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Abstract
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1. Introduction

Let Q be an invertible self-adjoint d x d, matrix with d, positive and d_ negative
eigenvalues, so d =d_ +d;, and let »€{0,1,2,...}. In this paper a Q-boundary
coefficient with x negative squares is a matrix valued function % defined on dom (%),
where dom (%)< C\R, the set C\(Rudom(%)) is finite, and dom(%) is symmetric
with respect to the real axis, and the function % has the following properties:

(#1) U(z) is a d, x d matrix if zedom(#)nC" and %(z) is a d_ x d matrix if
zedom(%)nC".

) %(z) is holomorphic on dom(%) and meromorphic on C\R.

) The matrices %(z), zedom(%), have maximal rank.

) U(2)Q 7 U(z*)* = 0, zedom(%).

) The limit

-1 *
lim U(2)Q U (w)

w—z* z— w*

exists for each zedom(#%) and the kernel

—1 %
iw7 z#w*, z,wedom(%),
Z— W

lim“ﬁz* l
< 7 C* ?

Ky(z,w) =
z=w* zedom(%)

has » negative squares.

The kernel condition (#5) means that for any choice of the natural number n and
Ay ey inedom(%), the self-adjoint block matrix

[Kjil (;L]a ;‘k)}]r'l,kZI

has at most % negative eigenvalues and for at least one such a choice it has exactly %
negative eigenvalues. If d_ = 0, then a Q-boundary coefficient % is not defined on
C™ and all the requirements in the above definition that relate to the numbers in C™
need to be dropped in this case. The modifications needed to cover this case in the
proofs are straightforward and are omitted. The same remark applies to the case
d, = 0. See Example 6.6 for more information about these cases.

To characterize boundary coefficients we use standard symmetric linear relations
in Pontryagin spaces. For basic terminology related to linear relations, Pontryagin
and Krein spaces see [6] or [13,4,5,7]. Recall only that a linear relation T in a normed
vector space # is a linear subset of #? = # @ #. For brevity, we will relate to
linear relations simply as relations. A subspace of a normed vector space J# is a
closed linear manifold of /. We use the standard notation: C for the set of complex
numbers, R for the set of real numbers, C* and C~ for the open upper and the open
lower half-plane of C, T for the unit circle in C, and D for the open unit disk in C.
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In this paper we show, see Theorem 4.2, that for a given Q a (—Q)-boundary
coefficient can be constructed as follows:

(A) Let S be a standard symmetric linear operator with a not necessarily dense
domain dom S and with finite defect indices (dy,d_) in a Pontryagin space
(A, -, -]) with negative index x.

(B) Let @(z) be a holomorphic basis for ker(S[*] —z). This is short for: Let
@:CH\y>H X H x - x H (dy copies) be a holomorphic row vector
function, such that the components ¢;(z) of @(z):

P(2) = (¢1(2); 2(2), .-, by, (2))

constitute a basis for ker(S[*) — z), zeC*\y. Here y is a finite subset of C\R.
(©) Letb : 5] € be a boundary mapping for S with Gram matrix Q, for the
definition see Section 4.
Then

U(z) = (Qb(d (%) b(da(z¥) - by, (Z¥)]), (1.1)

where b(¢;(z*)) is short for b({¢;(z*),z%¢;(z*)}), is a (—Q)-boundary coefficient.
This construction is similar as in the Hilbert space case considered in [7]; that is the
case corresponding to » = 0 here. Then %(z) is holomorphic on C*UC™ and the
kernel Ky(z,w) in (%5) is non-negative. Moreover, in this case all boundary
coefficients constructed in this way have the property that the d x d matrix

u(z)

is invertible, zeC\R.
() v zeC\

When % > 0 this minimality property does not hold in general. The reason is that for
the symmetric operator S considered in (A) the defect subspaces ker(S[*) — z),
ze C\R, need not be regular subspaces of 5. Instead, we shall use the following more
general definition of minimality. A Q-boundary coefficient %(z) is said to be minimal
if, with % as in (%5),

(#6) There exist distinct zg,...,z,eC" ndom(#) or, equivalently, distinct
20, ..., 2w €CT ndom(%) such that the matrix
[(z0)* w(z5)" ()" - ()] (1.2)
has the maximal rank d.
The equivalence between the two statements in (%6) is proved in the appendix. See
Corollary A.6 which provides a list of equivalent statements.
It turns out that the (—Q)-boundary coefficients constructed via (A)—(C) have the
additional property (#6) if and only if S satisfies

(dom ) ~span{ker(S — 2)*: iea,(S)} = {0}. (1.3)



364 T. Azizov et al. | Journal of Functional Analysis 198 (2003) 361-412

Surprisingly, this condition is equivalent to a generalized von Neumann equality:
Eq. (1.3) holds if and only if

n
St =5+ st apl + 3 st aptr
=0

holds for one (and then for any) set of distinct complex numbers uy, ..., g, from
C\(Rua,(S)) such that w;#uf, jk=0,.. %

If S is a simple symmetric operator then (1.3) holds and so % in (1.1) constructed
via (A)—(C) satisfies (1)—(%6). In this paper we show that the converse also holds,
that is let  be a Q-boundary coefficient satisfying (#1)—(%6). The reproducing
kernel Pontryagin space #(Ky) with reproducing kernel Ky(z,w) consists of
functions which are holomorphic on dom(#) and in this space the operator Sy
of multiplication by the independent variable z is a simple symmetric operator
with defect index (d_,d;). There exist a holomorphic row vector function
@ :CH\y— A (Ky) x H(Ky) x - x #(Ky) (ds copies) as in (B) and a boundary
mapping b : SE;] —C? for S, with Gram matrix —Q such that (1.3) holds.

As to the contents of the paper: In Section 2 we define standard symmetric linear
relations and show that for these relations the defect indices can be defined in the
same way as for symmetric relations in a Hilbert space. The generalized von
Neumann formula is studied in detail in Section 3. The definition of a boundary
mapping and the construction of boundary coefficients can be found in Section 4. In
Section 5 we show that a Q-boundary coefficient satisfying (#1)—(%5) can be
reduced to a minimal one. The proof makes use of a geometric interpretation of the
maximum modulus principle for generalized Schur functions, which we explain in
the appendix. Finally, in Section 6 we derive a representation of a minimal Q-
boundary coefficient in terms of a closed simple symmetric operator in a Pontryagin
space. This result is a generalization of [7, Theorem 4.4]. The proof given here is
simpler than the proof in [7].

Q-boundary coefficients % with % negative squares occur in the study of
boundary-eigenvalue problems with eigenvalue boundary conditions of the form

w(b({f.9}) =0, {f.greS"),

where 1 denotes the eigenvalue. In [7] the linearization of such problems were studied
for the case » = 0, in a sequel [3] to this paper we will consider the linearization
problem in the Pontryagin space setting.

2. Standard symmetric relations in Pontryagin spaces
Let Sc#?=# @A be a closed symmetric relation in a Pontryagin space

(A, -, - ]) with negative index . Then for all ue C\R, the ranges ran(S — p) and
ran(Sl*) — ) are closed. If for some pe C\R, we have that p¢ g,(S), then each of the
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sets C* Na,(S) contains at most » points [12, Propositions 4.3 and 4.4]. S with this
property will be called standard. A standard symmetric relation is said to have finite
defect if for some ueC™,

¥ ¢a,(S), dim(ker(S1*! — )< oo, dim(ker(S*) — p*))<oo. (2.1

Note that the kernels ker(Sl*] — 1) =ran(S — )V*)m, AeC, maybe degenerate
subspaces. We show that the dimensions of these spaces are the same for essentially
all (that is, with the exception of at most finitely many points) AeC™", and the
dimensions of these spaces are the same for essentially all Ae C™. See Theorem 2.3.
In our proof of the theorem we use two lemmas. The first one concerns the
existence of a maximal standard isometric extension of a standard isometric operator
with finite defect. Following the terminology of [4, Definition 5.2.1] we call an
isometry V<. #? a standard isometry if V is a closed bounded operator whose
inverse is also a bounded operator. By definition, dom} and ran} are closed (but
maybe degenerate). Sorjonen [16] studies rectangular symmetric and isometric
relations in Krein spaces. Such relations in Pontryagin spaces are special cases of
their standard counter parts defined here. A standard isometry has finite defect if

dim(dom V)t < oo, dim(ranV)* < o0,

Lemma 2.1. Let (#,[ -, - |) be a Pontryagin space and let V < #* be a standard
isometry in (#,] -, - ]). Assume that
dim(domV)* =4 , dim(ran)* =d,, d_+d.<+ .

Then there exists a maximal isometry Vin (#,] - , - |) such that V extends V and V
is a standard isometry. If d_<d, (d, <d_, respectively) for each such V we have

domV=# (ranV = ), (2.2)
dim(ranM* =4, —d_  (dim(domW)* = d_ — a,), (2.3)
dimV/V =d_ (dimV/V =d,). (2.4)

Proof. It follows from [4, Theorem 5.2.2], which concerns a Krein space version of
this lemma, that there exists a maximal isometry V in (#,[ -, -]) such that V
extends V" and V is a standard isometry. By Azizov and Iokhvidov [4, Corollary
5.2.3], V is a maximal isometry in (#,[ - , - ]) if and only if at least one of the
following conditions hold:

(a) (domP)* = {0},
(b) (ran?)*) = {0},
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(©) (domP)*1£{0} and (ran?)*'#£{0} are uniformly definite subspaces of
different signs.

Condition (c) implies that dom ¥ and ran¥ are regular subspaces of the Pontryagin

space (#,[ -, - ]) and V acts as a unitary operator from dom¥ onto ran¥. Since

(A#,] -, -]) is a Pontryagin space, the maximal uniformly negative subspaces of

(domV)M and (ran V)M have the same dimension. Hence (c) is impossible.

Assume that d_ <d, . It follows from the construction in the proof of [4, Theorem
5.2.2] that

(domP)* = {0} and (ranV)H =d, —a_.

Equality (2.4) follows from (2.2) and dim(dom V)M =d_. If dy<d_, apply the
previous case to V' ~! and obtain the statement of the lemma within the brackets. [

In the next lemma we use the Potapov—Ginzburg transform on a Pontryagin space
(A, -, - ]). Let # = A [+]# - be a fundamental decomposition of # and let
P, P, J=P . —P_, and (-,-> =[J-] be the corresponding fundamental
projections, fundamental symmetry, and corresponding Hilbert space inner product,
respectively. Simplifying the notation of [4, Chapter V] we denote by w : #2> — #*
the Potapov—Ginzburg transform which is the linear involution defined by

o({f,g}) ={P.f +P_g,P_f + P.g}, {f,gter’.

If T is a subspace of 7, then (T denotes the image of T under w. It follows from
the definition that o(T1*)) = w(T)¢*” and o(T~") = o(T)"". If V is an operator,
then

o(V)=(P_+P. V)P . +P V)"

Lemma 2.2. Let V be as in Lemma 2.1. Then with the above notation, the Potapov—
Ginzburg transform W = (V) of V is a (standard) isometry in (A, {-,->) with
dim(domW)‘*’ = d_ and dim(ranW)<*+’> =d..

Proof. It follows from the definition of the Potapov—Ginzburg transform that W is
an isometry in the Hilbert space (), <-,->); see also [4, Corollary 5.1.7]. Since W

acts in a Hilbert space, W is a standard isometry. Set dim(dom W)<L> =J_ and
dim(ran )<+’ = §,. We will prove the lemma by showing that d, +d_ =, +d_
andd, —d_ =6, —0_.

In the notation used above, #? = (#, @ A ,)[+](A#_ @A _) is a fundamental
decomposition of #7. Denote the corresponding fundamental projections by P} and

Py, the corresponding Hilbert space by (#7?,{-,->) and the Potapov-Ginzburg
transform on this space by w;. Consider the block matrix operators (with respect to
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the decomposition #? = # @ H)

Vv

i=1o v

w0
and W1 = BE
0o w-

Then dim(domV)*! = dim(ranV)!*) = d, + d_ and

o(V) 0

W =
! 0w

= CO](V[).

