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Abstract

Certain meromorphic matrix valued functions on C\R; the so-called boundary coefficients,
are characterized in terms of a standard symmetric operator S in a Pontryagin space with finite

(not necessarily equal) defect numbers, a meromorphic mapping into the defect subspaces of

S; and a boundary mapping for S: Under some simple assumptions the boundary coefficients
also satisfy a minimality condition. It is shown that these assumptions hold if and only if for S

a generalized von Neumann equality is valid.
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1. Introduction

Let Q be an invertible self-adjoint d � d; matrix with dþ positive and d� negative
eigenvalues, so d ¼ d� þ dþ; and let KAf0; 1; 2;yg: In this paper a Q-boundary

coefficient with K negative squares is a matrix valued function U defined on domðUÞ;
where domðUÞCC\R; the set C\ðR,domðUÞÞ is finite, and domðUÞ is symmetric
with respect to the real axis, and the function U has the following properties:

ðU1Þ UðzÞ is a dþ � d matrix if zAdomðUÞ-Cþ and UðzÞ is a d� � d matrix if
zAdomðUÞ-C�:

ðU2Þ UðzÞ is holomorphic on domðUÞ and meromorphic on C\R:
ðU3Þ The matrices UðzÞ; zAdomðUÞ; have maximal rank.
ðU4Þ UðzÞQ�1UðznÞn ¼ 0; zAdomðUÞ:
ðU5Þ The limit

lim
w-zn

UðzÞQ�1UðwÞn

z � wn

exists for each zAdomðUÞ and the kernel

KUðz;wÞ ¼
i
UðzÞQ�1UðwÞn

z � wn
; zawn; z;wAdomðUÞ;

limz-zn i
UðzÞQ�1UðzÞn

z � zn
; z ¼ wn; zAdomðUÞ

8>>><
>>>:

has K negative squares.

The kernel condition ðU5Þ means that for any choice of the natural number n and
l1;y; lnAdomðUÞ; the self-adjoint block matrix

½KUðlj ; lkÞ
nj;k¼1

has at most K negative eigenvalues and for at least one such a choice it has exactly K
negative eigenvalues. If d� ¼ 0; then a Q-boundary coefficient U is not defined on
C� and all the requirements in the above definition that relate to the numbers in C�

need to be dropped in this case. The modifications needed to cover this case in the
proofs are straightforward and are omitted. The same remark applies to the case
dþ ¼ 0: See Example 6.6 for more information about these cases.
To characterize boundary coefficients we use standard symmetric linear relations

in Pontryagin spaces. For basic terminology related to linear relations, Pontryagin
and Krein spaces see [6] or [13,4,5,7]. Recall only that a linear relation T in a normed

vector space H is a linear subset of H2 ¼ H"H: For brevity, we will relate to
linear relations simply as relations. A subspace of a normed vector space H is a
closed linear manifold ofH: We use the standard notation: C for the set of complex

numbers, R for the set of real numbers, Cþ and C� for the open upper and the open
lower half-plane of C; T for the unit circle in C; and D for the open unit disk in C:
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In this paper we show, see Theorem 4.2, that for a given Q a ð�QÞ-boundary
coefficient can be constructed as follows:

(A) Let S be a standard symmetric linear operator with a not necessarily dense
domain dom S and with finite defect indices ðdþ; d�Þ in a Pontryagin space
ðH; ½ � ; � 
Þ with negative index K:

(B) Let FðzÞ be a holomorphic basis for kerðS ½* 
 � zÞ: This is short for: Let
F : C7\g-H�H�?�H (d7 copies) be a holomorphic row vector
function, such that the components fjðzÞ of FðzÞ:

FðzÞ ¼ ðf1ðzÞ;f2ðzÞ;y;fd7
ðzÞÞ

constitute a basis for kerðS ½* 
 � zÞ; zAC7\g: Here g is a finite subset of C\R:
(C) Let b : S ½* 
-Cd be a boundary mapping for S with Gram matrix Q; for the

definition see Section 4.
Then

UðzÞ :¼ ðQ½bðf1ðznÞÞ bðf2ðznÞÞ ? bðfd8
ðznÞ
Þn; ð1:1Þ

where bðfjðznÞÞ is short for bðffjðznÞ; znfjðznÞgÞ; is a ð�QÞ-boundary coefficient.
This construction is similar as in the Hilbert space case considered in [7]; that is the

case corresponding to K ¼ 0 here. Then UðzÞ is holomorphic on Cþ,C� and the
kernel KUðz;wÞ in ðU5Þ is non-negative. Moreover, in this case all boundary
coefficients constructed in this way have the property that the d � d matrix

UðzÞ
UðznÞ

" #
is invertible; zAC\R:

When K > 0 this minimality property does not hold in general. The reason is that for

the symmetric operator S considered in (A) the defect subspaces kerðS ½* 
 � zÞ;
zAC\R; need not be regular subspaces ofH: Instead, we shall use the following more
general definition of minimality. A Q-boundary coefficient UðzÞ is said to be minimal

if, with K as in ðU5Þ;

ðU6Þ There exist distinct z0;y; zKACþ-domðUÞ or, equivalently, distinct
z0;y; zKAC�-domðUÞ such that the matrix

½Uðz0Þn Uðzn0Þ
n Uðzn1Þ

n ? UðznKÞ
n
 ð1:2Þ

has the maximal rank d:
The equivalence between the two statements in ðU6Þ is proved in the appendix. See
Corollary A.6 which provides a list of equivalent statements.
It turns out that the ð�QÞ-boundary coefficients constructed via (A)–(C) have the

additional property ðU6Þ if and only if S satisfies

ðdom SÞ½>
-spanfkerðS � lÞK : lAspðSÞg ¼ f0g: ð1:3Þ
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Surprisingly, this condition is equivalent to a generalized von Neumann equality:
Eq. (1.3) holds if and only if

S½* 
 ¼ S þ S½* 
-m0I þ
XK
j¼0

S½* 
-mn

j I

holds for one (and then for any) set of distinct complex numbers m0;y; mK from

C\ðR,spðSÞÞ such that mjamn
k; j; k ¼ 0;y; K:

If S is a simple symmetric operator then (1.3) holds and so U in (1.1) constructed
via (A)–(C) satisfies ðU1Þ–ðU6Þ: In this paper we show that the converse also holds,
that is let U be a Q-boundary coefficient satisfying ðU1Þ–ðU6Þ: The reproducing
kernel Pontryagin space HðKUÞ with reproducing kernel KUðz;wÞ consists of
functions which are holomorphic on domðUÞ and in this space the operator SU

of multiplication by the independent variable z is a simple symmetric operator
with defect index ðd�; dþÞ: There exist a holomorphic row vector function

F : C7\g-HðKUÞ �HðKUÞ �?�HðKUÞ (d8 copies) as in (B) and a boundary

mapping b : S
½* 

U -Cd for SU with Gram matrix �Q such that (1.3) holds.

As to the contents of the paper: In Section 2 we define standard symmetric linear
relations and show that for these relations the defect indices can be defined in the
same way as for symmetric relations in a Hilbert space. The generalized von
Neumann formula is studied in detail in Section 3. The definition of a boundary
mapping and the construction of boundary coefficients can be found in Section 4. In
Section 5 we show that a Q-boundary coefficient satisfying ðU1Þ–ðU5Þ can be
reduced to a minimal one. The proof makes use of a geometric interpretation of the
maximum modulus principle for generalized Schur functions, which we explain in
the appendix. Finally, in Section 6 we derive a representation of a minimal Q-
boundary coefficient in terms of a closed simple symmetric operator in a Pontryagin
space. This result is a generalization of [7, Theorem 4.4]. The proof given here is
simpler than the proof in [7].

Q-boundary coefficients U with K negative squares occur in the study of
boundary-eigenvalue problems with eigenvalue boundary conditions of the form

UðlÞbðff ; ggÞ ¼ 0; ff ; ggAS½* 
;

where l denotes the eigenvalue. In [7] the linearization of such problems were studied
for the case K ¼ 0; in a sequel [3] to this paper we will consider the linearization
problem in the Pontryagin space setting.

