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ON THE LOCATION OF CRITICAL POINTS OF POLYNOMIALS

BRANKO ĆURGUS AND VANIA MASCIONI

(Communicated by N. Tomczak-Jaegermann)

Abstract. Given a polynomial p of degree n ≥ 2 and with at least two
distinct roots let Z(p) = {z : p(z) = 0}. For a fixed root α ∈ Z(p) we
define the quantities ω(p, α) := min

{
|α − v| : v ∈ Z(p) \ {α}

}
and τ(p, α) :=

min
{
|α − v| : v ∈ Z(p′) \ {α}

}
. We also define ω(p) and τ(p) to be the

corresponding minima of ω(p, α) and τ(p, α) as α runs over Z(p). Our main
results show that the ratios τ(p, α)/ω(p, α) and τ(p)/ω(p) are bounded above
and below by constants that only depend on the degree of p. In particular,
we prove that (1/n)ω(p) ≤ τ(p) ≤

(
1/2 sin(π/n)

)
ω(p), for any polynomial of

degree n.

Introduction

The attempt to locate the roots of polynomials has a long and golden history,
from the Galois-Abel theory to present day numerical methods, and yet the inherent
(nonlinear) difficulties have hampered the investigation of the geometrical side of
the subject. The classical literature presents some well-rounded results on the
relationship between the roots of a polynomial and those of its derivative, but no
groundbreaking progress has been registered since then. After seminal work by
Lucas, Grace and Haewood, J. L. Walsh has been at the forefront of this research
for a good part of the last century, and his work (and not only his) is summarized in
his excellent monograph [7]. After this, even more recent surveys (see for example
the excellent chapter on polynomials in [2], or [1]) do not display any essential
advance in knowledge (in terms of the geometry of the roots) compared to the
standard reference book by Marden [3], which summarizes most of the classical
work in the area. Generally speaking, it seems that the insight provided by Lucas’
Theorem (which says that the convex hull of the roots of p contains all the roots
of p′) and a handful of other classical results are still the best that the modern
researcher can rely on.

In this paper we study how two specific quantities measured on a polynomial
compare to each other. We present a local and a global version of these quantities
(see Proposition 2 and Theorem 4 below). At the global level, one of the quantities
(which we call ω(p), see (4) below), measures the smallest distance between any
two distinct roots of a polynomial p. The quantity ω(p) is referred to as sep(p) in
Mignotte’s book [4], where an entire section is devoted to the separation of the roots
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of a polynomial. Mignotte includes the proof of some delicate estimates involving
ω(p) but apparently no connection is made with the other quantity τ(p) (see (5)
below) which we study in this paper. The quantity τ(p) measures the smallest dis-
tance between any root of p and any of the “new” roots of the derivative p′ (that is,
the roots that are not already roots of p). While the first inequality in Proposition 2
and Theorem 4 is closely related to a result of Walsh [7], what we found interesting
was the discovery that the quantities τ(p) and ω(p) are actually (loosely speaking)
proportional. Moreover, the bounds in Theorem 4 are the best possible. To keep
the exposition self-contained, and also because the explicit definitions of ω(p) and
τ(p) are absent from Walsh’s writings, we will provide a new and more direct proof
of the first inequality as well. The second inequality in Theorem 4 contained a
surprise, in that its proof seemed to flow smoothly until we realized that a special
case of polynomials of degree n = 5 escaped the direct power of known techniques,
and this is why the work needed to cover the gap takes on the larger part of this
proof. While we duly apologize for the brute force approach to this special case, we
believe that the difficulty is a symptom of the number of truths that still remain
to be uncovered in the subject.

1. The inequalities

By C we denote the set of all complex numbers. For w ∈ C and r > 0 by D(w, r)
we denote the closed disk centered at w with radius r; that is, D(w, r) =

{
z ∈ C :

|z − w| ≤ r
}

. Sometimes we shall use the expression “circle D(w, r)” to refer to
the boundary

{
z ∈ C : |z − w| = r

}
of D(w, r). For two distinct complex numbers

u and v, by `(u, v) we denote the line passing through u and v. For a polynomial
p, we define Z(p) to be the set of all roots of p.