The operator V; admits a unitary extension V| in the Pontryagin space #°
and Lemma 2.1 implies that dimV,/V; =d, +d_. By Azizov and Iokhvidov
[4, Corollary 5.1.7] W, = (V}) is a unitary operator in the Hilbert space
(%2, {+,->). Since w; is a linear involution, we have

dimW, /W, = dim w;(V))/o(Vy) =dimV,/ Vi =d, +d_. (2.5)

Since W) is a unitary operator in (A1, {-,->), it is a maximal isometry which
extends W) and which is clearly standard. Since dim(dole)<L> =0, +_,
Lemma 2.1 implies that dimW;/W; =&, +J_. This and (2.5) imply d, +d_ =
Or+90_.

If we apply the above reasoning to the operator ¥ from Lemma 2.1 instead
of V, we get dy —d_ =35, —5_. Consequently, dim(domW)‘*’ =d_ and
dim(ranW)<*+’ = d, and the proposition is proved. [

To prove the theorem below with the help of these two lemmas we use, for ueC™,
the Cayley transform V of S defined by

V=(S—i*)(S—-p".

This formula establishes a bijective correspondence between the standard closed
symmetric relations S with u, u*¢,(S) and the standard isometries V. Its inverse is

given by S = (uV — u*)(V -1 )71. Under this correspondence V' has finite defect if
and only if (2.1) holds and then

dim(ker(S!*! — 1)) = dim(ran V)M,

dim(ker(S'*] — 4*)) = dim(dom V)™*/.

Theorem 2.3. Let (#,[ -, - |) be a Pontryagin space, J a fundamental symmetry on
H and {-,-) the corresponding Hilbert space inner product. Let S be a standard
symmetric relation with finite defect in (#,[ -, - ]|). Then

(a) dim ker(Sl*) — 1) = dim ker((SJ) $*2 _ }) whenever X is a non-real number such
that 2,7* ¢ c,(S),
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(b) the number dimker(Sl*! — ), 1,2*¢0,(S) is independent of LeC*t\a,(S)
(AeC\g,(S), respectively),

(©) dim S!*l/S=d, +d_, where d, = dimker(S!*) — 1) and d_ = dim ker(S!*! —
2¥) for some 7. C* such that 7,2 ¢a,(S), and

(d) there exists a closed symmetric extension S in (A, -
one of the sets C*\p(S) is finite.

, - ]) of S such that at least

Proof. Since S is standard there exists a ueC* such that u, u* ¢ 0, (S). Without loss
of generality we can assume that u = i. Consider the Cayley transforms of S and SJ:

V=(S+)(S—i)"", wW=(SJT+iSJ—i)". (2.6)

It follows from [12, Proposition 4.1] and basic properties of closed linear relations
that V' is a standard isometry in (#,[ -, - ]) which satisfies the assumptions of
Lemma 2.1. From [4, Theorem 5.1.14] we conclude that W = w(V). Since

dim ker(S!*! — i) =dim(ran¥)!*,
dim ker(S!*! 4 1) :dim(domV)m,
dim ker((SJ)<*? — i) =dim(ranW) <+ 7,

dim ker((SJ)<*” 4 i) =dim(domW)<+”,

an application of Lemma 2.2 yields (a).
Statement (b) then follows from (a) and the fact that, since SJ is symmetric in the
Hilbert space (#, (-, ), the numbers

dim ker((SJ)<*” — 1), JeC*h,
dim ker((SJ)<*> — 1), ieC™,

are independent of 4.
To prove (c) note that the mapping {f,g}+— {Jf.g}, {f.g}e#?, is a linear
bijection between S!*I and (SJ )< *? which maps S onto SJ. Therefore

dim S*1/S = dim(SJ)¢*7 /(SJ). (2.7)

Since SJ is a symmetric relation in the Hilbert space (#, -, - ), the von Neumann
formula implies that

dim(SJ7)<*? /(SJ) = dim ker((SJ)* — i) + dim ker((SJ)* + i). (2.8)

Statement (c) now follows from (2.7), (2.8) and (a).
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To prove (d) consider the standard operator V' defined in (2.6). Assume that
d, = dimker(S'*) — i) = dim(ran V")) > dim ker(S!*) + i) = dim(dom V)!*) = d_.
By Lemma 2.1, there exists a standard isometry ¥ which extends ¥, dom¥V = # and
dim(ran V)M =d, —d_. Put

S=iV+1D)(V-1)""
It follows that S is a standard symmetric relation, i, —i¢ a,(S) and dim ker (S —
i)=d, —d_ and dimker(S*] +i) = 0. Therefore iep(S). It follows from [12,

Theorem 4.6 and Corollary] that p(S) "nC" = C"\g,(S) and C" N, (S) consists of at
most % points, where % is the negative index of (A#,[ -, - ]). O

Theorem 2.3 yields that if S is a standard symmetric relation with finite defect, the
dimension of the subspace ker(S!*] — z) is constant for essentially all points z in each
of the open half-planes C™ and C~. This constant is denoted by d,. for ze C* and by
d_ for ze C™. The numbers d, and d_ are called the upper and lower defect numbers
of S, the pair (d.,d_) is called the defect index and the number d = d_ + d. is called
the defect.

Following [14, Section 2.2], a closed symmetric relation S in a Pontryagin space
(A, -, -]) will be called simple if it has no non-real eigenvalues and

span{ker(S'*/ — 2): 1eC\R} = #. (2.9)
Since
span{ker(S!* — 2): 2 C\R}H = ({ran(S — 1) : 1€ C\R},
equality (2.9) is equivalent to

({ran(S — 1) : 2 C\R} = {0}. (2.10)

Proposition 2.4. Let S be a simple, closed symmetric relation in a Pontryagin space.
Then S is a standard operator and ,(S) = 0.

Proof. Denote the Pontryagin space by (#,[ -, - ]). By definition each simple
relation in a Pontryagin space is standard. Let zeC\R and geker(Sl*) —z) be

arbitrary. We first prove that S is an operator. Let {0,f} € S. Since {g,zg} e Sl*] we
have

0=1f,9]—[0,zg] = [, q].

So by (2.9), f = 0. Thus S is an operator.
Let xR and {f,af} €S. Since {g,zg} € S*] we have

0= [ocf,g] - [f?Zg] = (oc—z*)[f,g].
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Since o — z*#0, and by (2.9) we have that f = 0. Thus «¢5,(S), that is, 6,(S) "R =
(. Since S is simple it does not have eigenvalues in C\R. [

Remark 2.5. An alternative to the last part of the proof of this lemma is: Assume
aeR and {f,af}eS. Then for all non-real numbers ., f = (x—2)"'(S—
A)f eran(S — 1), hence f belongs to the intersection on the left of the equality in
(2.10) and therefore f = 0. This proves 0,(S) "R = §. An argument like this will be
used in the next section.

3. Von Neumann’s formula
In this section we consider a generalization of the von Neumann formula
SO =S+ 8 Aul 4+ S Aptl, peC\R, direct sum, (3.1)

for closed symmetric relations S in a Hilbert space. If S is a closed densely
defined symmetric operator in a Pontryagin space, formula (3.1) holds for
all p with |Imy| sufficiently large, see [14]. By Dijksma and de Snoo [12,
Proposition 4.7], if S is standard symmetric relation in a Pontryagin space then
(3.1) holds if and only if u¢a,(S) and ran(S — p) is non-degenerate. The following
example, due to Derkach (private communication, see also [8, Remark 4.1]), shows
that formula (3.1) does not hold for any ue C\R even if S is a simple operator in a
Pontryagin space.

0 0 0 1
A 001 0| . . '
Example 3.1. Let # =C", J = 010 0 9l =g8f, g.fe,
1 000
and
X 0
0 X
S = , xeC
0 0
0 0
The operator S is closed standard and symmetric in (#,[ -, - ]) and 6,(S) = 0.
Since
—p

ran(S — u) = span ,
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by (2.10), S is simple. As ran(S — u) is degenerate for each peC, it follows that (3.1)
does not hold for any ueC. A calculation of S*! yields

N 9
|9
Sl = , fi,gk€C
VARG ’
fal L3
For arbitrary ue C\R we have
N 1h
f2 1>
M, =Sl Aul = , :f;eC
’ wha | || [

Ja 4

One can prove that for arbitrary u,veC*, u#v we have
St =S4+ My 4+ M, + M,.

This formula can be considered as a generalization of (3.1); note that the sum on the
right-hand side is not a direct sum.

In this section we give a necessary and sufficient condition for a generalized von
Neumann formula to hold for a standard symmetric operator in a Pontryagin space.
We start with the following lemma.

Lemma 3.2. Let S be a linear operator in a vector space # and let p, ..., 1, be distinct
complex numbers which are not eigenvalues of S. Then

ﬁran(S — ;) = ran (ﬁ(S - ,Lg,)).

J=1 J=1

Proof. For k = 1 the statement of the lemma is true. Assume that the statement is
true for k> 2 and prove it for k + 1. Let p;, ..., pi, 4, be distinct complex numbers
which are not eigenvalues of S. By the induction hypothesis,

k+1 K+l
ran(S — y;) =ran(S — u;) Nran H(S - ,uj)>
j=1 j=2

k
=ran(S — py ) Nran <H(S - ,uj)>. (3.2)

=1
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Let f/ be an arbitrary vector in subspace (3.2). Then there exist u, v such that

k+1 k
i (s ) i )
j=2 j=1

Since y, ...,y ¢ 0,(S),
i -1
g = (H(S—/lj)> f=0=mu=(S—m)y
=2

and

1
v =———(9 = (S — py)v) €ran(S — i),
M1 —

hence geran(S — u;)(S — p,). Consequently,
k+1
feran (H(S - uj)>.
j=1

This proves the inclusion < in the lemma. The converse inclusion is evident. [

Lemma 3.3. Let S be a standard symmetric operator in the Pontryagin space
(A, -, - ]) of negative index . For gy, fiy, ..., u, €C put

L = ker(S*) — 1) n (ﬁ ran(S — uj)> (3.3)
=0

and
A = (dom S)*! ~span{ker(S — 1)*: iea,(S)}.

@) If 1§, 1o, 5 -, w, are distinct numbers from C\o,(S), then N < (S — ) L.
(b) If u, o, ys ---s 1, are distinct numbers from C\(Rua,(S)) such that
WFEW Jok=0,....%, then /" = (S — u5)Z.

Proof. To prove (a), let ge./". Since g€ (dom S)M, we have {0,g}eS!*], and since
gespan{ker(S — 1) : 1ea,(S)},

we have ge ran(S— w). Let ud, o, py, ..., 1, 0,(S) be arbitrary distinct

udao,(S
complex numbers. Then by Lemma 3.2,

geran((S—ﬂE’;) ’ (S—u,-)>-

Jj=0
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Forf == (S — ,uz)*)flg, we have fe ﬂf:o ran(S — y;). From

{F T +40,9} = {(S— ) "9, S(S— ) 'g}es,

we conclude {f, f} e SI*l. Thus fe 2, that is, ge (S — ) 2.
To prove (b), let ug, g, fiy, ..., 1, ¢ 5,(S) be arbitrary non-real distinct numbers
such that u;# 5, j,k=0,...,%, and put

b

Py(z) = H(Z = 1)

Jj=0
and

A

Pz)= [] z—w), k=1,...%

J=0,j#k

If ¥ ={0} the statement is trivial. Let 0#/€.%. Since ker(Sl*] — ) = (ran(S —

,uo))m, definition (3.3) of . implies [f,f] = 0. By Lemma 3.2 and (3.3), there exists
0#hedom S**! such that ' = Py(S)h. Put iy = Pi(S)hedom S, k= 1,...,%. Then
f=(S—w)h, k=1,...,%. The assumption {f, ,u’gf}eS[*] implies

(1o = i) [l /1 = wtolhaes /1 = I + s, f ]
= hie, 1] — [Shic. f]
=0, k=1,...,n
Since g # . for k =1, ..., %, we conclude that [i,f] = 0. Forj,k =1, ...,% we have
(1 — 1y, i) = [ + iy ] = [y f + ]
= [Shy, i) — [hy, Shy]
=0.