2. Standard symmetric relations in Pontryagin spaces

Let SCH2 ¼ H"H be a closed symmetric relation in a Pontryagin space
ðH; ½ � ; � 
Þ with negative index K: Then for all mAC\R; the ranges ranðS � mÞ and
ranðS½* 
 � mÞ are closed. If for some mAC\R; we have that mespðSÞ; then each of the
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sets C7-spðSÞ contains at most K points [12, Propositions 4.3 and 4.4]. S with this

property will be called standard. A standard symmetric relation is said to have finite

defect if for some mACþ;

m; mnespðSÞ; dimðkerðS½* 
 � mÞÞoN; dimðkerðS½* 
 � mnÞÞoN: ð2:1Þ

Note that the kernels kerðS½* 
 � lÞ ¼ ranðS � lnÞ½>
; lAC; maybe degenerate
subspaces. We show that the dimensions of these spaces are the same for essentially

all (that is, with the exception of at most finitely many points) lACþ; and the
dimensions of these spaces are the same for essentially all lAC�: See Theorem 2.3.
In our proof of the theorem we use two lemmas. The first one concerns the

existence of a maximal standard isometric extension of a standard isometric operator
with finite defect. Following the terminology of [4, Definition 5.2.1] we call an

isometry VCH2 a standard isometry if V is a closed bounded operator whose
inverse is also a bounded operator. By definition, domV and ranV are closed (but
maybe degenerate). Sorjonen [16] studies rectangular symmetric and isometric
relations in Krein spaces. Such relations in Pontryagin spaces are special cases of
their standard counter parts defined here. A standard isometry has finite defect if

dimðdomVÞ½>
oN; dimðranVÞ½>
oN:

Lemma 2.1. Let ðH; ½ � ; � 
Þ be a Pontryagin space and let VCH2 be a standard

isometry in ðH; ½ � ; � 
Þ: Assume that

dimðdomVÞ½>
 ¼ d�; dimðranVÞ½>
 ¼ dþ; d� þ dþoþN:

Then there exists a maximal isometry Ṽ in ðH; ½ � ; � 
Þ such that Ṽ extends V and Ṽ

is a standard isometry. If d�odþ ðdþod�; respectively) for each such Ṽ we have

domṼ ¼ H ðranṼ ¼ HÞ; ð2:2Þ

dimðranṼÞ½>
 ¼ dþ � d� ðdimðdomṼÞ½>
 ¼ d� � dþÞ; ð2:3Þ

dimṼ=V ¼ d� ðdimṼ=V ¼ dþÞ: ð2:4Þ

Proof. It follows from [4, Theorem 5.2.2], which concerns a Krein space version of

this lemma, that there exists a maximal isometry Ṽ in ðH; ½ � ; � 
Þ such that Ṽ

extends V and Ṽ is a standard isometry. By Azizov and Iokhvidov [4, Corollary

5.2.3], Ṽ is a maximal isometry in ðH; ½ � ; � 
Þ if and only if at least one of the
following conditions hold:

(a) ðdomṼÞ½>
 ¼ f0g;
(b) ðranṼÞ½>
 ¼ f0g;
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(c) ðdomṼÞ½>
af0g and ðranṼÞ½>
af0g are uniformly definite subspaces of
different signs.

Condition (c) implies that domṼ and ranṼ are regular subspaces of the Pontryagin

space ðH; ½ � ; � 
Þ and Ṽ acts as a unitary operator from domṼ onto ranṼ: Since
ðH; ½ � ; � 
Þ is a Pontryagin space, the maximal uniformly negative subspaces of

ðdomṼÞ½>
 and ðranṼÞ½>
 have the same dimension. Hence (c) is impossible.
Assume that d�odþ: It follows from the construction in the proof of [4, Theorem

5.2.2] that

ðdomṼÞ½>
 ¼ f0g and ðranṼÞ½>
 ¼ dþ � d�:

Equality (2.4) follows from (2.2) and dimðdomVÞ½>
 ¼ d�: If dþod�; apply the

previous case to V�1 and obtain the statement of the lemma within the brackets. &

In the next lemma we use the Potapov–Ginzburg transform on a Pontryagin space
ðH; ½ � ; � 
Þ: Let H ¼ Hþ½6
H� be a fundamental decomposition of H and let
Pþ; P�; J ¼ Pþ � P�; and /�; �S ¼ ½J�; �
 be the corresponding fundamental
projections, fundamental symmetry, and corresponding Hilbert space inner product,

respectively. Simplifying the notation of [4, Chapter V] we denote by o : H2-H2

the Potapov–Ginzburg transform which is the linear involution defined by

oðff ; ggÞ :¼ fPþf þ P�g;P�f þ Pþgg; ff ; ggAH2:

If T is a subspace ofH2; then oðTÞ denotes the image of T under o: It follows from
the definition that oðT ½* 
Þ ¼ oðTÞ/*S and oðT�1Þ ¼ oðTÞ�1: If V is an operator,
then

oðVÞ :¼ ðP� þ PþVÞðPþ þ P�VÞ�1:

Lemma 2.2. Let V be as in Lemma 2.1. Then with the above notation, the Potapov–

Ginzburg transform W ¼ oðVÞ of V is a (standard) isometry in ðH;/�; �SÞ with

dimðdomWÞ/>S ¼ d� and dimðranWÞ/>S ¼ dþ:

Proof. It follows from the definition of the Potapov–Ginzburg transform that W is
an isometry in the Hilbert space ðH;/�; �SÞ; see also [4, Corollary 5.1.7]. Since W

acts in a Hilbert space, W is a standard isometry. Set dimðdomWÞ/>S ¼ d� and

dimðranWÞ/>S ¼ dþ: We will prove the lemma by showing that dþ þ d� ¼ dþ þ d�
and dþ � d� ¼ dþ � d�:
In the notation used above, H2 ¼ ðHþ"HþÞ½6
ðH�"H�Þ is a fundamental

decomposition ofH2:Denote the corresponding fundamental projections by Pþ
1 and

P�
1 ; the corresponding Hilbert space by ðH2;/�; �SÞ and the Potapov–Ginzburg

transform on this space by o1: Consider the block matrix operators (with respect to
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the decomposition H2 ¼ H"H)

V1 ¼
V 0

0 V�1

" #
and W1 ¼

W 0

0 W�1

" #
:

Then dimðdomV1Þ½>
 ¼ dimðranV1Þ½>
 ¼ dþ þ d� and

W1 ¼
oðVÞ 0

0 oðV�1Þ

" #
¼ o1ðV1Þ:

The operator V1 admits a unitary extension Ṽ1 in the Pontryagin space H2

and Lemma 2.1 implies that dimṼ1=V1 ¼ dþ þ d�: By Azizov and Iokhvidov

[4, Corollary 5.1.7] W̃1 :¼ o1ðṼ1Þ is a unitary operator in the Hilbert space

ðH2;/�; �SÞ: Since o1 is a linear involution, we have

dimW̃1=W1 ¼ dim o1ðṼ1Þ=o1ðV1Þ ¼ dimṼ1=V1 ¼ dþ þ d�: ð2:5Þ

Since W̃1 is a unitary operator in ðH1;/�; �SÞ; it is a maximal isometry which

extends W1 and which is clearly standard. Since dimðdomW1Þ/>S ¼ dþ þ d�;
Lemma 2.1 implies that dimW̃1=W1 ¼ dþ þ d�: This and (2.5) imply dþ þ d� ¼
dþ þ d�:
If we apply the above reasoning to the operator Ṽ from Lemma 2.1 instead

of V ; we get dþ � d� ¼ dþ � d�: Consequently, dimðdomWÞ/>S ¼ d� and

dimðranWÞ/>S ¼ dþ and the proposition is proved. &

To prove the theorem below with the help of these two lemmas we use, for mACþ;
the Cayley transform V of S defined by

V ¼ ðS � mnÞðS � mÞ�1:

This formula establishes a bijective correspondence between the standard closed

symmetric relations S with m; mnespðSÞ and the standard isometries V : Its inverse is

given by S ¼ ðmV � mnÞðV � IÞ�1: Under this correspondence V has finite defect if
and only if (2.1) holds and then

dimðkerðS½* 
 � mÞÞ ¼ dimðranVÞ½>
;

dimðkerðS½* 
 � mnÞÞ ¼ dimðdomVÞ½>
:

Theorem 2.3. Let ðH; ½ � ; � 
Þ be a Pontryagin space, J a fundamental symmetry on

H and /�; �S the corresponding Hilbert space inner product. Let S be a standard

symmetric relation with finite defect in ðH; ½ � ; � 
Þ: Then

(a) dim kerðS½* 
 � lÞ ¼ dim kerððSJÞ/*S � lÞ whenever l is a non-real number such

that l; lnespðSÞ;
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(b) the number dim kerðS½* 
 � lÞ; l; lnespðSÞ is independent of lACþ\spðSÞ
ðlAC�\spðSÞ; respectively),

(c) dim S½* 
=S ¼ dþ þ d�; where dþ :¼ dim kerðS½* 
 � lÞ and d� :¼ dim kerðS½* 
 �
lnÞ for some lACþ such that l; lnespðSÞ; and

(d) there exists a closed symmetric extension S̃ in ðH; ½ � ; � 
Þ of S such that at least

one of the sets C7\rðS̃Þ is finite.

