proves ¢1). Sinced(z) is holomorphic, (7) is anti- holomorphic, and
consequentI)Qb(di(z)) is also anti- holomorphlc Therefor@g(z) is holomorphic
and (2) is proved. Since the vectors m(z) and <13(z) are linearly independent
and sinceQb is a bijection on(S* NzI)4+(S* NzI) it follows that the matrix
Qb(P@) Qb(D(2)) = (U(2)* %(Z)*) is invertible. Thus, the property(3)
holds. We calculaté/ (z) (—Q™ Y (w)*:

A2 (- QYU (w)* = b(@@)*Q(—- Q1) Qb (@)
= b(B@)* (—Qb(B(W))
= —[®w). D))
= i}(z — W) (W), PQ@)).

Thus,% has the property#4) and
Ku(z,w) = (®(w), P(2)), z#w, z,we C\R. (4.2)
It follows that the block matrix(K (A ;, Ak));{kzl is Gram matrix of vectors in

®(11), ..., P(r,). Therefore, the functiom (z) has the property#5).

(b) Letb andb; be two boundary mappings f&with Gram matricef andQ1
and let®(z) and ®1(z) be holomorphic basis for kes* — z). Then there exist in-
vertible matrice\ and.<Z(z) such thaQb = A*Q1b1, AQ 1A* = QIl and®(z) =
®1(z)7(2)*. The linearity ofb1 implies thatQb(d(z2)) = A*Q1h1(P1(2). A (2)*) =
A*Q1b1(P1(2))+/(Z)* and therefore (b) is proved.0

To show that Proposition 4.2 has a converse we make use of the theory of repro-
ducing kernel Hilbert spaces. L&tbe ad x d invertible selfadjoint matrix withi,-
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positive and/_ negative eigenvalues. Léf(z) be aQ-boundary coefficient. With the
kernel K4 (z, w) in (#5) we associate a reproducing kernel Hilbert sp#ceK ;).
It is the completion of the linear space of the holomorphic functions

n
Z HZK%(Z,wJ’)Xj, z € C\R, ijCi, XjGCdi,
j=1
j=1...,n, neN,

with respect to the inner product
n m n m
<Z KyCowpxj, Y Ky, Mk)yk> =Y yiKulu, wi)x;.
j=1 k=1 j=1k=1
This completion consists of column vector functigh@) which are holomorphic on
C\R, and are of sizel+ x 1 onC*. The inner product off (z) in #(K) with a
functionz — Ky(z, w)x reproduces the value ¢f(z) atz = w in the directionx:

X fw) = (f0), Ku (-, w)x).

By the continuity of the kernek 4 (z, w) for any finite subsef’ ¢ C\R the linear
manifold

H5(Ky) = spar{z — Ku(z, w)x (z € C\R): w € C*\F, x € C%}
(4.3)

isdense in# (Ky).

Lemma4.3. LetQ andQi bed x d invertible selfadjoint matrices with;. posi-
tive andd_ negative eigenvalues. Lét be aQ-boundary coefficientiet %1 be a
Q1-boundary coefficient and assume that

U(z) = A ()UL(D)A

for some invertible matrix function/(z) of sized+ x d¢ if z € C* and a constant
invertible d x 4 matrix A such thatAQ !A* = QIl. Then the operator of multi-
plication.«/(-) : f(z) — 2Z(2) f (z) is an isomorphism fror# (K 4) onto # (K,)
and under this isomorphism the operatdig and S4, of multiplication by the inde-
pendent variable z coincide.

In particular, if % has a minimal representatio3.2),then the reproducing ker-
nel spaces# (K4) and s (K4,) are isomorphic and under the isomorphism the
operators of multiplication by the independent variable z coincide.

Proof. The kernels associated with the boundary coefficiénsd, are

i/ Lo * Y —1y %
Koy(z,w):iw7 Kooy — i 7AEQ 11 w)

zZ—w
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and so fromi(z) = .o/ (2)U1(z)A andAQ™A* = Qil we obtain

g “1ax . i
Ky(z, w) = |"Q{(Z) U1(2)AQ™ ~A* U1 (w)*.of (w)

— = o/ (2)Ku, (z, )/ (w)*.
Z—W

Hence, for alw € C* andx € C%, z e C* andy € C%,
(K’Z/('v U)).X, K%('v Z)y)fy/ = <K%1('7 U))&{(U))*.X, K%l('a Z)M(Z)*y>ﬂy,la

which implies that the linear operator which maps (-, w)x to Ky, (-, w).o/ (w)*x
extends by continuity to an isometry frasi(K4) to # (K4,). We denote its adjoint
by W. Then forw € C* andx e C%*,

x*(WhY(w) = (Wh)(-), Ku (-, w)x) o,
= (h(), Kuy (s ) () "x) o,
= x*o (w)h(w)

and soW is the operator of multiplication by/(-) and is a partial isometry from
H (Ky,) onto # (Ky). As o/ (z) is invertible,Wis in fact a unitary operator. Evi-
dently, the operators of multiplication kain 5 (K4) and.#(K4,) are isomorphic
underw. O

Thus, to study the operatdy, of multiplication byzin s (K4) we may assume
without loss of generality that/(z) is a minimalQ-boundary coefficient. The fol-
lowing theorem gives a representation of a minimal boundary coeffidi€nt in
terms of the operato$; of multiplication byz in the reproducing kernel Hilbert
space#’ (Ky).

Theorem 4.4. LetQ be ad x d invertible selfadjoint matrix withi,. positive and
d_ negative eigenvalues. Lét(z) be a minimalQ-boundary coefficient.