As w#ug, we have [hj,h] =0 for jk=1,...,x. Thus the subspace .# =
span{f,hy, ..., h,} is neutral in (A [ -, - ]). Therefore dim .# < implying that
the vectors hg:=f,hi,...,h, are linearly dependent. Let C*"'3(a,...,0,)#
(0, ...,0) be such that

%

%
Z Ockhk = Z (ZkPk(S)h =0.
k=0

k=0

Since the polynomials Py, ..., P, are linearly independent, Q = Z;’;O o;P; is a non-
zero polynomial and Q(S)h = 0. The number p, is a root of Q which is not an
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eigenvalue of S. Since Q(S)h =0 and 40 the polynomial Q has roots which are
eigenvalues of S. Let 4;, j =1, ..., m, be the distinct roots of Q which are eigenvalues
of § and let m;, j =0, ...,m, be the corresponding multiplicities. Note that m and all
m;’s are <x. Since Q(S)h =0 and h#0, we have

hespan{ker(S — ;)" :j =1, ...,m} =span{ker(S — )" : A€ g,(S)}.
As f = Py(S)h, we also have fespan{ker(S —2)*:1€0,(S)}. This implies that
fedom S and Sf espan{ker(S — 1)": 1eq,(S)}. Consequently,
(S — u$)f espan{ker(S — 1)" : Aea,(S)}. (3.4)
Since {f,Sf}eS<S* and {f,uif}eSl*!, we conclude that {0,Sf — uif}eSk!,
that is,

(S — u¥)f e (dom §)H. (3.5)

It follows from (3.4) and (3.5) that (S — u)f € 4". This proves that A > (S — ui) L.
As the converse inclusion was proved in (a), (b) is proved. [

Remark 3.4. It follows from Lemma 3.3 that the non-real complex numbers
Ho> ---, i, Which are not eigenvalues of S and such that w; # 1, j,k =0, ...,%, can be
chosen arbitrarily without changing . Therefore, for arbitrary pg, u;, ..., i, which
satisfy these conditions we have

ker(SH) — 1) m h ran(S — ,u_,-))
=0

= ker(S!*) — ) ﬂ( (| ran(S— u)) . (3.6)
)UR)

ueC\(y(S

A consequence of equality (3.6) and Lemma 3.3 is that if

ker(S[*]—MB")ﬂ( N ran(S—u)>={0},
JUR)

HEeC\(ay(S
then A4~ = {0}.

Remark 3.5. The condition 4" = {0} is satisfied in any of the following cases:
(@) »=0;
(b) S is a simple symmetric operator;

(¢) ker(S!*] — J) is non-degenerate for at least one non-real complex number A such
that 4, 2*¢a,(S);



T. Azizov et al. | Journal of Functional Analysis 198 (2003) 361-412 375
(d) S is densely defined, which by Krein and Langer [14], is a special case
of (¢).

Lemma 3.6. Let S be a closed symmetric operator in the Pontryagin space
(A,[ -, - 1) Then for py, ..., € C such that usé¢c,(S) and pg#u;, j =1,2, ...k,
we have

k
ker(St*! — )M (ﬂ ran(S — u,)) = {0} (3.7)

—0

if and only if

k
j=0

Proof. Equality (3.7) is equivalent to the equality

k
ran(S — po) + » _ ker(St — i) = . (3.9)
Jj=0

Now we use (3.9) to prove (3.8). It is sufficient to prove that an arbitrary {f,g} € Sl
belongs to the right-hand side of (3.8). By (3.9), for {f, g} e S!*l there exist {u,v}eS
and x;eker(Sl*] — 1) such that

k
g—of =v—pou+ > (1 — po)x;.
=0

Put
k
y=f-u=3 x
=0
Then
k k
Hoy = tof — Hou — g Y ;=g —v— > pi¥x;.
= =
Since

{f 93 {u, v}, {xj,uij}eS[*],
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we have {y, gy} eS*!npyl = M,,. Thus
k k
f=uty+> x, g=v+uy+ Yy wh, (3.10)
Jj=0 Jj=0

that is {f, g} belongs to the right-hand side of (3.8).
Conversely, assume (3.8). Since ¢ a,(S) we have ran(Sl*) — 1) = (ker(S —

,uﬁ))m = . Let he # be arbitrary and {f, g} e SI*] such that 1 = g — pof. By (3.8),
there exist

{H,U}ES, {y;“()y}v{x>ﬂ;'kx}es[*]a j:07"'aka

such that (3.10) holds. Then
k
h=g—pof =v—pu+ Y (1~ pp)x;.
j=0

Thus / belongs to the left-hand side of (3.9). The proposition is proved. [

The next theorem gives a necessary and sufficient condition for (3.8). It is a direct
consequence of Lemmas 3.3 and 3.6.

Theorem 3.7. Let S be a standard symmetric operator in the Pontryagin space

(A, -, -]) of negative index . The generalized von Neumann formula
n
St =S54 S apd +5° S At (3.11)
j=0
holds for one and then for any set of distinct complex numbers uy, ..., 1, from

C\(Ruay(S)) such that w,# i, j, k=0, ...,%, if and only if
(dom 8)*! ~span{ker(S — 2)*: iea,(S)} = {0}. (3.12)
Proof. Assume that equality (3.11) holds for distinct complex numbers py, ..., u,

from C\(Ruo,(S)) such that w;#uj, j,k=0,...,x. By Lemma 3.6, this is
equivalent to

ker(SU*] — p) ﬂ(ﬁ ran(S — ,uj)> = {0}.
=0

By Lemma 3.3(b), the last equality is equivalent to (3.12). [
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The following example gives a closed symmetric relation in a Pontryagin space for
which the generalized von Neumann formula (3.8) does not hold.

Example 3.8. Let # = C? and J = [(1) _01}, If, 9] =9g*Jf, g,f €A, and

a{HHtIRS

Then S is a closed symmetric operator in (#,[ - , - ), 0,(S) = {0}, and

-] o)

For arbitrary ue C\R we have

s ] )

Clearly dom Sl*] = #. Since for arbitrary puy, ..., €C\R the domain of the
sum of the subspaces M, , j=1,...,k, coincides with the domain of S, we

conclude that

4. An application to boundary coefficients
Let (#,[ -, - ]) be a Pontryagin space, J a fundamental symmetry on # and

{-,+> the corresponding Hilbert space inner product. Introduce two Lagrange inner
products on #? by

[0}, (w0} ] =+ (g0~ [0,
Cogh 0y = (Cg.u> = <fo03).

Then (#7,[-,-]) and (#2, {-,-)) are Krein spaces and the mapping

7 Af 9y {0f g}, {f.gten?

is a unitary mapping between these Krein spaces. A closed subspace S<.#72 is a
(maximal) symmetric relation in (#,[ -, -]) (respectively (o, (-, -))) if



378 T. Azizov et al. | Journal of Functional Analysis 198 (2003) 361-412

and only if S is a neutral (maximal neutral) subspace of (#72 [-,-])

(respectively (2, {{-,->>)). It is a self-adjoint relation in ([ -, -])
(respectively (#, (-,-»)) if and only if it is a neutral and maximal semi-definite
(a notion to be handled with care, in [4] it is called hyper-maximal neutral)
subspace of (A2 [-,-]) (respectively (#2 ({-->>)). Since 7 18 a unitary
mapping S is symmetric (self-adjoint) in ([, -]) if and only
if 7(S) is symmetric (self-adjoint) in (s#,(-,->). Note 4(S)=SJ and
F(81)¢7) = S,

Extensions of a standard symmetric relation that are restrictions of its adjoint can
be described in terms of its boundary mapping. Let S < #7 be a standard symmetric
relation in (#,[ -, - ]) with defect index (dy,d_). By Theorem 2.3, dim Sl*//S =
d. +d_ =:d. A boundary mapping for S is a surjective linear operator b : Sl*/ - 4
with ker(b) = S. If b is a boundary mapping for S then there is a unique d x d
matrix Q such that for all {f, g}, {u, v} eSl*,

[ {f7 g}’ {u7 l)}] = b(u, U)*Qb(fv g)'

Q is a self-adjoint and invertible matrix and has d, positive and d_ negative
eigenvalues. The matrix Q is called the Gram matrix for b.

It is easy to see that a mapping b : Sl*/ > C“ is a boundary mapping for S with
Gram matrix Q if and only if the composition mapping b : (SJ)<*> -C%is a
boundary mapping for SJ with the same Gram matrix Q. All extensions of S which
are restrictions of S'*! are described by

Aw = {{f,g}eSI"I: Mb(f,g) = 0}, (4.1)
where M is a k x d matrix, 0<k<d, of rank k. Clearly
AwJ = {{u, v} €(ST)<*? : Mbj(u,v) = 0}. (4.2)

Equalities (4.1), (4.2), [7, Lemma 3.4] imply that the following statements are
equivalent:

(a) For a closed linear relation 7 we have ST <= S!*/, and dim(7/S) = .
(b) There exists a (d — 1) x d matrix A of maximal rank such that

T = {{f,g}eS!*': Ab(f,g) = 0}.

(c) There exists a 1 x d matrix B of maximal rank such that

T = {{f,g}eSl*]: Bb(f,g) = 0}.

If (a)~(c) hold, then BQ 'A* = 0 and the matrices A and B are determined uniquely
up to multiplication from the left by invertible matrices.
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(d) If (a)~(c) hold and if C is a T x d matrix of maximal rank such that CQ 'A* = 0
and

V= {{f7g}€S[*] : Cb(fag) = 0},

then T+l = V.

If dy =0 or d_ =0 then S is maximal symmetric. It follows from (a)—(d) that if
0<d, <d_, then T in (b) is maximal symmetric if and only if t =d, and A is a
d_ x d matrix of rank d_ satisfying AQ 'A* = 0; T then has defect index (0,d_ —
d;). A similar result holds when 0<d_ <d,. It also follows from (a)-(d) that S has
canonical self-adjoint extensions A = Al*! (that is, self-adjoint extensions in the space
A in which S is defined) if and only ift =d, =d_.Ift =d, =d_, arclation 4is a
self-adjoint extension of S if and only if

A={{f,gtesl): Db(f,g) = 0},

where D is a 7 x d matrix of maximal rank satisfying DQ 'D* =0.

Families of subspaces between S and S'*/ depending on the parameter ze C\R and
of the form

T(z) = {{f.g}eS":u(z)b(f, g) = 0},

where % (z) is a Q-boundary coefficient satisfying conditions (% 1)—(#5) with x = 0,
were studied in [7]. The so-called linearization problem considered in [7] was: When
does there exist a self-adjoint Hilbert space extension 4 of S such that

(T(z) = 2)" = Py(d—2)"],,.

A canonical self-adjoint extension 4 of S defined by D as above corresponds to %(z)
which can be chosen such that %(z) = D. Non-canonical self-adjoint extensions 4,
that is, self-adjoint extensions defined in a Hilbert space containing the Hilbert space
A as a proper closed subspace, correspond to the more general Q-boundary
coefficients. In the context of the linearization problem the parameter z is called the
eigenvalue parameter. In a sequel [3] to this paper we shall consider the linearization
problem for S in a Hilbert space but then with a Q-boundary coefficient satisfying
(U1)—(u5) with » > 0.

In this section we present a method to construct Q-boundary coefficients %
satisfying (%1)—(%5) with » > 0. In Section 6 we prove that % can always be
obtained in this way.