We are going to make repeated use of the following lemma which is a special
case of the famous Two-Circle Theorem due to Walsh [7, Theorem 1, p. 59] (also
see [3, Exercise (19,4)] and [5] for an interesting alternate discussion). We quote
the version we need for easy reference:

Lemma 1. Let α be any given point in the complex plane and p a polynomial of
degree n. Let n1 roots of p lie in the disk D(α, r1), and let the other n2 = n − n1

roots of p lie outside or on the circle D(α, r2). Then, if r = (n1r2 − n2r1)/n > r1,
we have that exactly n1 − 1 roots of p′ lie in D(α, r1) and exactly n2 lie outside or
on the circle D(α, r).

Let p be a polynomial and assume that p has at least two distinct roots, or
equivalently, Z(p′) \ Z(p) 6= ∅. Let α be a root of p. Define

ω(p, α) := min
{
|α− v| : v ∈ Z(p) \ {α}

}
(1)

and

τ(p, α) := min
{
|α− v| : v ∈ Z(p′) \ {α}

}
.(2)

In the following proposition we prove two inequalities for these quantities. The
first inequality in (3) below was obtained by Walsh (see [7, §3.1.1, Corollary to
Theorem 1]) as a corollary to his Two-Circle Theorem. Here we give a simpler
direct proof.

Proposition 2. Let p be a polynomial of degree n, n > 2, and assume that p has
at least two distinct roots. Let α be a root of p with multiplicity kα, 1 ≤ kα ≤ n−2.
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Then
kα
n

ω(p, α) ≤ τ(p, α) ≤ 1
sin
(

π
n−kα

) ω(p, α) .(3)

If n ≥ 2 and kα = n− 1, then τ(p, α) =
n− 1
n

ω(p, α).

Proof. Fix α1 ∈ Z(p). To prove the first inequality we only need to consider the
case when ω(p, α1) > τ(p, α1). This assumption implies that

τ(p, α1) = min
{
|α1 − v| : v ∈ Z(p′) \ Z(p)

}
.

Let k1 be the multiplicity of α1, and let α2, . . . , αm be all the other roots of p (each
with its corresponding multiplicity kj , j = 2, . . . ,m). Let z0 ∈ Z(p′)\Z(p) be such
that |α1 − z0| = τ(p, α1). Then we have

0 =
p′(z0)
p(z0)

=
m∑
j=1

kj
z0 − αj

=
k1

z0 − α1
+

m∑
j=2

kj
z0 − αj

,

and hence

k1

τ(p, α1)
≤

m∑
j=2

kj
| z0 − αj |

.

Consider that for every j ∈ {2, . . . ,m} we have

| z0 − αj | ≥ |α1 − αj | − | z0 − α1| ≥ ω(p, α1)− τ(p, α1) ,

and therefore
k1

τ(p, α1)
≤ n− k1

ω(p, α1)− τ(p, α1)
,

which is equivalent to

k1

n
ω(p, α1) ≤ τ(p, α1) .

Next we prove the second inequality in (3). Let n > 2 and fix α = α1 ∈ Z(p)
and let α2 ∈ Z(p) be such that ω(p, α1) = |α1 − α2| > 0. Let q = n+ 1 − k1 − k2,
where k1 and k2 are the multiplicities of α1 and α2 and k1 ≤ n − 2. Let K be
the segment joining α1 and α2, and define the star-shaped region S(K,π/q) to be
the set of all points w in C for which the angle at w of the triangle with corners
w,α1, α2 is greater or equal to π/q. By a result of Marden (see [3, Ex. (25,1)]),
p′ has at least one root u 6= α1 in the region S(K,π/q). So, we immediately
have that τ(p, α1) ≤ |α1 − u|. Now, it is a simple exercise in polar coordinates
to determine that a point z of S(K,π/q) that is most distant from α1 satisfies
|α1 − z| = (sin(π/q))−1|α1 − α2|, and this readily implies

τ(p, α1) ≤ |α1 − u| ≤
1

sin
(
π
q

) ω(p, α1) ≤ 1
sin
(

π
n−k1

) ω(p, α1) .