(a) The operators; of multiplication by z in the reproducing kernel Hilbert space
A (Ky) is a closed simple symmetric operator with defect in@ex d.). Its
adjoint is given by

"= Sp—af{{K%(u w)x, WKy (-, w)x}: w e C* xe Cdi}. (4.4)

(b) There exist a boundary mappirbg for S; with Gram matrix—Q and a holo-
morphic basisb; (z) for ker(S}, — z), z € C\R, such that

U(z) = (Qbu(P1(2)))*.

(c) Let by be an arbitrary boundary mapping fdf;, with Gram matrixQ, and let
Po(z) be an arbitrary holomorphic basis faer(S}, — z), z € C\R. Then

U(z) = A (2)(Qba(P2(2)))*A

for some invertible matrix functios/(z) of sized+ x dx if z € C* and a con-
stant invertibled x d matrix A such thanQ—*A* = —Q; .
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Proof. To prove (a) consider the linear manifold

n n
Thax = { { Z Ku(, wj)xj, Zw/K%(~, w;)x;j }3
j=1 j=1
neN, w;eC* xjeCd*}

in the space# (K4 )2. The closure of this manifold i’ (K ;)2 is the linear relation
Tmax. Consider the boundary forif, - on T,

|:|:{ Z Koy(, wj)xj, ijKo]/C, wj)xj},
j=1 j=1
{ > Kl udye, Y uxKu(, uk)Yk}:|:|

k=1 k=1

1(] & S
= i_<<zlel(%(-,wj)xj, ZK%(',Mk)Yk>
j:

k=1

—< Z Koy (-, wj)x;, ZﬁkK’]/(', Mk)yk>>

j=1 k=1

1 n m
=7 ZZ(ijlfK%(uk, w;)x; — ugy; Ko (ug, wi)x;j)
j=1k=1
1 n m
== ZZ(WJ' —up)yi Ku(ug, wj)x;
j=1k=1
IR U () QMU (w))*
:.—ZZ(wj—uk)th — T x;
| k=1 U — Wj
n m
==Y D @) Q MU (w))*x;
j=lk=1
m * n
= —(Z%(uk)*yk> Q1<Z%(wj)*xj>. (4.5)
k=1 j=1

Since the forni[-, -]] is continuous on# (K )2 the subspac€la,y. [+, -1 is a dense
subspace of the pseudo-Krein sp@€gax, [+, -1). The isotropic part offnax is the
closureTmin of the following linear manifold:



118 B. Curgus et al. / Linear Algebra and its Applications 329 (2001) 97-136

To. = H Y KaCowjxj, Y wiKul,w))x; }:

j=1 j=1

n

> Uwj)x;=0 N, w; € C*, x; e C*
/(wj)’x;j =0, neN, w; € , Xj € .

j=1

Since we assume théat(z) is a minimal boundary coefficient it follows that the
mappingb® : T;%,, — C? defined by

b® ({ Y KuCowpxj, Y wiKu(, w./)xj'}) = Uw))*x;
j=1 j=1

j=1

is onto. This mapping is continuous with respect to the topolog# 6k ;). Clearly,
ker(b®) = T,,- Therefore, dinT 3.,/ Trrir) = d. Denote byb the extension 0b° to

in min
Tmax by continuity. Then keb) = Tmin. The mapping is a boundary mapping for
Tiax. It follows from (4.5) that Gram matrix df is —Q L.

Letu € CT. Put
My, = spar{{Ky (-, )x, pKu (-, )x}: x € C-} C TN 1l
Mz = spa{{Ku (-, wx, WKz (-, w)x}: x € CH} C T NTEL.
SinceZ(z) is a minimal boundary coefficient we conclude that
dim(.#,) =d- and dim.Zz) =dy,

(4.6)

and

My N Mz =0y and (4, [+F47) N T, = {0).
Since

d=d_+dy =dima , [+47) < dim(Toad Tmin) = d,
we conclude that the following decompositionZf,, holds:

Toax = Toinll-F4 14147, direct sums in#? .

Continuity of the inner produdg-, -] in the space?f([@z,)2 implies that the same
decomposition will be true for the closures:

Tmax = Tminl[+ 1.4 ([ -+11.4, direct sums in#?. 4.7
jz Iz

Evidently, Tnin is the isotropic part ofmax. We now want to apply Proposition A.2
from Appendix A. We need to be specific about the fundamental symmetry of the
Krein space.# (K )2, [[-, -1) that induces the decomposition (4.7). That fundamen-
tal symmetry is

_ 1 —Re(u) 1)
’“—nmw(—w Re(n))’ (48)
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We now have to prove that

Ju Tmaxt+Tmax = %(KJZ/)Z- (4.9)
Using the notation introduced in (4.3), it is sufficient to prove that
Tu(Toad + Tmax = A 3 iy (Ku)?, (4.10)

since the closure of the left-/right-hand side of (4.10) is the left-/right-hand side of
(4.9). Letw, v € (C\R)\{u, u} and leta andc be vectors of appropriate size. Put
’ l / 1
a = ———@a and = —————c.
2(n —w)(m —w) 2(n —v)(L— )
A straightforward calculation shows that

_ _( Ky(,w)d Ky (-, v)c
(/J“ - M)JM (w (w[(%('7 w)a/> + (UK%(.’ v)c/>>

K%(-, w)a’ )

EK%(~, w)a’

T <(2Mﬁ — W+ ) (
(i + D) — 20) ( Kt ) )