Lemma 4.1. Let S be a standard symmetric relation with finite defect index (d.,d_) in
a Pontryagin space (#,[ - , - ]). Then there exists a holomorphic row vector function

@ : CE\y—#%  where y is a finite subset of C\R, such that the components of ®(z)
constitute a basis for ker(S*] — z), zeC\(Ruy).
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Proof. Let peC" be such that u, u*¢0,(S) and assume that d, >d_. By Theorem
2.3, there exists a maximal symmetric relation extension S of Sin (#,[ - , - ]) such
that u, u*¢0,(S) and dimker(S'*) —p) =d, —d_ and ker(S'*) — p*) = {0}. It
follows from Theorem 2.3 that C*\p(S’) consists of finitely many points and the
function zi(S—z)~", zeCTnp(S), is a holomorphic function with values in
L(AH). As ker(S—p) = {0}, we have ueC*np(S). Next, we prove that the
(everywhere defined) bounded operators

Biz) =1+ (z—-pu)(S—2)"", zeCtnp(9),

are injective. Let ze C™ np(S) and f € # be such that B(z)f = 0. Then (z — u)(S —
2)"'f = —f and therefore {—f, (z — p)f}eS — z, or {—f, —uf} €S. Since e p(S) we
conclude that f = 0. Next, we prove that B(z)ker(S!*] — u) = ker(S!*] — z) for all
zeC* np(S). By Theorem 2.3, dim ker(S!*! — 1) = dim ker(S[*} — z) and since B(z)
is injective it is sufficient to show that B(z)ker(S!*| — u)[L]ran(S — z*). Let
feker(S*! — p) = (ran(S — 1*))* and {u,v}€S. Then

[Be)f 0= 2% = [(I + (z = w)(S = 2)7")f ;o = %]
=[f o] = zlfoul + = WIS —2)7 ' f v = %)
=) = 2lfsul + (2 = wlf ul
=0l = ulfu) = [0 — pu]

Thus B(z)f[L]ran(S — z*). Define
B(z) = B(9)*!, eCtrp(S).

Then for zeC™ such that z*ep(S), we have B(z) =1+ (z— u*)(Sll —z)~"
Therefore, if B(z)f =0, then (z—u*)(Sl—2)7'f=—f, that is, {—f,
(z— u*)fyeSl —z. Hence {—f,u*f}eS*]. Since ker(S[*] — y*) = {0}, we have
f =0, that is B(z) is injective. In a similar way as above one shows that for ze C™~
such that z* e p(S), we have B(z)ker(Sl*] — y*) = ker(S[*] — 2).

Let

D() = (1(1), - by, (1)),
(") = (b1 (1), ..., by (1))

be row vectors whose entries form a basis for ker(S!*) — y) and ker(S!*] — u*). Since
B(z) is a holomorphic operator valued function on its domain and it is a bijection
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between ker(Sl* — ) and ker(Sl*] —z) for zeC*np(4) and it is a bijection
between ker(S[*] — y*) and ker(Sl*) —z) for zeC™ such that z*eCtnp(S), it
follows that

o(2) — {B(Z)¢(u), zeC* np(9),
| BE@dW"), FeCtnp(S)

has the properties from the lemma. [J

D(z) = (¢1(2), -, Pa. (2))s zeC™*\y, in the lemma is called a holomorphic basis

for ker(S!*! — z). If @(z) is such a basis then &(z) stands for the row vector function

whose entries are pairs from M.:®(z) = ({¢(2),2¢,(2)}, ..., {¢u, (2),;2¢4, (2)})
and if b is a boundary mapping for S then b(®(z*)) stands for the d x d matrix
whose jth column is given by b({¢;(z*),z%¢;(z*)}), j =1, ...,d=.

Theorem 4.2. Let (#,[ -, - ]) be a Pontryagin space of negative index » and let S be
a standard symmetric operator in H# with defect index (dy,d_) andd =d, +d_< 0.

(@) Let b be a boundary mapping for S with Gram matrix Q and ®(z) a
holomorphic basis of ker(S!*] — z) defined on C\(Ruy), where y is a finite
subset of C\R. Then

(z) = (Qb(P(z*)))"

is a (—Q)-boundary coefficient.

(b) Let @(z) be any holomorphic basis for ker(S* — z), ze C\(Ruvy,), where y, is
a finite subset of C\R, and let by be any boundary mapping for S with Gram
matrix Q; and set U\(z) = (Qiby(®,(z%)))*. Then

U(z) = oA (z)U1(z)A

on C\(Ruyuy,) for some invertible matrix function o/ (z) of size d+ x dz if
zeC* and a constant invertible d x d matrix A such that AQ"'A* = Q.
(c) The boundary coefficient U is minimal if and only if

(dom S)*! ~span{ker(S — )" : Aea,(S)} = {0}. (4.3)

Proof. For ze C*\y the row vector tﬁ(z*) has d+ components which are vectors from
S+~ z*I. The mapping Qb maps each component from ®(z*) to a d x 1 vector in
C?. Thus Qb(d(z*)) is a d x d+ matrix and %(z) is a ds x d matrix. This proves
(#1). Since #(z) is holomorphic on its domain, &(z*) is anti-holomorphic, and
consequently Qb(®(z*)) is also anti-holomorphic. Therefore %(z) is holomorphic on
its domain and (#2) is proved. Since the vectors in ®(z) (P(z*), respectively) are
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linearly independent and since Qb is a bijection on S*I ~zI (S*] A z*I, respectively)
it follows that the matrix Qb(®(z¥)) (Qb(®(z)), respectively) has rank d_ (d;,
respectively). Thus the property (%3) holds. We calculate % (z)(—Q ") (w)*:

U(z)(—=Q7" ) (w)* =b(B(=*))*Q(-Q ") Qb(B(w¥))

— b((=*))* (—Q)b(S(n*))

a

= — [B(w*), (=]

= (2 ) B(n"), D).

Thus % has property (%4) and the limit in (%5) exists. From
Kuy(z,w) = [@(w*), (z%)], (4.4)

it follows that the block matrix [Ky(%, /)] ;—; is Gram matrix of vectors in

D(27), ..., P(AF) with respect to the inner product [ -, - ]. Therefore the function
% (z) has property (%5). This proves (a). The proof of (b) is identical to the proof of
[7, Proposition 4.2(b)].

Now we prove (c). Assume (4.3). By Theorem 3.7, for arbitrary non-real distinct
complex numbers i, g, iy, ..., i, ¢ 5,(S), such that w;# i, j,k =0, ...,x we have
(3.11). Since by Theorem 2.3, we have dim S!*]/S = d, the von Neumann formula
(3.11) implies that the matrix

(U ()™ U ()™ (i)™ - U]

has the maximal rank d. Thus condition (%6) is satisfied. Conversely, if (#6) is
satisfied, then the dimension of

n
Mﬂo + Z Mﬂ7
j=0
over S is d. Since dim S!*//S = d, we conclude
s
St =S4+ My +> " M.

Jj=0

By Theorem 3.7, this implies (4.3). The theorem is proved. [

Remark 4.3. Note that in the Hilbert space case each closed symmetric operator
satisfies condition (4.3), and therefore each closed symmetric operator with finite
defect indices gives rise to a minimal boundary coefficient. The same is true when S is
a symmetric relation, because the multi-valued part of S can be factored out from the
Hilbert space.
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5. Reduction to a minimal boundary coefficient

A boundary coefficient %(z) is said to be row reduced to a boundary coefficient
7" (2) if

A (2)U(z) =V (z), zedom(%)ndom(¥"),

for some invertible matrix function .o/(z) on dom(%)ndom(?") which is of size
dy x dy for zeC*. The main result of this section Theorem 5.1, says that any
boundary coefficient can be row reduced to a boundary coefficient whose top rows
are independent of the eigenvalue parameter and the remaining rows are essentially
determined by a minimal boundary coefficient. The theorem shows that .2/(z) can
even be chosen holomorphic on its domain.

Theorem 5.1. Let Q be a self-adjoint invertible d x d matrix with d, positive
and d_ negative eigenvalues. Let %(z) be a Q-boundary coefficient function.
There exist a unique integer t, 0<t<min{d,,d_}, and a holomorphic function
</ (z) on dom(%) whose values are invertible matrices of size d+ x dy for zeC*
such that

o0 v
w(z)?/(z)—[o %(Z)HBO], (5.1)

where, with w4 =dy —1, 0 =d -2t =w, +w_, Uy, % (z), and By have the
following properties:

(I) Ug is a constant © x d matrix of maximal rank,
(ID) By is a constant w x d matrix such that Bonle)k is invertible and has

positive and w_ negative eigenvalues,
(IIT) the following equality holds:

*
Uo | - ;| Yo 0 0
Q = , 5.2
l Bo ] [ Bo 0 Q' 5-2)
where Qg = (BonlBE)k)*1 is a self-adjoint w X @ matrix with o, positive and

w_ negative eigenvalues,
(AV) «(z) is a minimal Qo-boundary coefficient of size w4 X w.

The right-hand side of (5.1) is called a minimal representation of U (z).

To prove the theorem we use two lemmas. Lemmas 5.2(¢) and (f) and 5.3 are
consequences of a geometric interpretation of maximum modulus principle for
generalized Schur functions [9, Proposition 8.1] for which we refer to the appendix.
To formulate the lemmas, let # and % be Hilbert spaces and let T: C" — % (#,%)
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be a meromorphic operator function such that the kernel

il — T(z)T(w)*

KT(Z7 M}) = 7 —

, z,wehol(T), (5.3)

has % negative squares. Here hol(T) stands for the domain of holomorphy in C* of
T. We set

A (T)

= (| ker(T(z)—T@) | ()| () ker( = T(w)*T(w))

zwehol(T) wehol(T)

A7(T) is the subspace of # on which 7'(z) is isometric and independent of z. If we set
T*(z) = T(z)*, then A"(T*) is the subspace of % on which T*(z) is isometric and
independent of z.

Lemma 5.2. There exist decompositions & = Fo@F 1 and 9 = GyD Y, such that
T(z), has the matrix representation
V 0 F G

: lﬁ"} - [‘;]7 zehol(T), (5.4)

) = 0 To(z2)

I

where

(a) Fo= /V(T) and Gy = /V(T*),

(b) V:Fy—> % is unitary;

(©) To:Ct—2L(F1,%) is a meromorphic function and hol(Ty) >hol(T);
(d) the kernel

T —Ty(2) To(w)*

Kr,(z,w) =i , z,wehol(Tp), (5.5)

z — w*

has « negative squares;
(e) for any choice of distinct complex numbers zy,z, ...,z,€hol(Ty) and each
J€{0,1,....,%} the restriction To(z))| 4z, to

n
M(Ty) = M(To; 20, ..., 7) = ) ker(To(zx) — To(z0))
k=0
is a strict contraction, or equivalently,
(f) for any je{0,1, ..., %}

M (To) (ker(I — To(z)*To(z)) = {0}
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Proof. Put 7y = A (T), 9y = A (T*). From the definition of .A"(T) it follows that
T(z)| y(r) is independent of zehol(T). Put V = T(zo)| 4z, with zgehol(T). We
prove that V.F,=%,. Let feZ,. Since for arbitrary zehol(7T), feker(l—
T(z)*T(z)) we have that T(z)*Vf =f. Therefore Vfeker(T(z)* — T(v)*) for
arbitrary z,vehol(T). Moreover, for arbitrary zehol(T), T(z)T(2)*Vf = T(2)f =
Vf, and consequently Vfe A (T*) =%,. Thus VA (T)= A (T*). We now prove
N(T*)c VA (T). First note that T(z)*|‘/,1,ﬂ(T*) is independent of zehol(7) and
define 7 = T(zo)*|u4,/-(T*) for some zoehol(T). Consider an arbitrary ge 4(T*).
Reasoning as above we obtain that Vige A/ (T) and VVig= T(z0)T(z)"g = g.
Therefore ge VA(T), V:Fy—% is one to one and V~!=V;=V* This
proves (b).