This proves (3). The last statement is easily verified since in this case p(z) =
(z − α)n−1(z − β) and consequently ω(p, α) = |α − β| and τ(p, α) = n−1

n |α − β|.
The proposition is proved.
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Lucas’ Theorem states that all the roots of p′ lie in the convex hull of the roots
of p, the so-called Lucas polygon of p. The importance of the first inequality in
(3) is that it provides an improvement to Lucas’ Theorem, which we state in the
following corollary. This improvement was observed by Walsh in [7, §3.4], but it
does not appear in the books [3], [2] and [1]. The idea behind this improvement is
extensively used in the proof of Theorem 4 below.

Corollary 3. Let p be a polynomial of degree n, n ≥ 2, and assume that p has at
least two distinct roots. Let α be a root of p with multiplicity kα. The set Z(p′)\Z(p)
is contained in the “Swiss cheese”-like region obtained by removing the interiors of
all the disks D

(
α, τ(p, α)

)
, α ∈ Z(p), from the Lucas polygon of p.

Next we define the global analogues of the quantities defined in (1) and (2). Let
p be a polynomial of degree n, n ≥ 2, and assume that p has at least two distinct
roots. Define

ω(p) := min
{
|w − v| : w, v ∈ Z(p), w 6= v

}
(4)

and

τ(p) := min
{
|w − v| : w ∈ Z(p), v ∈ Z(p′) \ {w}

}
.(5)

Clearly, τ(p) = min{τ(p, α) : α ∈ Z(p)} and ω(p) = min{ω(p, α) : α ∈ Z(p)}.

Theorem 4. Let p be a polynomial of degree n, n ≥ 2, and assume that p has at
least two distinct roots. Then

1
n
ω(p) ≤ τ(p) ≤ 1

2 sin(π/n)
ω(p) .(6)

Remark 5. The inequality (6) is the best possible. This follows from the following
two examples: for the polynomial p(z) = zn−1(z − 1) we have ω(p) = 1 and
τ(p) = 1

n , and for the polynomial p(z) = zn − 1 we have ω(p) = 2 sin(π/n) and
τ(p) = 1.

Proof of Theorem 4. The first inequality follows immediately from Proposition 2.
Indeed, letting α ∈ Z(p) be such that τ(p, α) = τ(p), (3) immediately implies

1
n
ω(p) ≤ 1

n
ω(p, α) ≤ τ(p, α) = τ(p) .

Next we prove the second inequality in (6). Let z1, z2 ∈ Z(p) be such that
ω(p) = | z1 − z2| > 0. By the Grace-Heawood Theorem (see [3, Theorem (23,1)]),
p′ must have a root in the closed disk D(c, r), where

c =
z1 + z2

2
, r =

| z1 − z2|
2

cot
(π
n

)
.(7)

Let w ∈ D(c, r) be such that p′(w) = 0. Since the center c of the disk D(c, r) is
the middle point of the segment joining z1 and z2, it is immediate to see that the
maximum of the set {

min{| z − z1|, | z − z2|} : z ∈ D(c, r)
}

is achieved at two diametral points of D(c, r), and by Pythagoras’ Theorem this
maximum is exactly

| z1 − z2|
2

√
1 + cot2

(π
n

)
=
| z1 − z2|

2
1

sin
(
π
n

) .
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Since we have | z1− z2| = ω(p), it follows that if w is different from z1 and from z2,
then

τ(p) ≤ min{|w − z1|, |w − z2|} ≤
ω(p)

2 sin
(
π
n

) .(8)

On the other hand, if w = z1 or w = z2, then

τ(p) ≤ | z1 − z2| = ω(p) .(9)

It follows from (8) and (9) that the second inequality holds whenever z1 and z2

are simple roots of the polynomial p or 2 sin(π/n) ≤ 1, that is, whenever z1 and
z2 are simple roots of the polynomial p or n ≥ 6. Since we assume that p has two
different roots, if n = 2, the roots z1 and z2 are simple roots. Therefore, the second
inequality in (6) holds for n = 2. Note that if n = 2 the inequality is trivially
verified as ω(p)/2 = τ(p) = | z1 − z2|/2.