VK (-, v)c’
_ (K, wa
Ku(-,v)e )
Taking linear combinations over all, v € (C\R)\{u, 1t} leads to (4.10).
Thus, we have proved tha@f;,,, = Tmin. We now give another characterization of

Tmin. By the definition of the adjoint| f, g} € #(K4)? belongs tol hay if @and only
if foreach{K (-, w)a, WK4(-, w)a} € TmaxWe have

0=1{f. g} {Ku(, w)a, WKy (-, w)a}l

1
= 7 (g, Ku (s wia) = (f, WKy (-, w)a))

1
= i—(a*g(w) —a*wf(w)). (4.11)

Since (4.11) holds for ally € C* and for alla € C%* we conclude thatf, g} €
A (K 4)? belongs tal, if and only if g(z) = zf(z), z € C*. Therefore, the oper-
ator of multiplication byz in 5 (K4) equalSTmin,

Su = Tmin.
Thus,Sy is a closed and symmetric operator with defect ingex d..). SinceS}, =
Tyin = Tmax (4.4) holds and consequently is simple. This completes the proof of
part (a).
The proof of (b) follows. Put; = Q!», whereb is the boundary mapping
for S, with Gram matrix—Q ™ introduced in the proof of part (a). Then is a
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boundary mapping fof; with Gram matrix—Q. Note that for theth basis vec-
tor e; of Cl=, j=1...,d=z, the vectorKy(-,2)e;, j =1,...,d+, form a basis
of ker(Sy —z), z € C*. Let ¢1(z), z € C*, be the vector whose components are
the vectorsKy (-, 2)ej, j =1, ..., ds. Since#(z) is holomorphic onCE, d4(z) is
holomorphic there too. Using the above definitions we get

b1(P1(2) = Q6(P1(2))
=Q @D er -+ UR)*eq)
=Q'u@*.

This readily implies (b).
Part (c) follows from Proposition 4.2(b). The theorem is proved.

Corollary 4.5. Let S be a closed simple symmetric operator in a Hilbert space
(A, (-, -) ») with defect indexXd,d-), d = dy + d— < oco. Then there exist d x

d invertible matrixQ with 4. positive and/_ negative eigenvalues and a minimal
(—Q)-boundary coefficient/(z) such that S is isomorphic to the operatéy of
multiplication by the independent variable in the reproducing kernel Hilbert space
H(K4) and

§* = spar{{¢. z¢}: ¢ € ker(S* —z2), z € C\R}.

Proof. Assume thatS is a closed simple symmetric operator in a Hilbert
space(H, (-, -)») with defect index(ds,d-), d =dy +d—- < oo. Let U(z) =
(Qb@(Z)))*, whereb is a boundary mapping fds with Gram matrixQ and ®(z)

is a holomorphic basis for kés$* — z). By Proposition 4.2%(z) is a minimal
(—Q)-boundary coefficient. It follows that the kernel

A @Q U (w)*
I—w
is nonnegative. We show tha® in # is isomorphic to the operatoy
of multiplication by the independent variable in the reproducing kernel space
(A (Ka), (-, Y w(k,))- By Theorem 4.4 the defect index 6f, is equal to that of
S Denote byU : # — # (Ky) the linear operator
U@@)x) = Ky(-,w)x, weC*, xeC¥.

From (4.2)

K’Z/(Zv U)) = -

(PW)x, P@)Y)w = ¥y Koz, w)x = (Ky (-, w)x, Ky (-, 2)Y) #(Ky)-

HenceU is isometric. AsSis simple, doniS*) is dense in# and as the kernel func-
tions K4 (-, w)x are total in#(K) the range otJ is dense in#(Ky). Therefore,

the closure oU is a unitary operator which we also denotelbyUsing Theorem

4.4 we conclude:
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Sculs,u cuisiu
spar{{®(W)x, WP (W)x}: w e CF, x € C*} C §*.

Since din(S*/S) = dim(S;},/S») = d, we haveS = U~15,U and the formula for
S* holds. O

5. Linearization of the boundary eigenvalue problem

Theorem 5.1. For j =0, 1, letS; be a closed symmetric relation in a Hilbert space
(K, (-,-)j) with defect indexw |, ©}), ®; = ] + ] < oo, and letb; : §% —
C“/ be a boundary mapping faf; with Gram matrixQ; .
(a) So @ S1 has a canonical selfadjointextensiarin the HiIbertspaceé? =HoD
A1 suchthatd N #% = S;, j =0, 1, ifand only if
a)a' =w; and wy = a)f. (5.1
(b) Assume thats.1)holds and set» = wp = w31. The formula

A= { {(;2) (Zi)}i {fo, g0} € S5, {f1, 81} € 8%,

bo(fo, go) + I'b1(f1. 1) =0 (5.2)

gives a one-to-one correspondence between all canonical selfadjoint extensions

Aof So@® S1in #o@® #1 with AN #?3=S;,j=01 andallo x »invert-
ible matricesl” with Q; + I'Qpl" = 0.