Proof. Since S is standard there exists a mACþ such that m; mnespðSÞ: Without loss

of generality we can assume that m ¼ i: Consider the Cayley transforms of S and SJ:

V ¼ ðS þ iÞðS � iÞ�1; W ¼ ðSJ þ iÞðSJ � iÞ�1: ð2:6Þ

It follows from [12, Proposition 4.1] and basic properties of closed linear relations
that V is a standard isometry in ðH; ½ � ; � 
Þ which satisfies the assumptions of
Lemma 2.1. From [4, Theorem 5.1.14] we conclude that W ¼ oðVÞ: Since

dim kerðS½* 
 � iÞ ¼ dimðranVÞ½>
;

dim kerðS½* 
 þ iÞ ¼ dimðdomVÞ½>
;

dim kerððSJÞ/*S � iÞ ¼ dimðranWÞ/>S;

dim kerððSJÞ/*S þ iÞ ¼ dimðdomWÞ/>S;

an application of Lemma 2.2 yields (a).
Statement (b) then follows from (a) and the fact that, since SJ is symmetric in the

Hilbert space ðH;/�; �SÞ; the numbers

dim kerððSJÞ/*S � lÞ; lACþ;

dim kerððSJÞ/*S � lÞ; lAC�;

are independent of l:
To prove (c) note that the mapping ff ; gg/fJf ; gg; ff ; ggAH2; is a linear

bijection between S½* 
 and ðSJÞ/*S which maps S onto SJ: Therefore

dim S½* 
=S ¼ dimðSJÞ/*S=ðSJÞ: ð2:7Þ

Since SJ is a symmetric relation in the Hilbert space ðH;/�; �SÞ; the von Neumann
formula implies that

dimðSJÞ/*S=ðSJÞ ¼ dim kerððSJÞn � iÞ þ dim kerððSJÞn þ iÞ: ð2:8Þ

Statement (c) now follows from (2.7), (2.8) and (a).
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To prove (d) consider the standard operator V defined in (2.6). Assume that

dþ :¼ dim kerðS½* 
 � iÞ ¼ dimðranVÞ½>

Xdim kerðS½* 
 þ iÞ ¼ dimðdomVÞ½>
 ¼ d�:

By Lemma 2.1, there exists a standard isometry Ṽ which extends V ; domṼ ¼ H and

dimðranṼÞ½>
 ¼ dþ � d�: Put

S̃ :¼ iðṼ þ 1ÞðṼ � 1Þ�1:

It follows that S̃ is a standard symmetric relation, i;�iespðS̃Þ and dim ker ðS̃ ½* 
 �
iÞ ¼ dþ � d� and dim kerðS̃ ½* 
 þ iÞ ¼ 0: Therefore iArðS̃Þ: It follows from [12,

Theorem 4.6 and Corollary] that rðS̃Þ-Cþ ¼ Cþ\spðS̃Þ and Cþ-spðS̃Þ consists of at
most K points, where K is the negative index of ðH; ½ � ; � 
Þ: &

Theorem 2.3 yields that if S is a standard symmetric relation with finite defect, the

dimension of the subspace kerðS½* 
 � zÞ is constant for essentially all points z in each

of the open half-planes Cþ and C�: This constant is denoted by dþ for zACþ and by
d� for zAC�: The numbers dþ and d� are called the upper and lower defect numbers

of S; the pair ðdþ; d�Þ is called the defect index and the number d ¼ d� þ dþ is called
the defect.
Following [14, Section 2.2], a closed symmetric relation S in a Pontryagin space

ðH; ½ � ; � 
Þ will be called simple if it has no non-real eigenvalues and

spanfkerðS½* 
 � lÞ : lAC\Rg ¼ H: ð2:9Þ

Since

spanfkerðS½* 
 � lÞ : lAC\Rg½>
 ¼
\

franðS � lÞ : lAC\Rg;

equality (2.9) is equivalent to\
franðS � lÞ : lAC\Rg ¼ f0g: ð2:10Þ

Proposition 2.4. Let S be a simple, closed symmetric relation in a Pontryagin space.

Then S is a standard operator and spðSÞ ¼ |:

Proof. Denote the Pontryagin space by ðH; ½ � ; � 
Þ: By definition each simple

relation in a Pontryagin space is standard. Let zAC\R and gAkerðS½* 
 � zÞ be

arbitrary. We first prove that S is an operator. Let f0; f gAS: Since fg; zggAS½* 
 we
have

0 ¼ ½f ; g
 � ½0; zg
 ¼ ½f ; g
:

So by (2.9), f ¼ 0: Thus S is an operator.

Let aAR and ff ; af gAS: Since fg; zggAS½* 
 we have

0 ¼ ½af ; g
 � ½f ; zg
 ¼ ða� znÞ½f ; g
:
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Since a� zna0; and by (2.9) we have that f ¼ 0: Thus aespðSÞ; that is, spðSÞ-R ¼
|: Since S is simple it does not have eigenvalues in C\R: &

Remark 2.5. An alternative to the last part of the proof of this lemma is: Assume

aAR and ff ; af gAS: Then for all non-real numbers l; f ¼ ða� lÞ�1ðS �
lÞfAranðS � lÞ; hence f belongs to the intersection on the left of the equality in

(2.10) and therefore f ¼ 0: This proves spðSÞ-R ¼ |: An argument like this will be
used in the next section.

3. Von Neumann’s formula

In this section we consider a generalization of the von Neumann formula

S/*S ¼ S þ S/*S-mI þ S/*S-mnI ; mAC\R; direct sum; ð3:1Þ

for closed symmetric relations S in a Hilbert space. If S is a closed densely
defined symmetric operator in a Pontryagin space, formula (3.1) holds for
all m with jIm mj sufficiently large, see [14]. By Dijksma and de Snoo [12,
Proposition 4.7], if S is standard symmetric relation in a Pontryagin space then
(3.1) holds if and only if mespðSÞ and ranðS � mÞ is non-degenerate. The following
example, due to Derkach (private communication, see also [8, Remark 4.1]), shows
that formula (3.1) does not hold for any mAC\R even if S is a simple operator in a
Pontryagin space.

Example 3.1. Let H ¼ C4; J ¼

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

2
664

3
775; ½f ; g
 ¼ gnJf ; g; fAH;

and

S ¼

x

0

0

0

2
6664
3
7775;

0

x

0

0

2
6664
3
7775

8>>><
>>>:

9>>>=
>>>;
: xAC

8>>><
>>>:

9>>>=
>>>;
:

The operator S is closed standard and symmetric in ðH; ½ � ; � 
Þ and spðSÞ ¼ |:
Since

ranðS � mÞ ¼ span

�m

1

0

0

2
6664

3
7775;
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by (2.10), S is simple. As ranðS � mÞ is degenerate for each mAC; it follows that (3.1)

does not hold for any mAC: A calculation of S½* 
 yields

S½* 
 ¼

f1

f2

f3

f4

2
6664

3
7775;

g1

g2

g3

f3

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
: fj; gkAC

8>>><
>>>:

9>>>=
>>>;
:

For arbitrary mAC\R we have

Mm :¼ S½* 
-mI ¼

f1

f2

mf4

f4

2
6664

3
7775;

mf1

mf2

m2f4
mf4

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
: fjAC

8>>><
>>>:

9>>>=
>>>;
:

One can prove that for arbitrary m; nACþ; man we have

S½* 
 ¼ S þ Mmn þ Mm þ Mn:

This formula can be considered as a generalization of (3.1); note that the sum on the
right-hand side is not a direct sum.

In this section we give a necessary and sufficient condition for a generalized von
Neumann formula to hold for a standard symmetric operator in a Pontryagin space.
We start with the following lemma.

Lemma 3.2. Let S be a linear operator in a vector space H and let m1;y; mk be distinct

complex numbers which are not eigenvalues of S. Then

\k
j¼1

ranðS � mjÞ ¼ ran
Yk

j¼1
ðS � mjÞ

 !
:

Proof. For k ¼ 1 the statement of the lemma is true. Assume that the statement is
true for kX2 and prove it for k þ 1: Let m1;y; mk; mkþ1 be distinct complex numbers
which are not eigenvalues of S: By the induction hypothesis,

\kþ1
j¼1

ranðS � mjÞ ¼ ranðS � m1Þ-ran
Ykþ1
j¼2

ðS � mjÞ
 !

¼ ranðS � mkþ1Þ-ran
Yk

j¼1
ðS � mjÞ

 !
: ð3:2Þ
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Let f be an arbitrary vector in subspace (3.2). Then there exist u; v such that

f ¼
Ykþ1
j¼2

ðS � mjÞ
 !

u ¼
Yk

j¼1
ðS � mjÞ

 !
v:

Since m2;y; mkespðSÞ;

g :¼
Yk

j¼2
ðS � mjÞ

 !�1

f ¼ ðS � mkþ1Þu ¼ ðS � m1Þv

and

v ¼ 1

mkþ1 � m1
ðg � ðS � mkþ1ÞvÞAranðS � mkþ1Þ;

hence gAranðS � m1ÞðS � mkþ1Þ: Consequently,

fAran
Ykþ1
j¼1

ðS � mjÞ
 !