The above argument leaves open the cases of n ∈ {3, 4, 5} in which z1 or z2

(chosen as above to satisfy | z1− z2| = ω(p)) is not a simple root of p. Next we give
a proof for each of these cases.

Let n = 3, ω(p) = | z1 − z2| and assume that z1 is a double root and z2 is a
simple root of p. Clearly in this case p has no other roots and therefore p(z) =
(z − z1)2(z − z2) (up to a constant multiple). A direct calculation shows that p′

has roots z1 and (z1 + 2z2)/3. Therefore τ(p) = ω(p)/3, and the second inequality
in (6) is true.

Let n = 4, ω(p) = | z1 − z2| and assume that z1 has multiplicity k1 and z2

multiplicity k2, with k1 + k2 ≥ 3. By a result of Marden (see [3, Theorem (25,1)]),
p′ has at least one root w (different from z1 and z2) in the disk D(c, r), where

c =
z1 + z2

2
, r =

| z1 − z2|
2

cot
(
π

2q

)
,

where q = n+ 1 − k1 − k2. Note that the disc D(c, r) may have a different radius
from the one considered in the first part of the proof, but still the same argument
applies to show that

τ(p) ≤ min{|w − z1|, |w − z2|} ≤
ω(p)

2
1

sin
(
π
2q

) .(10)

Since n = 4 we have

2q = 2(5− k1 − k2) ≤ 2(5− 3) = 4 = n ,

meaning that

1

sin
(
π
2q

) ≤ 1
sin
(
π
n

) .(11)

The inequalities (10) and (11) yield the second inequality in (6).
The rest of the proof deals with the case n = 5. Let ω(p) = | z1−z2| and assume

that the multiplicity of z1 as a root of p is k1 and the multiplicity of z2 is k2, with
k1 + k2 ≥ 3.

If k1 + k2 ≥ 4, then, as before, the second inequality in (6) can be deduced from
Marden’s result [3, Theorem (25,1)] since in this case we have 2q = 2(6−k1−k2) ≤
5 = n.



258 BRANKO ĆURGUS AND VANIA MASCIONI

Now consider the case when k1 + k2 = 3 and assume that z1 is a double root
of p and z2 a simple root of p, and p′ has no other root but z1 in the disk D(c, r),
where

c =
z1 + z2

2
, r =

|z1 − z2|
2

cot
(π

5

)
.

We need to prove that τ(p) ≤ ω(p)/2 sin(π/5) (notice that τ(p) ≤ ω(p) is now
trivial, but 2 sin(π/5) > 1).

After rotation, scaling and translation, we only need to consider the case of

p(z) = z2(z − 1)(z − α)(z − β)

where α, β are different from 0 and 1, and ω(p) = 1, that is |α|, |β| ≥ 1. Put

µ :=
1

2 sin(π/5)
=

√
2

5−
√

5
≈ 0.850650808352

and note that the inequality we want to prove is just τ(p) ≤ µ. We prove this by
contradiction and henceforth assume that

τ(p) > µ .

Define the following “circular triangles” in the upper half-plane:

A := cl
(
D(1/2, 7/6) \

(
D(0, 1) ∪D(1, 1)

))
,

U := D(1/2,
√

3/2) \
(
D(0, µ) ∪D(1, µ)

)
,

where cl denotes the closure in C. Let A∗ := {a : a ∈ A} and U∗ be the corre-
sponding conjugate sets in the lower half-plane; see Figure 1.

Claim 1. The points α and β cannot both be outside A ∪A∗.

Proof. Assume that both α and β lie outside the region A∪A∗. Apply Lemma 1 to
the disk D(1/2, 1/2) and parameters n1 = 3, r1 = 1/2, n2 = 2. The disk D(1/2, 1/2)
contains exactly three roots of p (the double root at 0 and the simple one at 1).
Let r2 be such that

min{|α− 1/2|, |β − 1/2|} ≥ r2 >
7
6
.

Note that under these assumptions Lemma 1 implies that the circle D(1/2, 1/2)
contains exactly two roots of p′. This means that it must contain a non-zero root
of p′ (call it v). Now,

τ(p) ≤ min{|v|, |v − 1|} ≤

√(
1
2

)2

+
(

1
2

)2

=
√

2
2

< µ ,

which contradicts our assumption τ(p) > µ.