Proof. Letu € C*. Then the Cayley transform

V=CuS={{g—nuf,g—usr} {f ges}

gives a one-to-one correspondence between all selfadjoint rel&iona Hilbert
space and all unitary operatd¥sand also a one-to-one correspondence between all
symmetric relation§and all isometric operatohd

V.domV) =ran(S — u) — ran(V) =ranS — ).
The inverse is given by

S=F, (V)= {{u — v, mu — puv}: {u, v} e V}.
Clearly,C,,(#73) = Fu(#%) = #3,j =0, 1.
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Recall that a symmetric relation has a canonical selfadjoint extension if and only if
iLs defect numbers are equal. In the cas&ypb S1, a canonical selfadjoint extension
A of So @ §1 exists if and only if

a)g + wir =wy + o] . (5.3)
If (5.3) holds andV; = C,.(S;), j =0, 1, the formula

U = Cu(A)
Vo O 0 0 ran(So — ) ran(So — 1)
0 Voo Vor O ker(Sg — 1) ker(Sg — )
= : x — | — " (5.4)
0 Vio Vin O ker(S7 — 1) ker(S7 — w)
0 0 0 ran(Sy — w) ran(S1 — o)

gives a one-to-one correspondence between all canonical selfadjoint extehsibns
So @ S1 and all unitary operators

_ (Voo Voi\ . [ker(S§ —m) ker(Sg — 1)
= <V10 V11) ' (ker(si ~w) 7 \kerts; — ) (5:5)
Since the Cayley transform of an intersection of linear relations is the intersection

of the corresponding Cayley transforms we have that %’f = §; if and only if
Una#% =V, j=0,1. Since, for example,

~ 2 _ fo Vofo\|.
vnse= = {<¢o)’ (Voowo)} '
fo € dom(Vo), o € ker(Sy — 1), Viopo = 0},

we conclude thatd N #2 = S if and only if ker(Vip) = {0}. Analogously,A N
A2 = 8y if and only if ken(Vo1) = {0}.

We now prove (a). IfA with the desired properties exists, the injectivityVaf
andVp1 imply

Wy < a)f, w; < a)g.

By (5.3) equalities prevail. Conversely, if (5.1) holds, bijectidfg and Vo exist
and withVgo =0 andVy1 =0 theyNgive risg to a unitary mappirlg of the form
(5.4). The inverse Cayley transform= F, (U) now has the desired properties.

We proceed with the proof of (b). Assume thiats a canonical selfadjoint exten-

sion of So @ S1in # = Ao @ A1 such thatd N H?% =5;, j=0,1 Applying the
inverse Cayley transformation to both sides of the second equality in (5.4) we obtain

A= So @ S1+N, direct sum in7f , (5.6)
where, in terms of the operatbrgiven in (5.5),
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oo g ()

o € ker(Sg — ), ¢1 € ker(ST — 1) }

The elements ilN are of the form
fo\ (&o
f1) \&1

fo = @0 — Voopo — Vo1,
80 = o — uVoopo — uVoie1,
JS1 =01 — Viopo — V1i1e1,
81 = o1 — uViopo — uV11e1,
wheregg € ker(S§ — i), g1 € ker(S; — ). The mapping
(:’;2) ~ {fo. g0}

is a bijection from ke(Sy — 1) @ ker(ST — ) onto (So N w-(So Nwl), direct
sum iané. The injectivity follows from the facts that the last sum is direct and that
Vo1 is invertible. The surjectivity follows from the fact thébo, weo} is the pro-
jection of { fo, go} € (So N pI)+(So N 1) ontoSo N pul andgs = Vig;'(fo — po +
Voowo). Similarly, the mapping

(:’;2) > {f1, 1)

is a bijection from ke(Sy — 1) @ ker(ST — ) onto (51N w-(S1Nwl), direct
sum in%ﬁ. Hence, the four equalities in (5.7) define a bijection
T :{fo, go} > {/1, g1}

from (So N wI)+(So NI) onto (S1 N ul)+(S1 Nl), andN is the graph of this
bijection:

v={8) @)

{fo. g0} € (SoNuD)+(SoNEI), {f1, 81} =T (fo, g0) ¢ - (5.8)

with

(5.7)

SinceN is a restriction of a selfadjoint relation we haec N* and therefore any
two elements
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[ G CE)-()] <

satisfy the identity

(g0, fo)o — (fo. go)o = —((g1. f1)1 — (f1. 81)1).
Hence, if forj = 0, 1, we provide(S; N wI)+(S; NzI) with the indefinite inner
product

Wf5, 8, (f, g} = %((gj» I =i &1
the mapping

T (SoNuh)+SoNED, [T Do) = ((SoNpuh+(So NED). [ -T1) (5.9)
satisfies

1Y (fo, g0), T (S, g0) 11 = —I{ fo, go}, {fo. go}lo

for all { fo, go}, {f§, &b} € (So N uD)+(So NTI), thatis, T*T = —1. As A is sel-
fadjointin 27, by (5.6)

A* = A = (S5 @S5 NN* (5.10)
In this formulaN* is the adjoint ofN in # and s} stands for the adjoint of; in
Hj,j=01
Let
{@o1, Bo1}. - - - {@0w, Bow}

be a basis fotSo N wl)+(So N wl) and set
T(O‘Ora ﬂOr) = {aJJ'? 181}’}5 r =17 25"'76()' (5'11)
Then

{11, B11}, . . ., {210, B1w}

is a basis for(S1 N wl)+(S1Nl). For j = 0,1, let I'; be thew x w matrix of
which therth column vector is the column vector; («;,, B;-). Evidently, I'; is
invertible and

(I5Q,; T j)rs = bj(ejr, Bjr)*Qjbj(etjs, Bjs)
= [{eys, ﬂjs}a{ajr,ﬂjr}]]j, r=1..., 0.
These equalities and (5.11) imply tHat T = —1 is equivalent to

I$Qolo = —I';Qul'1.
Finally, (5.10) implies
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A= H <§2> <§2> }3 {fo, g0} € S§, {f1,81) € S},