:

This proves the inclusion C in the lemma. The converse inclusion is evident. &

Lemma 3.3. Let S be a standard symmetric operator in the Pontryagin space

ðH; ½ � ; � 
Þ of negative index K: For m0; m1;y; mKAC put

L :¼ kerðS½* 
 � mn

0Þ-
\K
j¼0

ranðS � mjÞ
 !

ð3:3Þ

and

N :¼ ðdom SÞ½>
-spanfkerðS � lÞK : lAspðSÞg:

(a) If mn
0 ; m0; m1;y; mK are distinct numbers from C\spðSÞ; then NCðS � mn

0ÞL:

(b) If mn
0 ; m0; m1;y; mK are distinct numbers from C\ðR,spðSÞÞ such that

mjamn
k; j; k ¼ 0;y; K; then N ¼ ðS � mn

0ÞL:

Proof. To prove (a), let gAN: Since gAðdom SÞ½>
; we have f0; ggAS½* 
; and since

gAspanfkerðS � lÞK : lAspðSÞg;

we have gA
T

mespðSÞ ranðS � mÞ: Let mn
0 ; m0; m1;y; mKespðSÞ be arbitrary distinct

complex numbers. Then by Lemma 3.2,

gAran ðS � mn

0Þ
YK
j¼0

ðS � mjÞ
 !

:
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For f :¼ ðS � mn
0Þ

�1
g; we have fA

TK
j¼0 ranðS � mjÞ: From

ff ; mn

0f g þ f0; gg ¼ fðS � mn

0Þ
�1

g;SðS � mn

0Þ
�1

ggAS;

we conclude ff ; mn
0f gAS½* 
: Thus fAL; that is, gAðS � mn

0ÞL:

To prove (b), let mn
0 ; m0; m1;y; mKespðSÞ be arbitrary non-real distinct numbers

such that mjamn
k; j; k ¼ 0;y; K; and put

P0ðzÞ ¼
YK
j¼0

ðz � mjÞ

and

PkðzÞ ¼
YK

j¼0;jak

ðz � mjÞ; k ¼ 1;y; K:

If L ¼ f0g the statement is trivial. Let 0afAL: Since kerðS½* 
 � mn
0Þ ¼ ðranðS �

m0ÞÞ½>
; definition (3.3) of L implies ½f ; f 
 ¼ 0: By Lemma 3.2 and (3.3), there exists

0ahAdom SKþ1 such that f ¼ P0ðSÞh: Put hk ¼ PkðSÞhAdom S; k ¼ 1;y; K: Then
f ¼ ðS � mkÞhk; k ¼ 1;y; K: The assumption ff ;mn

0f gAS½* 
 implies

ðm0 � mkÞ½hk; f 
 ¼ m0½hk; f 
 � ½f þ mkhk; f 


¼ ½hk; mn

0f 
 � ½Shk; f 


¼ 0; k ¼ 1;y; K:

Since m0amk for k ¼ 1;y; K; we conclude that ½hk; f 
 ¼ 0: For j; k ¼ 1;y; K we have

ðmj � mn

kÞ½hj; hk
 ¼ ½f þ mjhj; hk
 � ½hj; f þ mkhk


¼ ½Shj ; hk
 � ½hj ;Shk


¼ 0:

As mjamn
k; we have ½hj; hk
 ¼ 0 for j; k ¼ 1;y; K: Thus the subspace M :¼

spanff ; h1;y; hKg is neutral in ðH; ½ � ; � 
Þ: Therefore dimMpK implying that

the vectors h0 :¼ f ; h1;y; hK are linearly dependent. Let CKþ1
U ða0;y; aKÞa

ð0;y; 0Þ be such that

XK
k¼0

akhk ¼
XK
k¼0

akPkðSÞh ¼ 0:

Since the polynomials P0;y;PK are linearly independent, Q :¼
PK

j¼0 ajPj is a non-

zero polynomial and QðSÞh ¼ 0: The number m0 is a root of Q which is not an
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eigenvalue of S: Since QðSÞh ¼ 0 and ha0 the polynomial Q has roots which are
eigenvalues of S: Let lj; j ¼ 1;y;m; be the distinct roots of Q which are eigenvalues

of S and let mj; j ¼ 0;y;m; be the corresponding multiplicities. Note that m and all

mj’s are pK: Since QðSÞh ¼ 0 and ha0; we have

hAspanfkerðS � ljÞmj : j ¼ 1;y;mgCspanfkerðS � lÞK : lAspðSÞg:

As f ¼ P0ðSÞh; we also have fAspanfkerðS � lÞK : lAspðSÞg: This implies that

fAdom S and SfAspanfkerðS � lÞK : lAspðSÞg: Consequently,

ðS � mn

0ÞfAspanfkerðS � lÞK : lAspðSÞg: ð3:4Þ

Since ff ;Sf gASCS½* 
 and ff ; mn
0f gAS½* 
; we conclude that f0;Sf � mn

0f gAS½* 
;
that is,

ðS � mn

0ÞfAðdom SÞ½>
: ð3:5Þ

It follows from (3.4) and (3.5) that ðS � mn
0ÞfAN: This proves that N*ðS � mn

0ÞL:

As the converse inclusion was proved in (a), (b) is proved. &

Remark 3.4. It follows from Lemma 3.3 that the non-real complex numbers

m0;y; mK which are not eigenvalues of S and such that mjamn
k; j; k ¼ 0;y; K; can be

chosen arbitrarily without changing L: Therefore, for arbitrary m0; m1;y; mK which
satisfy these conditions we have

kerðS½* 
 � mn

0Þ
\ \K

j¼0
ranðS � mjÞ

 !

¼ kerðS½* 
 � mn

0Þ
\ \

mAC\ðspðSÞ,RÞ
ranðS � mÞ

0
@

1
A: ð3:6Þ

A consequence of equality (3.6) and Lemma 3.3 is that if

kerðS½* 
 � mn

0Þ
\ \

mAC\ðspðSÞ,RÞ
ranðS � mÞ

0
@

1
A ¼ f0g;

then N ¼ f0g:

Remark 3.5. The condition N ¼ f0g is satisfied in any of the following cases:

(a) K ¼ 0;
(b) S is a simple symmetric operator;
(c) kerðS½* 
 � lÞ is non-degenerate for at least one non-real complex number l such

that l; lnespðSÞ;
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(d) S is densely defined, which by Krein and Langer [14], is a special case
of (c).

Lemma 3.6. Let S be a closed symmetric operator in the Pontryagin space

ðH; ½ � ; � 
Þ: Then for m0;y; mkAC such that mn
0espðSÞ and mn

0amj; j ¼ 1; 2;y; k;

we have

kerðS½* 
 � mn

0Þ
\ \k

j¼0
ranðS � mjÞ

 !
¼ f0g ð3:7Þ

if and only if

S½* 
 ¼ S þ S½* 
-m0I þ
Xk

j¼0
S½* 
-mn

j I : ð3:8Þ

Proof. Equality (3.7) is equivalent to the equality

ranðS � m0Þ þ
Xk

j¼0
kerðS½* 
 � mn

j Þ ¼ H: ð3:9Þ

Now we use (3.9) to prove (3.8). It is sufficient to prove that an arbitrary ff ; ggAS½* 


belongs to the right-hand side of (3.8). By (3.9), for ff ; ggAS½* 
 there exist fu; vgAS

and xjAkerðS½* 
 � mn
j Þ such that

g � m0f ¼ v � m0u þ
Xk

j¼0
ðmn

j � m0Þxj:

Put

y ¼ f � u �
Xk

j¼0
xj:

Then

m0y ¼ m0f � m0u � m0
Xk

j¼0
xj ¼ g � v �

Xk

j¼0
mn

j xj:

Since

ff ; gg; fu; vg; fxj; mn

j xjgAS½* 
;
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we have fy; m0ygAS½* 
-m0I ¼ Mm0 : Thus

f ¼ u þ y þ
Xk

j¼0
xj; g ¼ v þ m0y þ

Xk

j¼0
mn

j xj; ð3:10Þ

that is ff ; gg belongs to the right-hand side of (3.8).
Conversely, assume (3.8). Since mn

0espðSÞ we have ranðS½* 
 � m0Þ ¼ ðkerðS �
mn
0ÞÞ

½>
 ¼ H: Let hAH be arbitrary and ff ; ggAS½* 
 such that h ¼ g � m0f : By (3.8),
there exist

fu; vgAS; fy; m0yg; fx; mn

j xgAS½* 
; j ¼ 0;y; k;

such that (3.10) holds. Then

h ¼ g � m0f ¼ v � m0u þ
Xk

j¼0
ðmn

j � m0Þxj:

Thus h belongs to the left-hand side of (3.9). The proposition is proved. &

The next theorem gives a necessary and sufficient condition for (3.8). It is a direct
consequence of Lemmas 3.3 and 3.6.