Since our arguments in the rest of the proof are symmetric with respect to the
line Re(z) = 0, in the following we will assume that

α ∈ A .

Claim 2. The set Z(p′) ∩ (U ∪ U∗) is nonempty.
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Figure 1. A,U and U∗

Figure 2. Claim 3

Proof. Applying again Marden’s result [3, Theorem (25,1)] to the double root of p
at z = 0 and to the simple one at z = 1, we obtain that there exists a nonzero root
of p′ inside the disk D(1/2, (1/2) cot(π/6)) = D(1/2,

√
3/2). Since no such root can

be at a distance ≤ µ from 0 and 1, the claim follows.

Claim 3. Let W be the region that is bounded by and lies below the lines Im(z) =
−5
√

5/18, Re(z)+2 Im(z) = 0 and Re(z)−2 Im(z) = 1. Then W does not contain
any roots of p′.

Proof. Assume that there exists a root u of p′ in W . Since the argument in the
proof of this claim is symmetric with respect to the line Re(z) = 1/2, without loss
of generality, we will let Re(α) ≤ 1/2. Put

A1 =
{
z ∈ A : Re(z) ≤ 1/2

}
.
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Since u is in the convex hull of Z(p) by Lucas’ Theorem, we must have that β
lies in W . In particular, with a := (4 + i 2

√
5)/9, we have that

|a− β| >
√

5/2 ,

and therefore β is outside the disk D(a,
√

5/2). Consider the disk D(a,
√

5/3), and
observe that its boundary passes through the point 1 and through the leftmost point
of region A1, that is, the point (−1 + i4

√
5)/9. It is easy to see that region A1 and

point 0 are contained in D(a,
√

5/3). By Claim 1, this means that α ∈ D(a,
√

5/3).
Applying Lemma 1 to the disk D(a,

√
5/3) with the following parameters: n1 =

4, r1 =
√

5/3, n2 = 1, r2 =
√

5/2+ε, where ε > 0 is chosen so that |a−β| >
√

5/2+ε,
we conclude that D(a,

√
5/3) contains exactly three roots of p′. Now, one of the

three roots must be z = 0, since it is a double root of p. As τ(p) > µ, the other
two roots (say, v1, v2) must actually lie in the region

V (α) := D(a,
√

5/3) \
(
D(0, µ) ∪D(1, µ) ∪D(α, µ)

)
.

The regions V (α), α ∈ A1, have the same rightmost point. That is the point b at
the intersection of circles D(a,

√
5/3) and D(1, µ):

b :=
1
60

(
45− 3

√
5 + 2

√
146 + 22

√
5
)

+ i
1
60

(
6 + 6

√
5 +

√
730 + 110

√
5
)
.

This point is calculated using Mathematica’s Solve command. All the calculations
and the figures of this paper are done using Mathematica.

Consider the region A1 ∩D(b, µ). Since the maximum of the set{
|z − ζ| : z ∈ A1 ∩D(b, µ), ζ ∈ V (α)

}
is attained at the point b ∈ V (α), and since we assume that τ(p) > µ, no root of p
lies in A1 ∩D(b, µ). Thus, we must have

α ∈ A1 \D(b, µ) =: A2 .

Clearly V (α) lies entirely above the line through 1 and α for each α ∈ A2.
Let tb be the tangent line to the disk D(1, µ) at the point b. Define αe :=

(−1 + i4
√

5 )/9 (this is the leftmost point of region A, and therefore of A2). Com-
paring the slopes of the lines `(αe, b) and tb, we see that these two lines coincide.
Thus, tb passes through the point αe. A calculation shows that the intersection of
the circles D(0, 1) and D(b, µ) lies above tb. Therefore, A2 lies above tb.

For α ∈ A2, define the point c(α) as the intersection of circles D(α, µ) and
D(1, µ) that has a larger imaginary part. Since c(α) is on the circle D(1, µ) it lies
below tb. Therefore, for each α ∈ A2 the line `

(
α, c(α)

)
separates the region V (α)

from the triangle with vertices 0, 1 and α. By Lucas’ Theorem, for a given α ∈ A2,
β has to lie above the line `

(
α, c(α)

)
.