[I{fO’ gO}v {OlOr» /BOr}]]O + [[{fl’ gl}’ T(“Or, ﬂOr)]]l = O’ r= 1’ cre a)}

- H (2) (ii) }: {fo. g0} € Sp. {/1. 81} € S1,

I'oQobo( fo. go) + I't1Q1b1(f1, 81} = 0}~

Thus, if we set” = Q;* 'y *I'iQy, then
Q1+ I*Qol'=0 (5.12)

and

A= { { <§2> (?2) }: {fo, go} € Sp. {/f1, 81} € S1,

bo(fo, go) + I'bi(f1, g1} = 0}~ (5.13)

Conversely, if we assume that (5.2) holds, Lemma 3.4(d) implies that the adjoint of
A is given by

A~* = { { <§2>, <§(])-> }: {va gO} € SE)k’ {flv gl} € SI’

Q1™ Qobo( fo, g0) — ba(f1, g1} = 0}-

Since we assume th@k + I*Qol” = 0 it follows thatA* = A. The invertibility of
I' implies thatA N %’f = S;, j =0, 1. Thus,A defined by (5.2) has all the proper-
ties stated in the theorem [

Lemma5.2. Let S be a symmetric relation in a Hilbert spag€ and letA be a
selfadjoint extension of S isf’. Let # = # @ #'1 and setS1 = AN /f% ThenA
is a minimal extension of S if and onlySf is simple.

Proof. Let §1 =S, + Ss, whereS, is selfadjoint in a subspac#’, C #1 and
Sy is a simple symmetric operator in¥’s = #1© #,. Then S, C A, hence
(S, —2)~1 c (A — z)~1 and therefore, since both are operators,
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S~ = (A= Y. zepANpS).

Hence,#, L # and#, are invariant undefA — z)~1. The minimality of A im-
plies that#', = {0}, that isS1 is simple. Conversely, assume ttatis simple and
let

Ay = H S spa A, ran((A — 2)7L): z € C\R}.
Then
(A=t #) = (#r, (A=) H) = {0},

(K =272, (K = w) ) = <jf (A —2)—;: EUA —~ w)_1%>
={0}, w+#7Z,
and, by continuity, lettingy — Z,
(-7 o, (A—2)7 ) = {0},
and hence#, is invariant undetA — z)~L. It follows that
Ana?={{A-2 " u+z(A -2t} uen,}
is a selfadjoint operator which is a part$§f. SinceS; is simples#, = {0} and (2.4)
is true. O

Theorem 5.3. Let S be a closed symmetric relatlon in a Hilbert spéa@é, (-, -) »)
with defect indexd, d-), d = dy +d- < oo. LetA be a minimal selfadjoint ex-
tension of S in#. Let # = # @& #1 and setS; = A N sz Let b be a boundary
mapping for S with Gram matriQ.

(a) There exists &-boundary coefficient” such that for each € C\R we have

PrA-27Y,=(T@-2)"

with
T(2) = {{f. &) € S*: W (2)b(f, g) =0}.

(b) Let be aQ-boundary coefficient with a minimal representat{@:®2)and such
that for eachy € C\R we have

PrA-27Y,=(T@-2)7"
with
T(2) ={{f.8) € S*: U()b(f, ) =0}.

ThenA N #2 = {{f. g} € S*: Uob(f,g) =0, Bob(f, g) =0} and the opera-
tor S1 is isomorphic to the operato§; of multiplication by the independent
variable in# (Ky).
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(c)For j =1,2, let Zj be a minimal selfadjoint extension of S in a Hilbert space

%j and denote by?; the orthogonal projection ir;’?j onto.#. The extensions
Aj, j =1,2, are isomorphic under an isomorphism that when restricted to the
space# acts as the identity operator ox” if and only if

PL(A1—27Y,=PL(A2-27Y,.

Proof. Let A be a minimal selfadjoint extension &fin the Hilbert spacaf Put
H1=H S H, So=ANAH?and Sy = AN #2. By Lemma 5.25; is a simple
closed symmetric operator irf’1. Let b1 be a flxed boundary mapping f6§ with

Gram matrixQ; and letW(z) be a fixed holomorphic basis of k& — z). The
relationSp is a closed symmetric extension@fPut dim(Sp/S) = . By Lemma 3.5
there exista x d matrixWg and, withw = d — 27, anw x d matrix Cg of maximal
ranks such that

_1(Wo\" _
WoQ (Co =0,

such thatCoQ1Cj is invertible and

Sg = {{/. g} € §*: Wob(f.g) =0}. (5.14)
The defect index ofg is (wy, w—), w+ =d+ — T andcp := Cob|53 is a boundary
mapping forSp with Gram matrixPg := (COQflcz’;)—l. The operatoﬁ is a canon-
ical selfadjoint extension afp & S1 in H = H @ A1 such thatSog = A N #2 and

S1=AnN JF% By Theorem 5.1(a) the defect index of the operatprs (w—, w4)
and by Theorem 5.1(b)

A= { { (?1)) ( ) } {fo. go} € Sy, {f1. 81} € 57,

co( fo, go) + I'b1(f1, 1) = 0}, (5.15)

whererl is a unique invertible» x @ matrix withQq + I'™*PoI’ = 0.
Put

Y (z) = (lel(@(f)))* and #o(z) =7 ()L, zeC\R.
By Proposition 4.2/7(z) is a minimal(—Q1)-boundary coefficient. It follows that
W o(z) is a minimalPo-boundary coefficient. Indeed, the properti@dj, (#2) and
(%3 follow from the corresponding properties af(z). To show the properties
(%4) and (/5) we use the definition of/o(z) andPo = —I'*Q.I' ! to calculate
Wo@P W o(w)* = 1T (= I*Qul ) 7 (# (w)I2)*
==V QI Qv (w)*
= -7 () Q17 (w)*. (5.16)
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Since ¥ (z) is a minimal (—Q1)-boundary coefficient it follows from (5.16) that
# o0(z) has properties#4) and @5). Thus,# o(z) is a minimalPg-boundary coef-
ficient.