Define 7| = 7 ©Fo, 41 =%0% and To(z) = T(z)|#,, zeC™". As a restric-
tion of a meromorphic function, 7y is meromorphic and hol(7y)>hol(T). The
matrix representation (5.4) follows from the equalities

(TR T\, VF0yy =<T(2)F1,T(2)F0)>y
={(F\,TE)*'T(2)F0) 5+
=T, Fo)s

=0, zehol(T).

|

Using the matrix representations (5.4) and (5.6) we calculate

0 0
Kr(z,w) = [0 K1, (z, 111)17

Representation (5.4) implies

v 0
0 T()(Z)*

%
2

0

NN

T(z)* =

1, zehol(T). (5.6)

1

and therefore kernel (5.5) has the same number x of negative squares as kernel (5.3).
Since To(z) : # % for all zehol(T), we conclude that Ty(z)* = T(2)*|,, for all
zehol(T). Therefore for all z,vehol(T) we have

ker(I — Ty(2)*To(z)) =ker(I — T(z2)*T(2))nF 1,

ker(To(z) — To(v)) =ker(T(z) — T(v)) 71,
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and consequently,
JV(T()) = JV(T)ﬂf] = 97()('\971 = {0}
Now (e) and (f) follow from Remark A.3 in the appendix below. [

The last part of Lemma 5.2 can be formulated geometrically in terms of subspaces
of the Krein space ¢ defined by

(A D)= (F 0 2) (G, =D g)
In o we consider the graph of the operator T'(z):
#(2) = GITG)] = {{f, T} feFhe A, zeC”,
Recall that the isotropic part of a subspace & of (A ',[ -, -]) is defined by
7=y
Lemma 5.3. Each ¥(z), zehol(T), can be decomposed as
Z(z) = Lo[+]21(2),

where L is a neutral subspace of A" and the intersection the isotropic parts of ¥ (z)
over zehol(T) is {0}, or equivalently, for arbitrary distinct complex numbers z, ...,z
in hol(T')

wwm@%w}m}

Indeed, let %y = G[V] and Z(z) = G[Ty(z)], zeC". Then by Lemma 5.2(b),
%, is a neutral subspace of #" and
P (z) = Lo[+]ZL1(2).

The equality in Lemma 5.2(f) with j = 0 and the last equality in the lemma are the
same. That these equalities are equivalent to the intersection of isotropic parts of
Z1(z) being {0} follows from Theorem A.5 in the appendix.

Proof of Theorem 5.1. In this proof we consider C? equipped with the indefinite
inner product

x,y]=»*Q'x, x,yeC’

The space (C?,[ -, -]) is a Krein space. Let C? = 2,[1]2_ be a fundamental

decomposition of C?. For example, 2., (2_) can be the subspace of C? generated by
the eigenvectors of Q corresponding to its positive (negative) eigenvalues. Whatever
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the choice of the fundamental decomposition we have that dim(24) = d. Denote
by P, and P_ the orthogonal projections onto 2, and 2_. We consider the
subspaces

R(z) = ran(%(2)*), zedom(%).

The next argument was used in [10]. Assume that there exist » + 1 distinct complex

numbers zg, z1, ..., 2, € C* ndom (%) for which there exist vectors xg, X1, ..., Xy eC™
such that for j = 0,1, ...,x we have
P U(z))*x; =0 and y; = P_U(z)*x;#0. (5.7)

Then via complex contour integration and the residue theorem we find

(z)Q ()"

X;kKo]/(Zj,Zk)xk = ix;f‘ - X
%~ %k
:ib’k,yj}
zj —zf
1 Vi Jj .
:Z/[R[Z_ZZ’Z_Zf dt, j,k=0,...,%.
Since each of the vectors y;, j=0,1,...,%, is negative in the Krein space
1+, - ]), the Gram matrix of the vectors y;/(t — z¥), j =0, ...,%, is negative
c? the G trix of the vectors y; ), j=0 t

definite. Therefore the self-adjoint block matrix [Ky(z;,zk)]/s— has at least % + 1
negative eigenvalues. Since [K;;/(zj,zk)];szo has at most » negative eigenvalues the
assumption cannot hold. It follows that there exist at most x distinct complex
numbers zi, ..., z,€CT ndom(%) for which (5.7) holds for some vectors xi, ..., x,.
Denote by y the set of the exceptional complex numbers z in C* ndom (%) for which

P, U(z)*x=0 and P_%(z)*x#0

holds for some xeC%. As we have just proved y has at most » elements. For each
zeC" n(dom(%)\y) we have that

P.Uz)*x=0 = P U(z)*x=0and %(z)*x = 0.

In other words, the restriction Py|,, is an injective operator for all
zeC" n(dom(%)\y). By assumption (#3), dim %(z) = d, for all zeC* ndom(%).
Consequently, the restriction Pi[,,, is a bijection for all zeCt n(dom(%)\y).

Therefore the operator P, %(z)*:C% — 2, is a bijection for ze C* n (dom(%)\y).
Denote by T'(z) the operator from the Hilbert space (2_,—[ -, - ]) to the Hilbert
space (24,[ -, - ]) defined by

T(z)* = P_U(z)*(P U (2)*)"", zeC*tn(dom(%)\y).
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In particular we have
Uiz a = Pyu(2) a+ P U2)*a= (Io, + T(2)*) (P U(2)*)a, (5.8)

for all ae C% and so
R(z)={(Is, + T(z)")xy:x,€2.}, zeC n(dom(%)\)). (5.9)

The operator T'(z)* is called the angular operator of (z). Since %(z) is holomorphic
on C"n(dom(#)\y), T(z) is also holomorphic on this set. Note that the set
(C\dom(%))uy is finite.

Next we verify that the function 7 has a finite number of negative squares on
C'n(dom(#)\y). Let z,weC* n (dom(%)\y), x; = P U(w)*aand y, = P, U(z)*b,
with a,beC% and x,y, €2,. Then

ib*%(z)Q_l%(w)*a i

z — w* z — w¥

=L, + TOW)xs, (I, + T(2)*)]

(% (w)*a,U(z)*b]

Sz wE

:Z —iw* ([x+7y+} + [T(W)*x+7 T(Z)*erD
= e ~ [T T x4 ))
= (s, ~ TEOTO 0]

That is,
b*KJ/((Zv W)Cl = [KT(Z7 W)XJrver]'

Since the mapping arx, = P,%(w)*a is a bijection between C% and 2. for
weC' n(dom(%)\y), the assumption (#5) implies that the kernel K7 (z, w) also has
% negative squares on C* ~ (dom(%)\y).

It follows from Lemma 5.2 applied to (#,<{,->%)=(2_,—[-, -]) and
(9,{,>y)=(24,] -, - ]), that there exist decompositions 2, = :ZOi[HQIi such
that

Vo0 2° 2°
T(z) = - N C" (dom(% 5.10
@=, T()(Z)] [Ql_ Q] zeC A[dom()y),  (5.10)

where Tp(z):2' -2 is such that A (Tp) = {0}, To(z) is holomorphic on
C*n(dom(#%)\y), and V:2° 599 is a unitary operator. Let t=dim(2)=
dim(2°), oy =ds — 1, and @ = 0, + w_ =d — 21. The subspace 2! [+]2! is a
Krein subspace of (C,[-, -]) of dimension w. The decomposition 2! [4]2"
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is a fundamental decomposition of this Krein space. We have o, = dim(,@i) and
o_ =dim(2").
Now, with ze C* n (dom(%)\y), equality (5.9) becomes

R(z) ={x0 +x1 + V'x0 + To(2)*x :xoe:?(i, X1 e,@ﬂr}
=R +]%1(z),
where by (5.8),
Ry = {x0+ V'xo: xgea@&}
— U (P 2 < 2 [+]2
is a neutral subspace and the subspaces
R1(2) ={x1 + Ti(z)x1 :x1 €2}
=U()*(Pyu(2)*) " 2, 2! [1]2"

have the property that the intersection of their isotropic parts is {0} by Lemma 5.3.
Properties (#3) and (%4) of % imply that

(ran % (z)*)*) = ran ()"
Therefore we have
R(*) = R(z)F

={(l, +T(z))x_:x_€2_}, zeC'n(dom(%)\y),

or, using decomposition (5.10), we have
R(z*) ={x0 4+ x1 + Vxo + To(z)x1 : x0€ 2%, x;€2'}
= Ro[+]%1 (%),
where, as before,
Ro = {xo + Vxo:x0e 2° } = 2% [4]2°

and the subspaces #,(z*) are defined by

R () = {x1 4+ To(z)x1 : x €2 } < 2L []20

and they have the property that the intersection of their isotropic parts is {0} by
Lemma 5.3. Note that 2#,(z*) is the orthogonal complement of £,(z) in the Krein
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space (2} [4+]2",[ -, - ]). Therefore
9?1 (Z)O = ,@1 (Z*)o = gf] (Z) ﬂ.@] (Z*)

Select a basis of the w dimensional subspace :2“4-}321_ of C“. Let the columns of
the d x o matrix B} be the vectors of this basis. The Gram matrix ByQ 'Bf of the
columns of B} with respect to the indefinite inner product [ - , - ] is invertible and
has w. positive and w_ negative eigenvalues. Hence By has property (II). The Gram
matrix ByBj of the columns of B} with respect to the Euclidean inner product is
o x @ and invertible and the d x d matrix Bf(BoBf) 'By is the orthogonal
projection with respect to the Euclidean inner product of C? onto QL[-F]QI_

Let aj,...,a. be a basis of the subspace 2%. Then Iy + Vla, j=1,..,1
is a basis of %,. Let the columns of the d x t matrix U be the d x | vectors
(I + V~Na;, j=1,...,7. Then Uy has the property (I).

Property (III) now follows from the fact that %, is a neutral subspace of
(€% [ -, - ]) and orthogonal to 2! [+]2" in [ -, - |.

For ze C" n (dom(%)\y) we now construct %(z). Let by, ..., b, be a basis of the
space 2. . Then Iy + To(z)")bj, j=1,...,w,, is a basis of #,(z). Let the columns
of the d x w, matrix #"|(z)* be the d x 1 vectors (Igl+ + To(2)by, j=1,...,04.
The rank of #'1(z)* is w, for all zeC* ~(dom(%)\y). Since the function Ty(z)* is
anti-holomorphic, the function %1 (z)* is anti-holomorphic. Put

Uo(2)" = (BoBF) 'Bo"1(2)*, zeC” n(dom(%)\y).

Clearly, %y(z)* is an » x w, matrix and the function z %(z)* is anti-holomorphic
on C* n (dom(%)\y). Since the columns of the matrix %" (z)" belong to 2! [4]2! we
have

Bio(z)* = BE(BoBE) 'BoW 1 (2)* = 71 (2)*. (5.11)

Thus, the columns of the matrix [Uj Bi%(z)*] form an anti-holomorphic basis for
#(z) = ran(%(z)*). Another anti-holomorphic basis of this space is formed by the
columns of %(z)*. Denote by .«/(z)* the “change of coordinates matrix™ between
these two basis of #(z), that is, the matrix with the property

UE () =[S Bi(=)*], zeC* A (dom(%)y).

By (5.8), we have .«/(z)* = (P, #(z)*) '[a; -+ a; by - b,,]. The matrix .«Z(z) is a
dy x d, invertible matrix and the function zr>./(z) is holomorphic on
zeC*n(dom(%)\y). An analogous construction for ze C~ leads to the extension
of yin C~ by at most x points, the d x w_ matrix % »(z)* and to the ® x w_ matrix
Uo(z)* = Bo# 2(z)* and finally to the d_ x d_ matrix .o/5(z)* such that with the
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same Uy and Bj as above we have
U)ot (2)* = [Uy Bi#o(2)*], zeC™ n(dom(%)\y).

Thus %(z) has the minimal representation (5.1) for all ze C\Rn (dom(%)\y).

It remains to show property (IV). Properties (#1) and (#%2) follow from the
construction of % (z). Property (%3) follows from (5.11) and the fact that the matrix
#1(z)* has rank o, .

Equalities (5.1) and (5.2) yield

0 0 [uy; UoQ ' BE%z, (w)*
0 %o(z)Qal@/o(W)* B Ql()(Z)B()Q_]U:)l< %Q(Z)BOQ_IB:;%O(W})*

[, v TF
N [%Q(Z)BO‘|Q [%0(W)Bo]

= .o (2)U(2)Q " U (w)* ot (w)*. (5.12)

Properties (#4) and (%5) of %y(z) follow from (5.12) and from the corresponding
properties (#4) and (%5) of %(z).