Theorem 3.7. Let S be a standard symmetric operator in the Pontryagin space

ðH; ½ � ; � 
Þ of negative index K: The generalized von Neumann formula

S½* 
 ¼ S þ S½* 
-m0I þ
XK
j¼0

S½* 
-mn

j I ð3:11Þ

holds for one and then for any set of distinct complex numbers m0;y; mK from

C\ðR,spðSÞÞ such that mjamn
k; j; k ¼ 0;y; K; if and only if

ðdom SÞ½>
-spanfkerðS � lÞK : lAspðSÞg ¼ f0g: ð3:12Þ

Proof. Assume that equality (3.11) holds for distinct complex numbers m0;y; mK
from C\ðR,spðSÞÞ such that mjamn

k; j; k ¼ 0;y; K: By Lemma 3.6, this is

equivalent to

kerðS½* 
 � mn

0Þ
\ \K

j¼0
ranðS � mjÞ

 !
¼ f0g:

By Lemma 3.3(b), the last equality is equivalent to (3.12). &
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The following example gives a closed symmetric relation in a Pontryagin space for
which the generalized von Neumann formula (3.8) does not hold.

Example 3.8. Let H ¼ C2 and J ¼ 1 0
0 �1

� �
; ½f ; g
 ¼ gnJf ; g; fAH; and

S ¼
x

x

" #
;
0

0

" #( )
: xAC

( )
:

Then S is a closed symmetric operator in ðH; ½ � ; � 
Þ; spðSÞ ¼ f0g; and

S½* 
 ¼
x

y

" #
;

u

u

" #( )
: x; y; uAC

( )
:

For arbitrary mAC\R we have

Mm :¼ S½* 
-mI ¼
x

x

" #
; m

x

x

" #( )
: xAC

( )
:

Clearly dom S½* 
 ¼ H: Since for arbitrary m1;y; mkAC\R the domain of the
sum of the subspaces Mmj

; j ¼ 1;y; k; coincides with the domain of S; we

conclude that

S½* 
RS þ
Xk

j¼1
Mmj

:

4. An application to boundary coefficients

Let ðH; ½ � ; � 
Þ be a Pontryagin space, J a fundamental symmetry on H and
/�; �S the corresponding Hilbert space inner product. Introduce two Lagrange inner

products on H2 by

1ff ; gg; fu; vgU :¼ 1

i
ð½g; u
 � ½f ; v
Þ;

0ff ; gg; fu; vgT :¼ 1

i
ð/g; uS�/f ; vSÞ:

Then ðH2;1�; �UÞ and ðH2;0�; �TÞ are Krein spaces and the mapping

j : ff ; gg/fJf ; gg; ff ; ggAH2

is a unitary mapping between these Krein spaces. A closed subspace SCH2 is a
(maximal) symmetric relation in ðH; ½ � ; � 
Þ (respectively ðH;/�; �SÞ) if
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and only if S is a neutral (maximal neutral) subspace of ðH2;1�; �UÞ
(respectively ðH2;//�; �SSÞ). It is a self-adjoint relation in ðH; ½ � ; � 
Þ
(respectively ðH;/�; �SÞ) if and only if it is a neutral and maximal semi-definite
(a notion to be handled with care, in [4] it is called hyper-maximal neutral)

subspace of ðH2;1�; �UÞ (respectively ðH2;//�; �SSÞ). Since j is a unitary

mapping S is symmetric (self-adjoint) in ðH; ½ � ; � 
Þ if and only
if jðSÞ is symmetric (self-adjoint) in ðH;/�; �SÞ: Note jðSÞ ¼ SJ and

jððSJÞ/*SÞ ¼ S½* 
:
Extensions of a standard symmetric relation that are restrictions of its adjoint can

be described in terms of its boundary mapping. Let SCH2 be a standard symmetric

relation in ðH; ½ � ; � 
Þ with defect index ðdþ; d�Þ: By Theorem 2.3, dim S½* 
=S ¼
dþ þ d� ¼: d: A boundary mapping for S is a surjective linear operator b : S½* 
-Cd

with kerðbÞ ¼ S: If b is a boundary mapping for S then there is a unique d � d

matrix Q such that for all ff ; gg; fu; vgAS½* 
;

1ff ; gg; fu; vgU ¼ bðu; vÞnQbðf ; gÞ:

Q is a self-adjoint and invertible matrix and has dþ positive and d� negative
eigenvalues. The matrix Q is called the Gram matrix for b:

It is easy to see that a mapping b : S½* 
-Cd is a boundary mapping for S with

Gram matrix Q if and only if the composition mapping bj : ðSJÞ/*S-Cd is a

boundary mapping for SJ with the same Gram matrix Q: All extensions of S which

are restrictions of S½* 
 are described by

AM :¼ fff ; ggAS½* 
 : Mbðf ; gÞ ¼ 0g; ð4:1Þ

where M is a k � d matrix, 0pkpd; of rank k: Clearly

AMJ ¼ ffu; vgAðSJÞ/*S : Mbjðu; vÞ ¼ 0g: ð4:2Þ

Equalities (4.1), (4.2), [7, Lemma 3.4] imply that the following statements are
equivalent:

(a) For a closed linear relation T we have SCTCS½* 
; and dimðT=SÞ ¼ t:
(b) There exists a ðd � tÞ � d matrix A of maximal rank such that

T ¼ fff ; ggAS½* 
 : Abðf ; gÞ ¼ 0g:

(c) There exists a t� d matrix B of maximal rank such that

T ½* 
 ¼ fff ; ggAS½* 
 : Bbðf ; gÞ ¼ 0g:

If (a)–(c) hold, then BQ�1An ¼ 0 and the matrices A and B are determined uniquely
up to multiplication from the left by invertible matrices.
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(d) If (a)–(c) hold and if C is a t� d matrix of maximal rank such that CQ�1An ¼ 0
and

V ¼ fff ; ggAS½* 
 : Cbðf ; gÞ ¼ 0g;

then T ½* 
 ¼ V :
If dþ ¼ 0 or d� ¼ 0 then S is maximal symmetric. It follows from (a)–(d) that if
0odþod�; then T in (b) is maximal symmetric if and only if t ¼ dþ and A is a

d� � d matrix of rank d� satisfying AQ�1An ¼ 0; T then has defect index ð0; d� �
dþÞ: A similar result holds when 0od�odþ: It also follows from (a)–(d) that S has

canonical self-adjoint extensions A ¼ A½* 
 (that is, self-adjoint extensions in the space
H in which S is defined) if and only if t ¼ dþ ¼ d�: If t ¼ dþ ¼ d�; a relation A is a
self-adjoint extension of S if and only if

A ¼ fff ; ggAS½* 
 : Dbðf ; gÞ ¼ 0g;

where D is a t� d matrix of maximal rank satisfying DQ�1Dn ¼ 0:

Families of subspaces between S and S½* 
 depending on the parameter zAC\R and
of the form

TðzÞ ¼ fff ; ggAS½* 
 :UðzÞbðf ; gÞ ¼ 0g;

where UðzÞ is a Q-boundary coefficient satisfying conditions ðU1Þ–ðU5Þ with K ¼ 0;
were studied in [7]. The so-called linearization problem considered in [7] was: When
does there exist a self-adjoint Hilbert space extension A of S such that

ðTðzÞ � zÞ�1 ¼ PHðA � zÞ�1jH:

A canonical self-adjoint extension A of S defined by D as above corresponds to UðzÞ
which can be chosen such that UðzÞ 
 D: Non-canonical self-adjoint extensions A;
that is, self-adjoint extensions defined in a Hilbert space containing the Hilbert space
H as a proper closed subspace, correspond to the more general Q-boundary
coefficients. In the context of the linearization problem the parameter z is called the
eigenvalue parameter. In a sequel [3] to this paper we shall consider the linearization
problem for S in a Hilbert space but then with a Q-boundary coefficient satisfying
ðU1Þ–ðU5Þ with K > 0:
In this section we present a method to construct Q-boundary coefficients U

satisfying ðU1Þ–ðU5Þ with K > 0: In Section 6 we prove that U can always be
obtained in this way.