Put

_( Wo
V@ = (WO(Z)C0>'

Since

(ratoco) ™ (atmco) =(6 waomgtacor)
W o(z)Co Wow)Co) — \O #o()Py™# (w)*

it follows that #"(z) is aQ-boundary coefficient.
We now show that/"(z) has the desired property. It follows from (5.15) that for
z € C\R,
Pu(A =27 w = {{g0— 2fo, fo):
{fo. g0} € Sp. co(fo, go) + I'b1(f1,81) =0
for some{f1, g1} € S§ NzI}. (5.17)
The condition or{ fo, go} € ST appearing in (5.17), namely,
co(fo. go) + I'b1(f1,81) =0 forsome{f1, g1} € ST Nzl, (5.18)
is equivalent to
QI co( fo. g0) € ran(Quba(P(2))) = ran(7"(2)*) = ran(I™* # o(2)*)
or, equivalently,
Poco( fo, g0) = —I'*Q1I"*co( fo, g0) € ran(# o(2)"). (5.19)

Since thePg-boundary coefficient/ o(z) satisfies #4), (5.19) is equivalent to
W o(z)co( fo. go) = 0. Setting

T(z) == {{ fo., go} € S§: # 0(z)co(fo. go) = O}, (5.20)
we conclude that

Pr(A-27Y,=T@ -7~
The definitions ofrg and#", and (5.14) imply that

T(2) = {{fo. go} € S*: # (2)b(fo. g0) = O} .

This proves (a).
To prove (b) note that, sinc# o(z) is a minimalPg-boundary coefficient, defini-
tion (5.20) implies that

T NTE =AnA#? forallz e C\R.

This was also observed in, for example, [12].
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Let %(z) be aQ-boundary coefficient with a minimal representation (3.2) de-
scribed in Theorem 3.2 and such that

T(2) = {{o. go} € S*: U(2)b(fo. go) = 0} .

The properties of the minimal representation (3.2) clearly imply that

T(z) = {{fo. go} € §*: Uob(fo. go) = 0, %0(z)Bob(fo. g0) = 0}.

Since the matrix

(”Zlo(z))
U0(7)
is invertible, for arbitrary, € C\R we have

So=A N A#?
=T(@)NTR)
={{f. g} € S*: Uob(f, g) =0, %o(2)Bob(f, ) =0, %o(Z)Bob(f,g) = 0}
={{/. g} € §*: Uob(/. g) =0, Bob(f. g) =0}.

Since and#” areQ-boundary coefficients and since for each C* we have

T (2)={{fo. go} € S*: # (2)b(fo. go) = O}
={{/f0. g0} € S*: U(2)b(fo. go) = O},

that is, ker# (z) = ker%(z), we conclude that there exists an invertible x d+
matrix .7 (z) such that#(z) = .</(z)# (z). Lemma 4.3 implies that there is an iso-
morphism from# (K 4) onto# (K ) and under this isomorphism the operat8s
andSy- of multiplication by the independent variabteoincide. Note that the con-
struction of#", Lemma 4.3 and the proof of Corollary 4.5 imply that the operators
Sy~ andSy are isomorphic. The combination of the last two statements completes the
proof of (b).

Statement (c) follows from the theorem that minimal selfadjoint linearizations
of the same Straus family are unitarily equivalent (see [11, Theorem 3.3] and [14,
Proposition 3.1]). For the reader’s convenience we sketch the proof of this result.
Assumed ; in the Hilbert space# ;, j = 1, 2, are minimal selfadjoint extensions of
Sin #, such that

PrAi-7Y, =T@ -0t =P(A2-27",. z€C\R

We show there is an isomorphistifrom 71 onto #, such thatw| ., acts as the
identity on.# andW intertwinesA; andAs:

Az = {{Wf, We): {f. g} € A}
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Chooseu € C\R. Using the resolvent identity, we obtain fgr g € # andz, w €
C\R,

(1 + G = w@E =) £, (T + @ = A1 - w) )5

71
(Z_M)(Z_ﬁ)<
z—w

=(f, g+ (T -2 g)

_Eoeop - PEZI 5 (7w — w) )

=((I + - WA= f (I + W — w(Az — w) Yg)5

x
This shows that the relation

spar{ {(7 + = WAL =) ) [ (I + & — (A2 = 7Y f]:
feH, zeC\R}

in }?’1 X }?2 is isometric and has a dense domain and dense range, be?élauad
A are minimal extensions. Hence, its closure is the graph of a unitary opgvator
from #1 onto # with the property

W[(I+Gc-w@Ai- Y f]=(I+@c-wAz2—2 )1
feH, zeC\R.
In particular,Wf = f for f € # (setz = u) and
W[(A~1 - z)*lf] =(A2—2)"Yf, fed, zeC\R.
These equalities and the resolvent identity imply forfalk »# and allz, w € C\R,
WAL —w) (I + (2 — w(A1— 27 f]
= (A2 —w) (I + @ - wA2— 27 f]
= (A2 —w) W[(I + . — WAL — )7 ]
and so, by continuityW[(A1 — w)~th] = (A — w)"Wh for all h € #1. From
Ai={l@A; = h+2A; =) he #;), j=12
(here the set on the right-hand side is independent®fC\R), it follows thatW
intertwinesA; andA,. O
In the following theorem, we consider the following boundary eigenvalue prob-
lem.