Lemma 5.3 implies that for arbitrary distinct numbers zo, ..., z,€C" A (dom(%)\y)
we have

ﬂ’l(ZO)Oﬂ(ﬁ 9731(%‘)) = QI(ZO)H—%(Zﬁ)HQﬁ%(ZJO = {0}. (5.13)

By the definitions above, #;(z) =ran % i(z)*<2![4]2!. Since the matrix
BE‘(BOBE’]‘)“BO is the orthogonal projection with respect to the Euclidean inner
product of C? onto 21 [4]2L, the o x d matrix (BOB?;)*]BO acts as a bijection
between #(z) and ran %y(z)* = C”. Therefore (5.13) is equivalent to

ran %o (z0)* (| ran %o(z5)* ) (ﬂ ran %(;,)*) = {0}. (5.14)
1

Taking the orthogonal complement in (5.14) with respect to the indefinite inner
product defined by y*Qalx, x,yeC?, on C” and using the properties (#3) and (%4)
of % one can show that (5.14) is equivalent to

ran %o (zo)* U ran %o (z5)* U (O ran%o(z_;“)*> =C°, (5.15)
I

and this is (%6). Thus %(z) is a minimal Qo-boundary coefficient. [
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6. A model for minimal boundary coefficients

In this section we provide a linear relation model for a minimal boundary
coefficient by using the theory of reproducing kernel Pontryagin spaces. To be more
precise, let Q be a d x d invertible self-adjoint matrix with d, positive and d_
negative eigenvalues. For an arbitrary minimal Q-boundary coefficient %(z) we
construct

(a) a Pontryagin space (#,[ -, - ]),

(b) a closed simple symmetric operator S in #,

(c) a boundary mapping b of S with the Gram matrix —Q,

(d) a holomorphic row vector function @ : C*\y— #%  where 7 is a finite subset
of C\R, and such that the components ¢;(z), j =1, ...,d+, of

(15(2) = (¢l (Z)a ¢2(2)7 L) (z)di (Z))
constitute a basis for ker(Sl*! — z), zeC\(Ruy), such that
U(z) = (Qb(d(z*)))¥, (6.1)

where @ is defined just before Theorem 4.2. If Eq. (6.1) holds, we say that #, S, b
and @ provide a model for the minimal boundary coefficient %(z).

With the kernel Ky(z,w) in (#5) we associate a reproducing kernel Pontryagin
space A (Ky ). 1t is the completion of the linear space of the holomorphic functions

> Z Ky(z,wj)x;, zedom(%),
J=1
w;eC* ndom(%), x;eC%, j=1,...,n, neN,

with respect to the inner product
Z K%(-,wj)xj,z Ku(yu)yr | = Z Z ViR (e, wy)x;. (6.2)
=1 k=1 J

This completion consists of column vector functions f'(z) which are holomorphic on
dom(%), and are of size d; x 1 on C*. The inner product of f(z) in #(K) with a
function z+ Ky (z, w)x reproduces the value of f(z) at z = w in the direction x:

X*f(w) =), Ku (-, w)x]. (6.3)

Lemma 6.1. Let Q and Q; be d x d invertible self-adjoint matrices with d., positive and
d_ negative eigenvalues. Let U be a Q-boundary coefficient, let 4, be a Q;-boundary
coefficient and assume that

U(z) = o (2)U (2)A
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for some invertible matrix function </ (z) of size d x d+ if zeC* and a constant

invertible d x d matrix A such that AQ™'A* = Ql_l. Then the operator of multi-
plication o/ () :f(z)r> A (2)f (2) is an isomorphism from # (Ky) onto H(Ky,) and
under this isomorphism the operators Sy and Sy, of multiplication by the independent
variable z coincide.

In particular, if U has a minimal representation (5.1) then the reproducing kernel
spaces H (Ky) and # (Ky,) are isomorphic and under the isomorphism the operators of
multiplication by the independent variable z coincide.

Proof. The proof of this lemma is identical to the proof of [7, Lemma 4.3]. O

Next, we study the operator Sy of multiplication by z in #(Ky). We assume that
%(z) is a minimal Q-boundary coefficient. The following theorem gives a
representation of a minimal boundary coefficient #(z) in terms of the operator Sy
of multiplication by z in the reproducing kernel Pontryagin space # (Ky ).

Theorem 6.2. Let Q be a d x d invertible self-adjoint matrix with d, positive and d_
negative eigenvalues, d = d, + d_. Let U(z) be a minimal Q-boundary coefficient.

(a) The operator Sy of multiplication by z in the reproducing kernel Pontryagin
space # (Ky) is a closed simple symmetric operator with defect index (d_,d..).
Its adjoint is given by

s —span{{Ky (-, w)x, WKy (-, w)x} : we C* Adom(%), xe C%*}

®
wu

={{f, g}e%(l{%)z :3ceC? such that
g(z) = zf(2) — iU (2)Q "¢, Vzedom(%)}. (6.4)

The vector ceC” in (6.4) is uniquely determined by {ﬂg}eS@[;] and the

mapping b({f,g}) = ¢ is a boundary mapping for Sy with Gram matrix —Q"".
(b) There exist a boundary mapping b for Sy with Gram matrix —Q and a

holomorphic basis ®,(z) for ker(S,z[/*] —z), zedom(%), such that

U(z) = (Qby (1 ()))".

(c) Let by be any boundary mapping for Sy with Gram matrix Q, and let ®,(z) be

any holomorphic basis for ker(Sq[/*} —z), zeC\(Ruy,), where y, is a finite
subset of C\R. Then

U(z) = o (2)(Qaba(D:(z%)))*A

on dom(%)\y, for some invertible matrix function </(z) of size d= x dz if
zeC* and a constant invertible d x d matrix A such that AQ'A* = —Q; .
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Proof. To prove (a) consider the following relation in # (KJ//)ZZ
S = {{f,g}e#(Ky)*:IceC? such that
9(z) = zf(2) — iU (z)Q "¢, Vzedom(%)}.
Note that for a given {f,g} €S the vector ceC such that g(z) = zf (z) — i%(z)Q ‘¢
for all zedom(%), is uniquely determined. To show this we derive a formula for c.

With z, ..., z,edom(%) as in (%6) (see (1.2)) we have

9(zj) = z;f (z;) — iU( ZJ)Q ¢, j=0,...,%,

o(=8) = (25 — (A,
or in matrix form
G({f,q}) = —HQ e,
where
o(z0) — zaf (20) ()
S = |y e | = [
o(=8) — 2 (5) ()

Since the matrix H has maximal rank d, the matrix H*H is invertible. Therefore,

= IQ(H*H) "' H*G({f, g}). (6.5)

Hence if the pair {f,¢g} =0, then ¢=0, and this proves the uniqueness
statement above. Since point evaluation is continuous on #(Ky), it also

follows from (6.5) that S is a closed subspace of #(Ky)*. Define the mapping
b:S—C? by

b({f,g}) =c forall {f,g}eS.

Again since point evaluation is continuous, b is a continuous linear mapping on S.
For arbitrary we C* ndom(%) and aeC?* we have

{Ku (-, w)a, w* Ky (-, w)a} e S
and

b({ K (-, w)a, w* Ky (-, w)a}) = U(w)*a. (6.6)



T. Azizov et al. | Journal of Functional Analysis 198 (2003) 361-412 395

The minimality of % and (6.6) imply that the mapping b is onto C’. By the
definitions of Sy and ker b we have Sy = ker b. Therefore

dim §/S, = d. (6.7)

As before, define the Lagrange inner product on # (Kg,)2 by

[0 G0} T = (g~ If ).

Put

T = {{Z Koy w xJ’Z w; FKu (-, wy)x }

neN, w;eC* ndom(%), xjefDd*}

and denote by Tm.x the closure of T2 . in ,%’(Kq,)z. Note that, for
wjeC* ndom(%), xjeC%,

n
Z Kuy(z,wj)x Z W) YKz, wi)x; = Z(z - W;-")Kg,(z, W;)X;

J=1 J=1

=il(2)QY U (w)*x;

J=1

Therefore, since S is closed, T, < Tmax =S and

({ZK;/, WJX/’ZWK’// W)X }) Z w/ Xj. (6.8)

Let

T = {{Z Ky (- , W xJ’Z w; K/;, wj }

U(w;)*x; =0, neN, w;eC* ndom(%), xjeCd*}.

=

J=1

Denote by T, the closure of 770 .
It follows from property (6.3) of the inner product in the reproducing kernel space

A (Ky) that for {u,v} € Tmax and {f, g} €S we have

[{/,9}.{u,0} ] = b({u,u})"(=Q")b({/, g}). (6.9)
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Equality (6.9) implies that Sy < ﬂg;;]x. Conversely, if {f,g}e T,Eq*a]x = (T° )[*], then

0=1[g(),Ku(-,w)a] = [f(-), w*Ku(-,w)a]
=a*(g(w) —wf(w)), for all weC* ndom(%), aeC.
Hence, g(w) = wf(w) for all wedom(%), that is, {f, g} €Sy. Thus Tr[{;]x =Sy.

= S. It is sufficient to prove that (Tr(x)lin)[*] =5
)[*] follows from (6.8) and (6.9). To prove the converse

Next we prove that 7| IE;I]I

The inclusion S (T oin
inclusion observe that

[97 zn: Kau(, Wj)xj] -
=1

Yy Wwa(',Wj)Xf] = xF(gOwy) = wif (wy),
=

J=1

for w;eC* ndom(%), x;eC” . Therefore, for {f, g}eT[*]

Do wu(w)*xi=0 = > xFglwy) —wif () = 0.
= =

Consequently, the relation
span{{%(z)*x, (g(z) — zf (z))*x} : ze C* ndom(%), xeC*}
is an operator from C¢ to C. Therefore there exists an ae C? such that
a*U(z)*x = (9(z) — zf(2))*x, for all zeC* ndom(#%), xeC%,
or
X*U(z)a = x*(g(z) — zf(z)), for all zeC* ndom (%), xeC%.

Thus % (z)a = g(z) — zf (z) and consequently {f, g} €S.

Since TpincSy<=S and Tr[n’i =S , Tmin 1s a symmetric operator in (#(Ky),
[ -, - ]). Next we will prove that its defect index is (d_,d).

Let ueC" ndom(%). We have to determine the dimension of the subspace SAul.
Note that Sy nul = {{0,0}}. Therefore 6|S»M1 is an injection. Let {f, uf} € S. Then

W (2) = 2f (2) — i (2)Q DS, wf}),

and consequently

(WQ'b({f wf}) = 0.
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This equality and conditions (#4) and (#3) imply that b({f, uf})eran % (u*)*.
Thus, the range of the injection b §npur 18 contained in the (d-)-dimensional space
ran % (u*)*. Therefore dim(Snul)<d-_. Since

{K’Z/('au*)aauK"ll(Vﬂ*)a:aeq:di}CSAm:uI (610)

and since the subspace on the left-hand side of (6.10) has the dimension d_, it follows
that

dimSnul =d._.
In a similar way one can prove that
dimSnp*l =d..
Thus the defect index of Ty is (d—,d). It follows from Theorem 2.3 that

dim S/ Tpin =d_ +d, =d. (6.11)

Since Tinin =Sy =S, (6.7) and (6.11) imply that Ty = Sy. Therefore, Tpax = S, =
Tr[n*lll = S. Consequently, the operator S, of multiplication by the independent
variable is symmetric in (#(Ky),[ -, - ]), it has defect index (d_,d.), and its
adjoint is Tyax = S. The last statement in (a) now follows from (6.9).

To prove (b) put by = Q'b, where b is the boundary mapping for S, with
Gram matrix —Q ! introduced in the proof of part (a). Then b; is a boundary
mapping for Sy with Gram matrix —Q. Note that for the jth basis vector e¢;

of C%, j=1,...,ds, the vectors Ku(-,z%)ej, j=1,...,ds, form a basis of
ker(Saz[;] —z), zeC* ndom(%). Let ®(z), zeC* ndom(%), be the vector whose
components are the vectors Ky (-,z*)e;, j =1, ...,dx. Since %(z) is holomorphic on
dom(#), ®;(z) is holomorphic there too. Using the above definitions we get

bi(®1(2)) =Q'b(d1(z))

=Q7'[u(F)e; - U(F)*eu |

=Q u(z*)*.