Next we prove that the slope m(α) of the line `
(
α, c(α)

)
is > −1/2 for each

α ∈ A2. Instead of the region A2 we will consider the larger region A3 which is
bounded by the unit circle from below, the line Im(z) = 7/6 from above, the arc
of the circle D

(
c(αe), µ

)
from the left and by the arc of the circle D

(
b, µ
)

from the
right; see Figure 2. For an arbitrary α ∈ A3 let α′ ∈ A3 be such that Im(α′) = 7/6
and the distance from α′ to c(α) is µ. Clearly the slope of `

(
α, c(α)

)
is larger

than the slope of the line `
(
α′, c(α)

)
. Thus to get the minimum for the slopes of

m(α) for α ∈ A3, it is sufficient to consider α’s on the the top edge of A3: this is
a line segment and we call it A4. Since the line segment joining α and c(α) has
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the constant length µ, the slope m(α) is minimal (for α ∈ A4) when c(α) has the
smallest imaginary part. Since Im

(
c(αe)

)
≤ Im

(
c(α)

)
for all α ∈ A4, we conclude

that the line `
(
α′e, c(αe)

)
has the minimum slope, which we calculate to be

−21 + 4
√

5 +
√
−10 + 18

√
5√

−349 + 912√
5

+ 42
√
−10 + 18

√
5− 8

√
−50 + 90

√
5
≈ −0.473778 > −1

2
.

Therefore, each line `
(
α, c(α)

)
, α ∈ A2, intersects the line Re(z) + 2 Im(z) = 0 in

C+; see Figure 2. Since we concluded that β must be above the line `
(
α, c(α)

)
and

since the half-plane above `
(
α, c(α)

)
does not intersect W , and we also concluded

that β ∈W , we have the desired contradiction.

Claim 4. The set Z(p′) ∩ U is nonempty.

Proof. This claim is an immediate consequence of Claims 2 and 3, as all we need
to verify is that U∗ ⊂ W , where W is the region defined in Claim 3. Now, W
and U∗ are both symmetric with respect to the line Re(z) = 1/2, and the topmost
segment delimiting W is wider than the interval [0, 1]. Since, on the other hand,
U∗ is narrower, all we need to check is that the topmost point 1/2− i

√
µ2 − 1/4 of

U∗ lies below the line Im(z) = −5
√

5/18. But this is immediate since
√
µ2 − 1/4 >

5
√

5/18.

Claim 5. Let α ∈ A. Then Re(α) < 0 or Re(α) > 1. If Re(α) < 0, then there is a
root u of p′ in U such that Re(u) > 1/2, and if Re(α) > 1, then there is a root u of
p′ in U such that Re(u) < 1/2.

Proof. By Claim 4 we know that there exists a root of p′ in U . Consider the set

B :=
{
z ∈ A : 0 ≤ Re(z) ≤ 1

}
.

Clearly the maximum of the set{
|z − ζ| : z ∈ B, ζ ∈ U

}
is attained at the opposite corners of the sets B and U and can be calculated to be√

47
18
− 1

2
√

5
− 1

3

√
18 + 4

√
5 ≈ 0.810705 .

This number is smaller than µ. Since we assume that τ(p) > µ, no roots of p can
be in B, thus Re(α) < 0 or Re(α) > 1. If Re(α) < 0 and if v ∈ U is such that
Re(v) ≤ 1/2, then the distance between α and v is less than µ. Therefore, no
such v can be a root of p′. Since there is a root of p′ in U it must have real part
≥ 1/2. The case Re(α) > 1 follows by a symmetric argument with respect to the
line Re(z) = 1/2.

Put

Al =
{
z ∈ A : Re(z) < 0

}
and Ur :=

{
u ∈ U : Re(u) > 1/2

}
.

Since our arguments in the rest of the proof are perfectly symmetric with respect
to the line Re(z) = 1/2, we will henceforth assume that α ∈ Al. As a consequence
of Claim 5 this implies that there is a root u of p′ in Ur. Note that the three corners
of the region Al are

−1
9

+ i
4
√

5
9
, i, i

√
10
3

,
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and the corners of the region Ur are

1
2

+ i
1
2

√
1
5
(
5 + 2

√
5
)
, 1− 1

2
√

5
+ i

1
2

√
1
5
(
9 + 2

√
5
)
,

1
2

+ i

√
3

2
.