Forh e # find {f, g} € S* with g — zf = h and Z(2)b(f, g) = 0.  (5.21)
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By definition, a linearization of this problem is a selfadjoint extenstoof Sin #
such that the unique solution of (5.21) for each C\R is given by

f=Py(A—2"h, g=h+zf

Theorem 5.4. Let S be a closed symmetric linear relation in a Hilbert spate
with defect indexdy,d-), d =d;+ +d- < oo, and let b be a boundary mapping
for S with Gram matrixQ. Let  be aQ-boundary coefficient and assume that it
has a minimal representatiai3.2). Let Sy be the operator of multiplication by the
independent variable in the reproducing kernel Hilbert spa€ekK ;).

(a) There exists a boundary mappihg for S5 such that

A= { { <]]:1)’ <§1> }: {f, g} eS* {f1,g1} €5},

Uob(f, g) =0, Bob(f, &) +bu(f1,81) =0

is a minimal linearization of the boundary eigenvalue prob{(&r21) The matrix
—(BoQ1B})~t is Gram matrix oty

(b) If b2 is an arbitrary boundary mapping fa$;, with Gram matrixQ,, then there
exists a unique» x w matrix I such thatQ, + ' (BoQ 1B%)~*I' = 0 and

i= { { <JJ:1) (51) }: {f.8) €57 (f1.81) € 53,

Uob(f, 8) =0, Bob(f, g) + I'b2(f1,81) = 0}~

(c) Any minimal linearization of5.21)is isomorphic toA, under an isomorphism
that when restricted to the spac€ acts as the identity operator o#’.

Proof. Let She a closed symmetric linear relation with the defect in@ex d_)
and letd =d, +d_. Let b : $* — C¢ be a boundary mapping f@& with Gram
matrix Q. Let%(z) be aQ-boundary coefficient with a minimal representation (3.2)
described in Theorem 3.2. Further on in this proof we use the notation and results
of Theorem 3.2. LeSj := {{f, g} € S*: Uob(f, g) = 0}. Then Lemma 3.5 implies
thatSo = {{f, g} € §*: Uob(f,g) =0, Bob(f, g) =0}, So is a closed linear sym-
metric extension oS with defect index(w,, w—) and dimSp/S) = . Note that
Bob|sg is a boundary mapping fdf with Gram matrix(Bonle;)—l. By Theorem
4.4(b) we can choose a boundary mapgipdor the operatoss; with Gram matrix
—(B()Q‘lB(’;)*l and a holomorphic basiB(z) for ker(S;, — z), z € C\R, in such a
way that

Uo(2) = (— (BoQBE) ‘bu(@@))".
We now can defind as given in the theorem:
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=[G oo mmes

Uob(f,8) =0, Bob(f, g) +bu(f1,81) = 0}~

It follows from Theorem 5.1(b) thaf is a canonical selfadjomt extensionSy @ Sx

in # @ A (Ky) suchthatd N #2 = Sy andA N # (K4)? = Sy. Thus,A is an ex-
tension ofS. Since by Theorem 4.4(a) the operafaris simple, Lemma 5.2 implies
thatA is a minimal selfadjoint extension & As in the proof of part (a) of Theorem
5.3 we have

Pr(A-27Y, ={lg—zf f): {f.g) € S*, Uob(f,g) =0
Bob(f, g) + ba(f1,81) =
for some{f1, g1} € Sj NzI}.

Because of the special choice of the boundary mappijngnd a holomorphic basis
P(z) for ker(S;, — z), as in the proof of the part (a) of Theorem 5.3, we conclude
that

Bob(f, &) + bu(f1,81) =0 forsome{fi, g1} € S, Nzl (5.22)
is equivalent to%o(z)Bob (f, g) = O. Letting
T(z) :={{f. g} € $*: Uob(. g) =0, %o(z)Bob(f.g) =0},
again as in the proof of (a) in Theorem 5.3, we conclude that
Py(A-271,=T@ -2t
Theorem 3.2 yields that
T(x) = {{f. g} € S*: U()b(f, g) =0}.

Thus, A is a linearization of the boundary eigenvalue problem (5.21). This proves
(a).

We now prove (b). Letb, be an arbitrary boundary mapping fol, with
Gram matrix Q.. Since the operatoA is a canonical selfadjoint extension of
So @ S, Theorem 5.1(b) applied to the boundary mappibgswith Gram matrix
(BonlB;‘;)—l, andby implies that there exists a uniquex » matrix I such that
Q2+ I*(BoQ !B ~r=0and

M) s vares:

bo( fo, go) + I'b2(f1,81) =0

)



B. éurgus et al. / Linear Algebra and its Applications 329 (2001) 97-136 133

={{ (J{;) (51) }: {f.8}eS" {f1.81} €85

Uob(f, 8) =0, Bob(f, g) + I'ba(f1,81) = 0}-

Statement (c) follows from Theorem 5.3(c)

Appendix A. Extension theory in a Krein space environment

In this section, we study neutral subspaces of a Krein sp#cd-, -]). The dis-
cussion at the beginning of Section 3 shows that the neutral subspaces of a Krein
space are surrogate symmetric relations in a Hilbert space. In this section, we use
Krein space terminology and notation. For similar results in symplectic language;
see [16]; Table 1 is the dictionary.