Lemma 4.1. Let S be a standard symmetric relation with finite defect index ðdþ; d�Þ in

a Pontryagin space ðH; ½ � ; � 
Þ: Then there exists a holomorphic row vector function

F : C7\g-Hd7 ; where g is a finite subset of C\R; such that the components of FðzÞ
constitute a basis for kerðS½* 
 � zÞ; zAC\ðR,gÞ:
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Proof. Let mACþ be such that m; mnespðSÞ and assume that dþXd�: By Theorem

2.3, there exists a maximal symmetric relation extension S̃ of S in ðH; ½ � ; � 
Þ such
that m; mnespðS̃Þ and dim kerðS̃ ½* 
 � mÞ ¼ dþ � d� and kerðS̃ ½* 
 � mnÞ ¼ f0g: It

follows from Theorem 2.3 that Cþ\rðS̃Þ consists of finitely many points and the

function z/ðS̃ � zÞ�1; zACþ-rðS̃Þ; is a holomorphic function with values in

LðHÞ: As kerðS̃ � mÞ ¼ f0g; we have mACþ-rðS̃Þ: Next, we prove that the
(everywhere defined) bounded operators

BðzÞ :¼ I þ ðz � mÞðS̃ � zÞ�1; zACþ-rðS̃Þ;

are injective. Let zACþ-rðS̃Þ and fAH be such that BðzÞf ¼ 0: Then ðz � mÞðS̃ �
zÞ�1f ¼ �f and therefore f�f ; ðz � mÞf gAS̃ � z; or f�f ;�mf gAS̃: Since mArðS̃Þ we
conclude that f ¼ 0: Next, we prove that BðzÞkerðS½* 
 � mÞ ¼ kerðS½* 
 � zÞ for all
zACþ-rðS̃Þ: By Theorem 2.3, dim kerðS½* 
 � mÞ ¼ dim kerðS½* 
 � zÞ and since BðzÞ
is injective it is sufficient to show that BðzÞkerðS½* 
 � mÞ½>
ranðS � znÞ: Let

fAkerðS½* 
 � mÞ ¼ ðranðS � mnÞÞ½>
 and fu; vgAS: Then

½BðzÞf ; v � znu
 ¼ ½ðI þ ðz � mÞðS̃ � zÞ�1Þf ; v � znu


¼ ½f ; v
 � z½f ; u
 þ ðz � mÞ½ðS̃ � zÞ�1f ; v � znu


¼ ½f ; v
 � z½f ; u
 þ ðz � mÞ½f ; u


¼ ½f ; v
 � m½f ; u
 ¼ ½f ; v � mnu


¼ 0:

Thus BðzÞf ½>
ranðS � znÞ: Define

BðzÞ :¼ BðznÞ½* 
; znACþ-rðS̃Þ:

Then for zAC� such that znArðS̃Þ; we have BðzÞ ¼ I þ ðz � mnÞðS̃ ½* 
 � zÞ�1:
Therefore, if BðzÞf ¼ 0; then ðz � mnÞðS̃ ½* 
 � zÞ�1f ¼ �f ; that is, f�f ;

ðz � mnÞf gAS̃ ½* 
 � z: Hence f�f ; mnf gAS̃ ½* 
: Since kerðS̃ ½* 
 � mnÞ ¼ f0g; we have
f ¼ 0; that is BðzÞ is injective. In a similar way as above one shows that for zAC�

such that znArðS̃Þ; we have BðzÞkerðS½* 
 � mnÞ ¼ kerðS½* 
 � zÞ:
Let

FðmÞ ¼ ðf1ðmÞ;y;fdþðmÞÞ;

FðmnÞ ¼ ðf1ðmnÞ;y;fd�ðm
nÞÞ

be row vectors whose entries form a basis for kerðS½* 
 � mÞ and kerðS½* 
 � mnÞ: Since
BðzÞ is a holomorphic operator valued function on its domain and it is a bijection
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between kerðS½* 
 � mÞ and kerðS½* 
 � zÞ for zACþ-rðAÞ and it is a bijection

between kerðS½* 
 � mnÞ and kerðS½* 
 � zÞ for zAC� such that znACþ-rðS̃Þ; it
follows that

FðzÞ :¼
BðzÞFðmÞ; zACþ-rðS̃Þ;
BðzÞFðmnÞ; znACþ-rðS̃Þ

(

has the properties from the lemma. &

FðzÞ ¼ ðf1ðzÞ;y;fd7
ðzÞÞ; zAC7\g; in the lemma is called a holomorphic basis

for kerðS½* 
 � zÞ: If FðzÞ is such a basis then #FðzÞ stands for the row vector function

whose entries are pairs from Mz : #FðzÞ ¼ ðff1ðzÞ; zf1ðzÞg;y; ffd7
ðzÞ; zfd7

ðzÞgÞ
and if b is a boundary mapping for S then bð #FðznÞÞ stands for the d � d8 matrix

whose jth column is given by bðffjðznÞ; znfjðznÞgÞ; j ¼ 1;y; d8:

Theorem 4.2. Let ðH; ½ � ; � 
Þ be a Pontryagin space of negative index K and let S be

a standard symmetric operator in H with defect index ðdþ; d�Þ and d ¼ dþ þ d�oN:

(a) Let b be a boundary mapping for S with Gram matrix Q and FðzÞ a

holomorphic basis of kerðS½* 
 � zÞ defined on C\ðR,gÞ; where g is a finite

subset of C\R: Then

UðzÞ :¼ ðQbð #FðznÞÞÞn

is a ð�QÞ-boundary coefficient.
(b) Let F1ðzÞ be any holomorphic basis for kerðSn � zÞ; zAC\ðR,g1Þ; where g1 is

a finite subset of C\R; and let b1 be any boundary mapping for S with Gram

matrix Q1 and set U1ðzÞ :¼ ðQ1b1ð #F1ðznÞÞÞn: Then

UðzÞ ¼ AðzÞU1ðzÞA

on C\ðR,g,g1Þ for some invertible matrix function AðzÞ of size d8 � d8 if

zAC7 and a constant invertible d � d matrix A such that AQ�1An ¼ Q�1
1 :

(c) The boundary coefficient U is minimal if and only if

ðdom SÞ½>
-spanfkerðS � lÞK : lAspðSÞg ¼ f0g: ð4:3Þ

Proof. For zAC7\g the row vector #FðznÞ has d8 components which are vectors from

S½* 
-znI : The mapping Qb maps each component from #FðznÞ to a d � 1 vector in

Cd : Thus Qbð #FðznÞÞ is a d � d8 matrix and UðzÞ is a d8 � d matrix. This proves

ðU1Þ: Since #FðzÞ is holomorphic on its domain, #FðznÞ is anti-holomorphic, and
consequently Qbð #FðznÞÞ is also anti-holomorphic. Therefore UðzÞ is holomorphic on
its domain and ðU2Þ is proved. Since the vectors in #FðzÞ ( #FðznÞ; respectively) are
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linearly independent and since Qb is a bijection on S½* 
-zI (S½* 
-znI ; respectively)

it follows that the matrix Qbð #FðznÞÞ ðQbð #FðzÞÞ; respectively) has rank d� (dþ;

respectively). Thus the property ðU3Þ holds. We calculate UðzÞð�Q�1ÞUðwÞn:

UðzÞð�Q�1ÞUðwÞn ¼ bð #FðznÞÞnQð�Q�1ÞQbð #FðwnÞÞ

¼ bð #FðznÞÞnð�QÞbð #FðwnÞÞ

¼ � 1 #FðwnÞ; #FðznÞU

¼ 1

i
ðz � wnÞ½FðwnÞ;FðznÞ
:

Thus U has property ðU4Þ and the limit in ðU5Þ exists. From

KUðz;wÞ ¼ ½FðwnÞ;FðznÞ
; ð4:4Þ

it follows that the block matrix ½KUðlj; lkÞ
nj;k¼1 is Gram matrix of vectors in

Fðln1Þ;y;FðlnnÞ with respect to the inner product ½ � ; � 
: Therefore the function
UðzÞ has property ðU5Þ: This proves (a). The proof of (b) is identical to the proof of
[7, Proposition 4.2(b)].
Now we prove (c). Assume (4.3). By Theorem 3.7, for arbitrary non-real distinct

complex numbers mn
0 ; m0; m1;y; mKespðSÞ; such that mjamn

k; j; k ¼ 0;y; K we have

(3.11). Since by Theorem 2.3, we have dim S½* 
=S ¼ d; the von Neumann formula
(3.11) implies that the matrix

½Uðm0Þn Uðmn

0Þ
n Uðmn

1Þ
n ? Uðmn

KÞ
n


has the maximal rank d: Thus condition ðU6Þ is satisfied. Conversely, if ðU6Þ is
satisfied, then the dimension of

Mm0 þ
XK
j¼0

Mmn

j

over S is d: Since dim S½* 
=S ¼ d; we conclude

S½* 
 ¼ S þ Mm0 þ
XK
j¼0

Mmn

j
:

By Theorem 3.7, this implies (4.3). The theorem is proved. &

Remark 4.3. Note that in the Hilbert space case each closed symmetric operator
satisfies condition (4.3), and therefore each closed symmetric operator with finite
defect indices gives rise to a minimal boundary coefficient. The same is true when S is
a symmetric relation, because the multi-valued part of S can be factored out from the
Hilbert space.
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5. Reduction to a minimal boundary coefficient

A boundary coefficient UðzÞ is said to be row reduced to a boundary coefficient
VðzÞ if

AðzÞUðzÞ ¼ VðzÞ; zAdomðUÞ-domðVÞ;

for some invertible matrix function AðzÞ on domðUÞ-domðVÞ which is of size

d7 � d7 for zAC7: The main result of this section Theorem 5.1, says that any
boundary coefficient can be row reduced to a boundary coefficient whose top rows
are independent of the eigenvalue parameter and the remaining rows are essentially
determined by a minimal boundary coefficient. The theorem shows that AðzÞ can
even be chosen holomorphic on its domain.