In the following claim we will locate β, the fifth root of p. To do this, define the
pair of concentric disks

C1 = D(0,
√

10/3), C2 = D(0,
√

10/2) ,

let `1 be the line passing through the points

1
2

+ i
1
2

√
1
5
(
5 + 2

√
5
)

and 1 ,

and let `2 be the line parallel to `1 through the point 0, that is the line through
the points

0, and
1
2
− i 1

2

√
1
5
(
5 + 2

√
5
)
.

Since there is a root of p′ in Ur and the region Ur lies above the line `1, while the
roots 0, 1 and α of p lie below or on `1, Lucas’ theorem implies that β must be
above the line `1.

Claim 6. β ∈ C2.

Proof. Let us assume the contrary, that is, β /∈ C2. Since Al ⊂ C1, Lemma 1 can
be applied to the disk C1, with r1 =

√
10/3, n1 = 4, n2 = 1. Choosing any r2 that

satisfies

|β| ≥ r2 >
√

10/2

yields that C1 contains exactly 4 of the roots of p (since |α| ≤
√

10/3), while β lies
outside circle D(0, r2). Under these hypotheses the implication is that circle C1

contains exactly 3 roots of p′ (one of which is z = 0). Since β is above the line `1,
these roots must be above the line `2. Thus they are in the half-disk of C1 above
the line `2 and also outside of the disks D(0, µ) and D(1, µ). Call this region T .
The region T consists of two pieces: one in C+ the other in C−; see Figure 3. Note
that the corners of the region W are the points

1− 5
√

5
18
(
2 + i

)
≈ −0.24226− i 0.62113 and

5
√

5
18
(
2− i

)
≈ 1.24226− i 0.62113.

Since the intersection of `2 with the circle D(1, µ) in C− is

1
2
− i 1

2

√
1 +

2√
5
≈ 0.5− i 0.688191 ,

and the intersection of the circles C1 and D(1, µ) in C− is

1
180

(
145− 9

√
5
)
− i 1

18

√
1
10
(
1457 + 261

√
5
)
≈ 0.693752− i 0.793611 ,

we conclude that the entire piece T ∩ C− is contained in the region W , which, by
Claim 3, is free from the roots of p′. Thus, these roots must be in T ∩ C+. The
maximum of the set {

|z − ζ| : z ∈ Al, ζ ∈ T ∩ C+
}
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Figure 3. Claim 6

Figure 4. The final contradiction

is

1
9

√
371
2
− 9

2
√

5
− 2

√
2914 + 522

√
5 ≈ 0.829387 < µ .

Thus, T ∩ C+ is free from the roots of p′. Contradiction!

Next we arrive at the final contradiction of this proof. By Claim 6, β ∈ C2. Due
to ω(p) = 1, β is not allowed to be in the interior of D(0, 1) ∪ D(1, 1) ∪ D(α, 1).
Therefore, since β lies above `1, it must be in the circular triangle which is inside
C2, outside D(1, µ) and D(α, µ) and above the line `1. Note that α ∈ Al and that
the disk D(α, µ) changes with α. It is easy to see that this circular triangle is
largest when α is at the leftmost point of Al, that is α = αe := (−1 + i4

√
5)/9.

Let G be the circular triangle inside D(0,
√

5/2), outside D(1, 1) and D(αe, 1), and
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above the line `1; see Figure 4. The region G is the largest allowable region for
β. By Claim 5, there exists u ∈ Ur which is a root of p′. Considering the lowest
corners of G and Ur, we see that the maximum of the set{

|v − γ| : v ∈ Ur, γ ∈ G
}

is

1
2

√
7 +

2√
5
−
√

15 + 6
√

5 ≈ 0.800581 .

This number is smaller than µ. Thus |u − β| < µ. Since β ∈ Z(p) and u ∈ Z(p′),
this implies that τ(p) < µ. Since we assumed that τ(p) > µ, we have reached the
final contradiction and the theorem is proved.
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