This readily implies (b).
Part (c) follows from Theorem 4.2(b). The theorem is proved. [

Corollary 6.3. Let S be a closed simple symmetric operator in a Pontryagin
space (K[ -, - ]) with defect index (dy,d_), d =d; +d_<oo. Then there exist a
d x d invertible matrix Q with d, positive and d_ negative eigenvalues and a minimal
(—Q)-boundary coefficient U(z) such that S is isomorphic to the operator Sy of
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multiplication by the independent variable in the reproducing kernel Pontryagin space
H(Ky) and

St = span{{p,z¢} : peker(S*] —z2), zeC\R}.

Proof. Assume that S is a closed simple symmetric operator in a Pontryagin space
(A, -, -1, with defect index (di,d_), d=di+d_<co. Let U(z)=
(Qb(d(z*)))*, zeC\(Ruy), where b is a boundary mapping for S with Gram
matrix Q and @(z) is a holomorphic basis for ker(S!*! — z), zeC\(Ruy), where y is
a finite subset of C\R. By Theorem 4.2, %(z) is a minimal (—Q)-boundary coefficient.
It follows that the kernel

U()Q " U (w)*

Ky(zyw) = —i p—

has a finite number of negative squares. We show that S in J# is isomorphic to the
operator Sy of multiplication by the independent variable in the reproducing kernel
space (A (Kx),[ -, | 4,))- By Theorem 6.2 the defect index of Sy is equal to that

of S. Denote by U: # — #(Ky) the linear operator
U(®(w*)x) = Ky(-,w)x, weC*\y, xeC.
From (4.4)

[®(w*)x, @(z*)y] = VK (z,w)x = [Ku (-, W)X, Kur (-, 2)Y) i, -

Hence U is isometric. As S is simple, dom(S!*!) is dense in # and as the kernel
functions Ky (-, w)x are total in # (K the range of U is dense in #(Ky ). Therefore
the closure of U is a unitary operator which we also denote by U. Using Theorem 6.2
we conclude

ScuU's,U
cu's)'u

=span{{P(w*)x, w*d(w*)x} :weC*\y, xeC%}

< Sl

Since by Theorem 2.3 dim(S!*l/S) = dim(S,][/*]/Sy;,) =d, we have S = U~'S, U and
the formula for Sl*) holds. [
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Example 6.4. Let

0 0 z -1 0 O
z>U(z)=10 0 0 z -1 0|, zeC
z 220 0 0 -1
satisfies (%1)—(#4) and
0 0 -1
Ky(zzw)y=10 0 —w*
-1 -z 0

This kernel has 2 positive and 2 negative squares and therefore the dimension of
A (Ky) is 4. Since the determinant of the matrix

u(z)

U (w)
evaluates to 0 for each z, weC, this matrix is degenerate. The row reduction yields
that for any three distinct numbers z, w,ve C the matrix

has the maximal rank 6. Thus %(z) is a minimal Q-boundary condition. The
reproducing kernel space #(Ky/) is

[0%) 20617062,063,OC4€C

A basis of this space is
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0 0 0
1 :K%(Z,O) 0 —Ky/(Z7i) 0 N
0 i i
_O_ __1_
0 :Ka//(Z,O) 0 5
L - L 0 -
_O_ ~ 0 -
0 :KJ//(Z7O) -1
_Z_ L 0 -

Applying definition (6.2) to these basis vectors we conclude that the space #(Ky) is
isomorphic to the space Cj with the inner product
0o 0 -1 0

0 0 0 -l
[x,)] = y*Ax, x,yeC!, A=

Under this isomorphism the operator of multiplication by z is isomorphic to the
operator

0 0
0 0
S = , aeC »,
o 0
0 o
with the adjoint
_Xl X2
X
S[*] = ? , 2 :x./vy./ec
X3 )3
L X4 Y4

Using (6.4) and the proof of Theorem 6.2(b), we find that the boundary mapping

Y4 — X3
X1 X2 —X4
b X2 ’ 2 . —X1
X3 V3 —X2
X4 Y4 —J)2
L _y3 .
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of S has Gram matrix —Q. Since

X1 X1
X1 szl
Sl nzr = , :x;eC p,
X3 ZX3 ’
X4 ZX4 |
we conclude that
0 0 [—1
0 0 —z
@ =
=11 11,
0 —-1] L
is a holomorphic basis for ker(S!*! — z). Therefore
0 0 z -1 0 O
@Qpb(ez))*=10 0 0 z —1 0 |,
z 22 0 0 0 -1

401

that is Cj,S,b and @ provide a relation model for the minimal Q-boundary

coefficient %(z).

Example 6.5. A meromorphic m x m matrix valued function N defined on C\R is
called a generalized Nevanlinna function with % negative squares if N(z)* = N(z¥)

for zehol(N) and the kernel

N(z) — N(w)*

z—w*

has % negative squares. We denote the class of such functions by N, It is easily

checked that

is a Q-boundary coefficient with

The 2m x 2m matrix

U (z)
U(z*)

B N(z) I
CNE* T

(6.12)



402 T. Azizov et al. | Journal of Functional Analysis 198 (2003) 361-412

is invertible if and only if Im N(z) is invertible. Indeed,

det [;f((;))} = det [Zi?z;}z) 2] = (2i)"det Im N(z).

We shall assume that Im N(v) is invertible for some vehol(N) and relate the
representation of %(z) given in Theorem 6.2 to the operator representation of N(z).

For this we use results from [1,11,15], where also earlier references can be found.
As NeNP>™ it admits a representation of the form

N(z) = N(g*) + (z = )T + (z — ) (4 = 2) ),

where A is a self-adjoint relation in a Pontryagin space (#,[ - , - |) with non-empty
resolvent set p(4), pis a point in p(4)NC™", and I’ is a linear mapping from C” in
. Evidently, p(4) chol(N). Weset I'. = I + (z — u)(A —z)"'T', zep(A). Then for
z, wep(A),

r-=I+z—-w)(Ad-2)"Hr, (6.13)

and

= I*I.. (6.14)
Define the relation S in # by
S={{f,g}ed:T¥g—*f) =0}
={{f,gteA: [{f g}, {I:x,zI.x}] =0 for all xeC"}.

It is closed and since it is a restriction of a self-adjoint relation it is symmetric. The
sets on the right-hand side are independent of zep(A4), because by (6.13), for
{f,g} €A we have

I¥g—2%f) = I+ (ZF = w*) (4 =) 7)(g = 2%) = Ti(g — w*/).

From the definition of S it follows that ran(S — z*) = (ranI.)/*! and hence
ker(Sl*! —z) =ranT., zep(A). Hence the defect indices of S coincide and are equal
to m — dim(ker I'.). This number is independent of zep(A), because by (6.13),
kerI'. =ker Iy, z,wep(A4).

The definition of S implies that for all ze p(4),

Sl = A {{I.x,zl.x} : xeC™}, direct sum.

The map I'. maps C" onto the kernel ker(Sl*] — z).
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The model consisting of #, A, and I' can always be constructed such that
H =span{l.x:xeC" zep(A)}.

We shall assume that the model satisfies this closely connectedness condition. Then

(a) #, A, and I' are uniquely determined by N up to unitary equivalence,
(b) the negative index of J# equals %, the number of negative squares of N,
(©) hol(N) = p(4),

(d) S is a simple symmetric operator.

We now assume that for some vehol(N), Im N(v) is invertible. Since by (6.14)
and (6.13), we have

N(z) = N0 + (=) + (2 = )4 = 2)7)I,

without loss of generality we may assume that v = u. Then by (6.14), I',, is injective
and consequently, for all ze p(A4), I, is injective, that is, I". : C" —>ker(S[*] —z)isa
bijection. Also, the defect indices of S are equal to m and, because ker(Sl*] — z) is a
non-degenerate subspace, von Neumann’s formula holds:

Sl = s+ S nzr + S AT, zep(A)\R.

Let ey, ey, ..., e, be the standard orthonormal basis in C” and define the boundary
operator for S by

[[{fvg}a{rzfely,uruel}ﬂ

L4729}, (T yems i e} |

N Al
PED=AN L gy Feer i T} ] |
L [[{fa g} {Fﬂ*e.mnu*ru*em}] i
where
A:[Nm)* I]Zf[ (Im N ()" ~(mN@)" ]
N I] 2[-N@w(ImN(w) "' N(w*ImNpw)"
If we set

(D(Z) = (F:elarzeZa ---7Fz€m)

then after some calculations we find that b is a boundary mapping for S with Gram
matrix —Q and %(z) = (Qb(d(z*)))*.
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The operator U: # — #(Ky) defined by U:fi>f(z) = I'%f is unitary; U~!
maps the function K(z, w)x to I'*x, xeC™. The symmetric operator S and the self-
adjoint relation 4 in J in the operator representation of N are isomorphic under U
to the operator Sy of multiplication by the independent variable in the space #(Ky)
and

Ay = {{f, g} e #(Ky)* :IceC™ s.t. g(z) — zf (z) = ¢, VzeC\R};

for details, see [1,11]. Finally, note that %(z) in Example 6.4 is of the form

where
-1 0 0 0 0 —z
Az)=|z -1 0|, Nz=|0 0 =],
0 -1 —z —7? 0

A(z) is invertible and N(z)eN2*2. Thus the reproducing kernel space #(Ky) is
isomorphic to the space associated with N(z).

Example 6.6. As remarked in the Introduction the case where d_ =0 or d, =0 is
included in the theory. We consider the first case in more detail; the other case where
d, = 0 can be treated similarly. If d_ =0, then d = d, and Q is assumed to be a
positive d x d matrix. According to the definition Q-boundary coefficient #(z) is a
meromorphic d x d matrix valued function on the upper half plane C™ which has
maximal rank, that is, invertible on its domain dom(%) of holomorphy in the upper
half plane C*. The minimality condition is now superfluous. Since Q is positive, the
kernel Ky(z,w), now only defined for z, wedom (%), is non-negative. Indeed, using
complex contour integration and the residue theorem we obtain that for points
21,22, ..., 2,€C" and vectors xi,xa, ..., x,€C?

sk
E XKZ],Zk X =1 E

IW(Zk)

Since %(Z)Q_l/ 2 is invertible, on account of, for example, [2, Theorem 1.5.7], the
reproducing Hilbert space # (Ky) is isomorphic to the (infinite dimensional) Hardy
space H associated with the kernel L of functions defined on the upper half-plane

C™". The isomorphism is given by the mapf( )eH—%(z)Q™"f(z). Thus we may as
well assume that #(z) = Q = I. Theorem 6.2 holds true provided, in for example,
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(6.4) we consider only we C" and ze C". The boundary operator b ({f, g}) is simply
the vector ¢ for which ¢(z) — zf(z) = ¢. With

o) = (0 2 )

z— Wz — W Tz

where ey, ey, ..., ey, is the usual orthonormal basis for C”, we see that part (b) of
Theorem 6.2 holds.

These results are consistent with the facts that (i) a standard maximal symmetric
operator in a Pontryagin space ## has a unique (up to unitary equivalence) minimal
self-adjoint extension in Pontryagin space # and (ii) the exit space # S/ is
necessarily an infinite dimensional Hilbert space; see [3].

Example 6.7. For j = 1,2, let %;(z) be a Q;-boundary coefficient. Then

U, (Z) 0

0 @/2(2) A

3

U(z) = oA (z) l

where o/(z) is an invertible holomorphic matrix function on dom(%;) ndom(%,)
and A is an invertible matrix, is a Q-boundary coefficient with Q=
A*diagonal(Qy, Q,)A. This includes the case that for example %;(z) is only defined
for zeC", because d;_ = 0. Then #(z) = #(z) for zeC™.