Theorem 5.1. Let Q be a self-adjoint invertible d � d matrix with dþ positive

and d� negative eigenvalues. Let UðzÞ be a Q-boundary coefficient function.

There exist a unique integer t; 0ptpminfdþ; d�g; and a holomorphic function

AðzÞ on domðUÞ whose values are invertible matrices of size d7 � d7 for zAC7

such that

AðzÞUðzÞ ¼
I 0

0 U0ðzÞ

" #
U0

B0

" #
; ð5:1Þ

where, with o7 :¼ d7 � t; o :¼ d � 2t ¼ oþ þ o�; U0; U0ðzÞ; and B0 have the

following properties:

(I) U0 is a constant t� d matrix of maximal rank,
(II) B0 is a constant o� d matrix such that B0Q

�1Bn

0 is invertible and has oþ
positive and o� negative eigenvalues,

(III) the following equality holds:

U0

B0

" #
Q�1 U0

B0

" #n
¼

0 0

0 Q�1
0

" #
; ð5:2Þ

where Q0 :¼ ðB0Q
�1Bn

0Þ
�1

is a self-adjoint o� o matrix with oþ positive and

o� negative eigenvalues,
(IV) U0ðzÞ is a minimal Q0-boundary coefficient of size o7 � o:

The right-hand side of (5.1) is called a minimal representation of UðzÞ:
To prove the theorem we use two lemmas. Lemmas 5.2(e) and (f) and 5.3 are

consequences of a geometric interpretation of maximum modulus principle for
generalized Schur functions [9, Proposition 8.1] for which we refer to the appendix.

To formulate the lemmas, let F and G be Hilbert spaces and let T :Cþ-LðF;GÞ
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be a meromorphic operator function such that the kernel

KTðz;wÞ ¼ i
I � TðzÞTðwÞn

z � wn
; z;wAholðTÞ; ð5:3Þ

has K negative squares. Here holðTÞ stands for the domain of holomorphy in Cþ of
T : We set

NðTÞ

:¼
\

z;vAholðTÞ
kerðTðzÞ � TðvÞÞ

0
@

1
A\ \

wAholðTÞ
kerðI � TðwÞnTðwÞÞ

0
@

1
A:

NðTÞ is the subspace ofF on which TðzÞ is isometric and independent of z: If we set

TnðzÞ ¼ TðzÞn; then NðTnÞ is the subspace of G on which TnðzÞ is isometric and
independent of z:

Lemma 5.2. There exist decompositions F ¼ F0"F1 and G ¼ G0"G1 such that

TðzÞ; has the matrix representation

TðzÞ ¼
V 0

0 T0ðzÞ

" #
:

F0

F1

" #
-

G0

G1

" #
; zAholðTÞ; ð5:4Þ

where

(a) F0 ¼ NðTÞ and G0 ¼ NðTnÞ;
(b) V :F0-G0 is unitary;
(c) T0 :C

þ-LðF1;G1Þ is a meromorphic function and holðT0Þ*holðTÞ;
(d) the kernel

KT0
ðz;wÞ ¼ i

I � T0ðzÞT0ðwÞn

z � wn
; z;wAholðT0Þ; ð5:5Þ

has K negative squares;
(e) for any choice of distinct complex numbers z0; z1;y; zKAholðT0Þ and each

jAf0; 1;y;Kg the restriction T0ðzjÞjMðT0Þ to

MðT0Þ :¼ MðT0; z0;y; zKÞ ¼
\K
k¼0

kerðT0ðzkÞ � T0ðz0ÞÞ

is a strict contraction, or equivalently,
(f) for any jAf0; 1;y; Kg

MðT0Þ
\

kerðI � T0ðzjÞnT0ðzjÞÞ ¼ f0g:
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Proof. PutF0 ¼ NðTÞ; G0 ¼ NðTnÞ: From the definition ofNðTÞ it follows that
TðzÞjNðTÞ is independent of zAholðTÞ: Put V :¼ Tðz0ÞjNðTÞ; with z0AholðTÞ: We

prove that VF0 ¼ G0: Let fAF0: Since for arbitrary zAholðTÞ; fAkerðI �
TðzÞnTðzÞÞ we have that TðzÞnVf ¼ f : Therefore VfAkerðTðzÞn � TðvÞnÞ for

arbitrary z; vAholðTÞ: Moreover, for arbitrary zAholðTÞ; TðzÞTðzÞnVf ¼ TðzÞf ¼
Vf ; and consequently VfANðTnÞ ¼ G0: Thus VNðTÞCNðTnÞ: We now prove

NðTnÞCVNðTÞ: First note that TðzÞnjNðTnÞ is independent of zAholðTÞ and

define V1 :¼ Tðz0ÞnjNðTnÞ for some z0AholðTÞ: Consider an arbitrary gANðTnÞ:
Reasoning as above we obtain that V1gANðTÞ and VV1g ¼ Tðz0ÞTðz0Þng ¼ g:

Therefore gAVNðTÞ; V : F0-G0 is one to one and V�1 ¼ V1 ¼ Vn: This
proves (b).

Define F1 :¼ F~F0; G1 :¼ G~G0 and T0ðzÞ :¼ TðzÞjF1
; zACþ: As a restric-

tion of a meromorphic function, T0 is meromorphic and holðT0Þ*holðTÞ: The
matrix representation (5.4) follows from the equalities

/TðzÞF1;VF0SG ¼/TðzÞF1;TðzÞF0SG

¼/F1;TðzÞnTðzÞF0SF

¼/F1;F0SF

¼ 0; zAholðTÞ:

Representation (5.4) implies

TðzÞn ¼
Vn 0

0 T0ðzÞn

" #
:

G0

G1

" #
-

F0

F1

" #
; zAholðTÞ: ð5:6Þ

Using the matrix representations (5.4) and (5.6) we calculate

KT ðz;wÞ ¼
0 0

0 KT0
ðz;wÞ

" #
;

and therefore kernel (5.5) has the same number K of negative squares as kernel (5.3).
Since T0ðzÞ : F1-G1 for all zAholðTÞ; we conclude that T0ðzÞn ¼ TðzÞnjG1

for all

zAholðTÞ: Therefore for all z; vAholðTÞ we have

kerðI � T0ðzÞnT0ðzÞÞ ¼ kerðI � TðzÞnTðzÞÞ-F1;

kerðT0ðzÞ � T0ðvÞÞ ¼ kerðTðzÞ � TðvÞÞ-F1;
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and consequently,

NðT0Þ ¼ NðTÞ-F1 ¼ F0-F1 ¼ f0g:

Now (e) and (f) follow from Remark A.3 in the appendix below. &

The last part of Lemma 5.2 can be formulated geometrically in terms of subspaces
of the Krein space K defined by

ðK; ½ � ; � 
Þ :¼ ðF;/�; �SFÞ"ðG;�/�; �SGÞ:

In K we consider the graph of the operator TðzÞ:

LðzÞ :¼ G½TðzÞ
 ¼ fff ;TðzÞf g : fAFgCK; zACþ;

Recall that the isotropic part of a subspace L of ðK; ½ � ; � 
Þ is defined by

L1 :¼ L-L½>
:

Lemma 5.3. Each LðzÞ; zAholðTÞ; can be decomposed as

LðzÞ ¼ L0½6
L1ðzÞ;

where L0 is a neutral subspace of K and the intersection the isotropic parts of L1ðzÞ
over zAholðTÞ is f0g; or equivalently, for arbitrary distinct complex numbers z0;y; zK
in holðTÞ

L1ðz0Þ1
\ \K

j¼1
L1ðzjÞ

 !
¼ f0g:

Indeed, let L0 :¼ G½V 
 and L1ðzÞ ¼ G½T0ðzÞ
; zACþ: Then by Lemma 5.2(b),
L0 is a neutral subspace of K and

LðzÞ ¼ L0½6
L1ðzÞ:

The equality in Lemma 5.2(f) with j ¼ 0 and the last equality in the lemma are the
same. That these equalities are equivalent to the intersection of isotropic parts of
L1ðzÞ being f0g follows from Theorem A.5 in the appendix.