First we describe a special Krein space in which the extension theory can be
formulated using Krein space geometry. This idea goes back at least tgaBmul
[24]. Let (4, (-, -)) be a Hilbert space. Then the Cartesian produ¢ endowed
with the indefinite product

1
[[{x, ¥}, {u, v} = =y, u) — (x, v)

i
is a Krein space. Let lijn) > 0. Then for arbitrary{x, ux} € ul we have

1
[I{X, I‘Lx}’ {xv M.X}]] = T((Mx’x) - (.X, I‘Lx>) = 2|m(,u)(x,x)

Thus, ! is a uniformly positive subspace 62, [[-, -1)). Similarly, 7/ is a uni-
formly negative subspace of72, [, -1). The subspaceg/ andx/ are mutually
orthogonal in(#2,[[-,-) and a simple calculation shows that? = wl[+1wl is

a fundamental decomposition ()ifz, [-, -ID. The fundamental symmetu, corre-
sponding to this decomposition is given by (4.8). A linear relation is a closed sub-
space of#’2. The adjoints* of a linear relatiorSin .# is the orthogonal complement

of Sin (A2, [[-,-1): §* = SIH1. A relation S is symmetric if and only ifSis a
neutral subspace 62, [[-, -1)), thatis, if S c SILI. von Neumann's formula is the
following result about neutral subspaces of a general Krein sg#ce-, -]).

Table 1

Relations in a Hilbert spac#” Subspaces of a Krein spagzz-iﬁ2
Adjoint Orthogonal complement
Symmetric Neutral

Selfadjoint Equal to its orthogonal complement
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Proposition A.1 (Generalized von Neumann’s formuldet 27" = " [+]4 _ be
an arbitrary fundamental decomposition of a Krein spdcg, [-, -]). Let ¥ be a
closed neutral subspace @, [-, -]1). Then

FH = SIS N DS 0. (A1)

Proof. Let J be the fundamental symmetry correspondingsto= ¢, [+ _,
let PL = %(1 4 J) be the orthogonal projection ont¢’y and let(x, y) = [Jx, y],
x,y € A, be the corresponding Hilbert space inner product. For an arbitrary sub-
spaceZ of . it is straightforward to verify that/ ¥ + & = P, ZL[+]P_%.
Since¥ is a neutral subspace we have that x, P, y] = —[P_x, P_y] and there-
fore (x, y) = £2[Prx, PLy] = 2(P+x, P+y) for all x, y € &. Thus, %P:Hy is
a unitary operator fromi., (-, -)) to (P+(¥), £[-, -]). ConsequentlyP (%) is a
closed subspace of .. Denote by . the orthogonal complement @ty (%) in
(A +, %[, ]). Since 0= [PL(¥), T +] = [, T +], it follows that 7+ c S,
Moreover, 7 + = N+, Indeed,c is clear and ifx € 1N ., then
[PL(9), x] = [, x] =0, whichimpliesx € 7 1. Thus, (A.1) can be restated as

g = 7117 ([+17 - (A.2)

Clearly, 7 . [+17 — = (Po(D) [+ P_ () = (J#+9)H. Therefore, (A.2) is
equivalent to = YN (J9+9). As & is neutral,¥ c &1 and therefore
S c SN J1s+5). SincesH = (1)), we haves ¥ n ) = {0}, and
therefore!!1 N (J ¥4+9) = . This proves Proposition A.1.[]

The next proposition is an alternative way of stating von Neumann’s formula in
which an emphasis is given to orthogonal complements of neutral subspaces.

Proposition A.2. Let (£, [+, -]) be a Krein space. Le¥ be a closed subspace of
(A, [-, -] and let Zg := ¥ n £ be its isotropic part. Ther?!* is a neutral
subspace of7” if and only if there exists a fundamental symmetry J/ofwvith the
corresponding fundamental decompositigh= %", [+]# _ such that

S =Ll LA )HH&ENAH) and JL+L =X (A.3)

If (A.3) holds for one fundamental decomposititimen it holds for every fundamen-
tal decomposition.

Proof. Assume that#!!! is a neutral subspace. Thesilt! = %, and Proposi-
tion A.1 implies that the first equality in (A.3) holds for an arbitrary fundamental
decomposition]. It follows from the proof of Proposition A.1 that Lo+.%0 =

P, Po[+]P_Zois the orthogonal complementin/’, [-, -]) of the regular subspace
(ZNH DH[FI(Z N ), which corresponds to [+]7 _ in Proposition A.1.
Therefore,

(J Lo+ LoFNL N A DL NAH ) = A (A.4)
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Since%o C £ we haveJ ¥ + ¥ = (J Lo+ Lo)[FI( LN A DF(&LNH_) =

Now assume that (A.3) holds for a fundamental symmétrgf #* and the
corresponding fundamental decompositiah = 7" [+]#_. Clearly, (A.3) im-
plies (A.4). Let.#’ denote the orthogonal complement &% in the Krein space
(JZLo+Z0, [-,-]). Then (A.4) yields

25 = 21RE N DR ). (A.5)

Since % is a maximal neutral subspace 6%7¢+.%, it follows that ¥’ = Zo.
Consequently, (A.5) and (A.3) imply’s”! = . Therefore #141 = s a neutral
subspace of.7, [-,-]). O

It follows from von Neumann’s formula (A.1) that the factor spasie!/s is
a Krein space. Sinceé N.#'+ = {0}, the Krein spaceS!+l/S can be identified
with (Y1 n o )[+1(SH n v _). Consequently, the numbers dish-! N 77,)
and dim(S™! N #"_) do not depend on the choice of the fundamental decomposition
AR
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