Appendix A. A Krein space version of the maximum principle for
generalized Schur functions

In this appendix we give a geometric interpretation of the maximum modulus
principle [9, Proposition 8.1] for generalized Schur functions with » negative squares
in terms of subspaces of a Krein space. This is used in the proof of Theorem 5.1, see
Lemmas 5.2(e),(f) and 5.3.

As in Section 5 (#,<{-,->5) and (94,<{:,->4) are Hilbert spaces and
T:C"—%(#,%) is a meromorphic operator function such that the kernel

i1 — T(z)T(w)*

Kr(z,w) = p—

, z,wehol(T)
has % negative squares. Here if T is a meromorphic operator valued function hol(7T)
stands for its domain of holomorphy. By 7% : C* — #(%, #) we denote the function

defined by T*(z) = T(z)*, zeC". In Theorem A.5, the main theorem in this
appendix, we consider the graphs of 7T'(z),

L) =GT))={{f,T¢)f}:feFycH, zeCt,
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as subspaces of the Krein space
(’){7[ R ]) = (377 <a>37)®(g7_<7>‘4)

The maximum modulus principle [9, Proposition 8.1] for generalized Schur functions
reads as follows

Theorem A.l1 (Maximum principle). Let S:Dw— L (F,9) be a meromorphic
operator function with 0€hol(S) such that the kernel

Ks(z,w) = w, z,wehol(S), (A.1)

has « negative squares.

(a) Let feF,ge% and assume g = S(z)f for more then » points zehol(S). Then
we have ||g||<||f]], and the equality ||g|| = ||f|| implies that g = S(z)f and
f = S(2)*g for all zehol(S).

(b) LetfeZF, ge9 and assume = S(z)*g for more then % points zehol(S). Then
we have ||f||<||gl|, and the equality ||f|| = ||g|| implies that f = S(z)"g and
g = S(z)f for all zehol(S).

The statement (a) follows from [9, Proposition 8.1] since by Alpay et al.
[2, Theorem 2.5.2], the kernel

I—S(w)*S(z)

W)
(z,w) 1 —zw*

,  z,wehol(S),

has » negative squares on hol(S). In addition to the original statement of
[9, Proposition 8.1], statement (a) claims the equality /' = S(z)*g. That this
equality holds true is clear from the proof of [9, Proposition 8.1]. As to (b) we
consider the meromorphic function S|(z) = S(z*)*, zeD. Since S is holomorphic
at 0, S} is holomorphic at 0 and, since kernel (A.1) has x negative squares,
the kernel

1 — Sl(W)*Sl(Z)

o 2 wehol(S)*,
— Z

(z,w)—

has % negative squares on hol(S;) = hol(S)*. Now statement (b) follows from
[9, Proposition 8.1] applied to S;.

In the following corollary we prove that the family of operators
T(z), zehol(T), n+ 1 of the operators can coincide on a subspace of % only as
contractions. If » + 1 of the operators T(z) coincide on a subspace of Z as
isometries, then 7'(z) is independent of zehol(7') on this subspace. We recall from
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Section 5 that

zywehol(T) wehol(T)

( (] ker(T ())) ﬂ( N ker(zT(W)*T(w))>. (A2)

Corollary A.2. Let zy,z1, ...,z,€hol(T) be distinct complex numbers and put

M(T) = M(T;zo, ...,24) = ﬁker(T(zj) — T(zp)).

Then for j=0,1,...;%, T(z)| yp): M (T)>% and T(z)*| yize): M(T*) > F are
contractions and

T)(ker(I - T(2)*T(z)) = A(T), (A3)

M(T*) (Vker(I = T(z)T(z)¥) = A (T*). (A.4)

That is, the sets on the left-hand sides of (A.3) and (A.4) are independent of the choice
of the distinct points zy,z1, ...,zy€hol(T).

Proof. Let uoeCt be a point at which T is holomorphic. The holomorphic
transformation ¢ :z+>>=% = /2 maps R onto T and C* onto D. Its inverse is the

holomorphic mapping  : ir—» ”0 = z which maps T onto R and D onto C*. The
composition S = Ty is a meromorphlc function on D which is holomorphic at 0.
The equality

I—S(A)S(w* < z—up >i1_ T(Z)T(W)*< w— u >*
- \2Imu z—w* V2 Im uy

implies that the kernel

*
%’ 2,vehol(S),
has » negative squares. Hence we may apply Theorem A.1(a) to S.

Let zo,zi,...,z,€hol(T) be distinct complex numbers. Then 4; =y(z), j=
0,1, ..., %, are distinct numbers in hol(S). Let fe.#(T) be arbitrary. Then, by the
definition of S(4;) and .#(T'), we have S(4;)f = S(4)f =: g. Theorem A.1(a) implies
that [|g|| = [IS(4)f[|<|If|| and consequently [|7'(z;)f||<[|f]| for all j=0,1,...,%
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Since f'e .#(T) was arbitrary this proves that 7'(z;)| 4y : #(T)— % is a contraction
foreachj=0,1,...,x.

To prove equality (A.3), let je{0,1,...,%} and let fe#(T) be such that f =
T(z)*T(z;)f. Then T(z)f = S(4;)f = S(4o)f =g for all j=0,1,...,x, and ||g|| =
||f||. By Theorem A.1 it follows that g = S(u)f and f = S(u)*g for all uehol(S).
Consequently S(u)f = S(v)f and f = S(v)*S(v)f for all u,vehol(S), or equivalently,
with v = y(w) and u = y(z), feker(T(z) — T(w)) and f eker(I — T(z)*T(z)) for all
z,wehol(T). Thus, the left-hand side of (A.3) contained in .4°(T). The opposite

inclusion is trivial, and hence (A.3) is proved. The statements about T* are proved in
a similar way using Theorem A.1(b). O

Remark A.3. Tt follows from the definition of .4"(T) that the condition .A°(T) = {0}
is equivalent to the condition that for one (and equivalently for each) set of » + 1
distinct complex numbers z, ..., z, €hol(T) the operator 7'(z0)| (7., ... -,) 1S a strict

contraction. For » = 0 the condition .4"(T) = {0} is equivalent to the condition that
at least one (and, equivalently all) of the operators T(z), zehol(T), are strict
contractions.

A part of the following corollary is a restatement of [10, Corollary, p. 356] in terms
of the function T from Corollary A.2. In the proof of this corollary we use the first
part of Lemma 5.2.

Corollary A4. Let zy, ...,z,€hol(T) and wy, ...,w,ehol(T) be two sets of n+ 1
distinct complex numbers. Then for N (T) defined in (A.2) we have

N(T) = (T z0, ..., 2) [ ) (ﬂ ker(I — T(Wj)*T(Zj))> (A.5)

i—0

and

N(T) = ( (| ker(T(z) - T(v))) ﬂ( (| ker(Z - T(u)*T(W))). (A.6)

z,vehol(T) u,wehol(T)

Proof. The matrix representations (5.4) and (5.6) imply that the set on the
left-hand side of (A.5) is contained in the set on the right-hand side. To
prove the opposite inclusion, let f be an arbitrary element of the inter-

section in (A.5). Then fe.#(T;zy,...,z,) and T(w)*T(z0)f =f for all
j=0,...,% Therefore

T(zo)f €M (T*; wo, ..., Wy).
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Corollary A.2, applied to both T* and T, yields

/1] = 11T (0wo)* T o)/ | <IN T (z0)f 1| < If1]-

This implies ||7(z0)f]l = [Ifll and [|T(w0)*T(z0)f]| = I T(z0)fl. Using again
Corollary A.2, we conclude that 7'(z)f is independent of z and that T(w)*T(zo)f
is independent of w. Therefore

T(W)T(2)f = T(wo)*T(z0)f =f for all w,zeC™".

Thus

uweC™

fed(T;zp, ..., 2) N0 ( () ker(I - T(u)*T(w))> c A (T).

This proves (A.5). Equality (A.6) can be proved in the same way. [

The next theorem concerns the geometric interpretation of the maximum
modulus principle. The isotropic part of a subspace % of a Krein space is denoted
by &°.

Theorem A.S. For arbitrary distinct complex numbers =z, ...,z, in the set
hol(T) (=C"), the intersection Mo Z () is a non-negative subspace of A" and

m(ﬁff(z,)) N <2 (A7)

zehol(T)

holds. Moreover, for any two sets of v + 1 distinct complex numbers z, ...,z,€hol(T)
and wy, ...,w,ehol(T) we have

n
m (Z)n& wj)m)
zehol(T ) Jj=0

= ﬂ (cs,”(u)moiﬂ(v)[l]). (A8)

u,vehol(T)

Proof. First note that

b

() 2(z) = GIT(=0)

Jj=0

AM(Tz, ... 7)] (Ag)

2%

Indeed, if {f', g} belongs to the intersection in (A.9), then g = T'(z;)f forj =0, ..., %
This clearly means that {f, g} belongs to the graph in (A.9). Conversely, if {f,g}
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belongs to the graph in (A.9), then f' e #(T;z, ...,z,) and g = T(zo)f. Since, by the
definition of the subspace .#(T;zo,...,zv), the operators T(z;), j=0,...,%,
coincide on .#(T;zo, ...,z.), we have g = T(z;)f, that is, {f,g} belongs to Z(z;)
for each j =0, ...,%. Corollary A.2 implies that T(zo)| 4z, .., is a contraction,

and consequently ﬂ}‘;o Z(zj) is a non-negative subspace of . With the unitary
operator V = T'(z) vty from Lemma 5.2(a) and (b) we have

L(20)°() (ﬁ 3(4‘)) = G[T(20) )] = GIV]. (A.10)

Indeed, if {f,g} belongs to the left-hand side of (A.10) then, by (A.9), g = T(zo)f
with f'e #(T;z, ...,z,) and {f, T(zo)f }[L]{u, T(zo)u} for all ue 7, that is,

0= {f,u)z —<T(z0)f, T(z0)udy = (I = T(20)*T(20))f , 0> 7,

and consequently f'eker(I — T(z0)*T(z0)). By (A.3), f€.4°(T). Thus the left-hand
side of (A.10) is contained in the right-hand side. The proof of the opposite inclusion
is similar.

Analogous to (A.9), we have

b

N L™ = GIT(z0)* yirea.... ) (A.11)
Jj=0

To justify (A.7) and (A.8) it suffices to show

ﬁg(;,)ocG[V] < ) ZEnzm). (A.12)
J=0 z,vehol(T)

Let {f, g} belong to the first intersection in (A.12). Then, by (A.9) and (A.11), {f, g}
belongs to both

G[T(ZO)‘,l/(T:ZoA,...,zx)] and G[T(zo)*|.///(T*;Zo...”,z,,)]'

This means that g¢g= T(z)f and f = T(z)*g. Consequently, feker(l—
T(z0)*T(z)) and therefore, on account of (A.3), fe/(T). According
to Lemma 5.2, g = T(zo)f = Vf, that is, {f,g}eG[V]. Further, if {f,g}eG[V],
then g = Vf. Therefore g = T(z)f and f = T(v)*g for arbitrary z,vehol(T).
Consequently {f,g}e Z(z)nZ ()", that is, {f, g} belongs to the last intersection
in (A.12). O

From the proof of Theorems 5.1 and A.5 we obtain the following list of equivalent
formulations of (%6). Note that items (a) and (d) contain each 4 statements.
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Corollary A.6. Let % be a (Q)-boundary coefficient satisfying (U1)—(U5). The
following statements are equivalent:

(a) For some (and then for any) set of distinct complex numbers zy, ...,z, in
C* ndom(%), the matrix

[(z0)" ()" wA)" - w(z)*]

has the maximal rank d
(b) span{ran %(z)*: zedom(#%)} = C°.
(C) ﬂ:edom(“‘//) ran%(z)* = {0}
(d) For some (and then for any) set of distinct numbers z, ..., z,€C* ndom(%),

ran 2 (z5)* () [ ran (z)* | = {0}.
=0

Proof. These equivalences follow from the construction of the subspaces #(z) and

R(z*) = #(2)* in the proof of Theorem 5.1, the equivalences between equalities
(5.13)—(5.15) and Theorem A.5. We leave the details to the reader. [
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