Proof of Theorem 5.1. In this proof we consider Cd equipped with the indefinite
inner product

½x; y
 ¼ ynQ�1x; x; yACd :

The space ðCd ; ½ � ; � 
Þ is a Krein space. Let Cd ¼ Qþ½6
Q� be a fundamental

decomposition of Cd : For example, Qþ ðQ�Þ can be the subspace of Cd generated by
the eigenvectors of Q corresponding to its positive (negative) eigenvalues. Whatever

T. Azizov et al. / Journal of Functional Analysis 198 (2003) 361–412386



the choice of the fundamental decomposition we have that dimðQ7Þ ¼ d7: Denote
by Pþ and P� the orthogonal projections onto Qþ and Q�: We consider the
subspaces

RðzÞ :¼ ranðUðzÞnÞ; zAdomðUÞ:

The next argument was used in [10]. Assume that there exist Kþ 1 distinct complex

numbers z0; z1;y; zKACþ-domðUÞ for which there exist vectors x0; x1;y; xKACdþ

such that for j ¼ 0; 1;y; K we have

PþUðzjÞnxj ¼ 0 and yj :¼ P�UðzjÞnxja0: ð5:7Þ

Then via complex contour integration and the residue theorem we find

xn

j KUðzj; zkÞxk ¼ ixn

j

UðzjÞQ�1UðzkÞn

zj � znk
xk

¼ i
½yk; yj

zj � znk

¼ 1

2p

Z
R

yk

t � znk
;

yj

t � znj

" #
dt; j; k ¼ 0;y; K:

Since each of the vectors yj ; j ¼ 0; 1;y; K; is negative in the Krein space

ðCd ; ½ � ; � 
Þ; the Gram matrix of the vectors yj=ðt � znj Þ; j ¼ 0;y; K; is negative
definite. Therefore the self-adjoint block matrix ½KUðzj ; zkÞ
Kj;k¼0 has at least Kþ 1

negative eigenvalues. Since ½KUðzj; zkÞ
Kj;k¼0 has at most K negative eigenvalues the

assumption cannot hold. It follows that there exist at most K distinct complex

numbers z1;y; zKACþ-domðUÞ for which (5.7) holds for some vectors x1;y;xK:

Denote by g the set of the exceptional complex numbers z in Cþ-domðUÞ for which

PþUðzÞnx ¼ 0 and P�UðzÞnxa0

holds for some xACdþ : As we have just proved g has at most K elements. For each

zACþ-ðdomðUÞ\gÞ we have that

PþUðzÞnx ¼ 0 ) P�UðzÞnx ¼ 0 and UðzÞnx ¼ 0:

In other words, the restriction PþjRðzÞ is an injective operator for all

zACþ-ðdomðUÞ\gÞ: By assumption ðU3Þ; dimRðzÞ ¼ dþ for all zACþ-domðUÞ:
Consequently, the restriction PþjRðzÞ is a bijection for all zACþ-ðdomðUÞ\gÞ:
Therefore the operator PþUðzÞn :Cdþ-Qþ is a bijection for zACþ-ðdomðUÞ\gÞ:
Denote by TðzÞ the operator from the Hilbert space ðQ�;�½ � ; � 
Þ to the Hilbert
space ðQþ; ½ � ; � 
Þ defined by

TðzÞn :¼ P�UðzÞnðPþUðzÞnÞ�1; zACþ-ðdomðUÞ\gÞ:
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In particular we have

UðzÞna ¼ PþUðzÞna þ P�UðzÞna ¼ ðIQþ þ TðzÞnÞðPþUðzÞnÞa; ð5:8Þ

for all aACdþ and so

RðzÞ ¼ fðIQþ þ TðzÞnÞxþ : xþAQþg; zACþ-ðdomðUÞ\gÞ: ð5:9Þ

The operator TðzÞn is called the angular operator of RðzÞ: Since UðzÞ is holomorphic
on Cþ-ðdomðUÞ\gÞ; TðzÞ is also holomorphic on this set. Note that the set

ðCþ\domðUÞÞ,g is finite.
Next we verify that the function T has a finite number of negative squares on

Cþ-ðdomðUÞ\gÞ: Let z;wACþ-ðdomðUÞ\gÞ; xþ ¼ PþUðwÞna and yþ ¼ PþUðzÞnb;

with a; bACdþ and xþ; yþAQþ: Then

i
bnUðzÞQ�1UðwÞna

z � wn
¼ i

z � wn
½UðwÞna;UðzÞnb


¼ i

z � wn
½ðIQþ þ TðwÞnÞxþ; ðIQþ þ TðzÞnÞyþ


¼ i

z � wn
ð½xþ; yþ
 þ ½TðwÞnxþ;TðzÞnyþ
Þ

¼ i

z � wn
ð½xþ; yþ
 � ½TðzÞTðwÞnxþ; yþ
Þ

¼ i

z � wn
½ðIQþ � TðzÞTðwÞnÞxþ; yþ
:

That is,

bnKUðz;wÞa ¼ ½KT ðz;wÞxþ; yþ
:

Since the mapping a/xþ ¼ PþUðwÞna is a bijection between Cdþ and Qþ for

wACþ-ðdomðUÞ\gÞ; the assumption ðU5Þ implies that the kernel KT ðz;wÞ also has
K negative squares on Cþ-ðdomðUÞ\gÞ:
It follows from Lemma 5.2 applied to ðF;/�; �SFÞ ¼ ðQ�;�½ � ; � 
Þ and

ðG;/�; �SGÞ ¼ ðQþ; ½ � ; � 
Þ; that there exist decompositions Q7 ¼ Q0
7½6
Q1

7 such

that

TðzÞ ¼
V 0

0 T0ðzÞ

" #
Q0
�

Q1
�

" #
-

Q0
þ

Q1
þ

" #
; zACþ-ðdomðUÞ\gÞ; ð5:10Þ

where T0ðzÞ :Q1
�-Q1

þ is such that NðT0Þ ¼ f0g; T0ðzÞ is holomorphic on

Cþ-ðdomðUÞ\gÞ; and V : Q0
�-Q0

þ is a unitary operator. Let t ¼ dimðQ0
þÞ ¼

dimðQ0
�Þ; o7 ¼ d7 � t; and o ¼ oþ þ o� ¼ d � 2t: The subspace Q1

þ½þ
Q1
� is a

Krein subspace of ðCd ; ½ � ; � 
Þ of dimension o: The decomposition Q1
þ½6
Q1

�
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is a fundamental decomposition of this Krein space. We have oþ ¼ dimðQ1
þÞ and

o� ¼ dimðQ1
�Þ:

Now, with zACþ-ðdomðUÞ\gÞ; equality (5.9) becomes

RðzÞ ¼ fx0 þ x1 þ V�1x0 þ T0ðzÞnx1 : x0AQ0
þ; x1AQ1

þg

¼R0½6
R1ðzÞ;

where by (5.8),

R0 :¼fx0 þ V�1x0 : x0AQ0
þg

¼UðzÞnðPþUðzÞnÞ�1Q0
þCQ0

þ½6
Q0
�

is a neutral subspace and the subspaces

R1ðzÞ :¼fx1 þ Tn

0 ðzÞx1 : x1AQ1
þg

¼UðzÞnðPþUðzÞnÞ�1Q1
þCQ1

þ½6
Q1
�

have the property that the intersection of their isotropic parts is f0g by Lemma 5.3.
Properties ðU3Þ and ðU4Þ of U imply that

ðranUðzÞnÞ½>
 ¼ ranUðznÞn:

Therefore we have

RðznÞ ¼RðzÞ½>


¼ fðIQ� þ TðzÞÞx� : x�AQ�g; zACþ-ðdomðUÞ\gÞ;

or, using decomposition (5.10), we have

RðznÞ ¼ fx0 þ x1 þ Vx0 þ T0ðzÞx1 : x0AQ0
�; x1AQ1

�g

¼R0½6
R1ðznÞ;

where, as before,

R0 ¼ fx0 þ Vx0 : x0AQ0
�gCQ0

þ½6
Q0
�

and the subspaces R1ðznÞ are defined by

R1ðznÞ :¼ fx1 þ T0ðzÞx1 : x1AQ1
�gCQ1

þ½6
Q1
�

and they have the property that the intersection of their isotropic parts is f0g by

Lemma 5.3. Note that R1ðznÞ is the orthogonal complement of R1ðzÞ in the Krein
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space ðQ1
þ½6
Q1

�; ½ � ; � 
Þ: Therefore

R1ðzÞ1 ¼ R1ðznÞ1 ¼ R1ðzÞ-R1ðznÞ:

Select a basis of the o dimensional subspace Q1
þ½6
Q1

� of Cd : Let the columns of

the d � o matrix Bn

0 be the vectors of this basis. The Gram matrix B0Q
�1Bn

0 of the

columns of Bn

0 with respect to the indefinite inner product ½ � ; � 
 is invertible and
has oþ positive and o� negative eigenvalues. Hence B0 has property (II). The Gram

matrix B0B
n

0 of the columns of B
n

0 with respect to the Euclidean inner product is

o� o and invertible and the d � d matrix Bn

0ðB0B
n

0Þ
�1B0 is the orthogonal

projection with respect to the Euclidean inner product of Cd onto Q1
þ½6
Q1

�:

Let a1;y; at be a basis of the subspace Q0
þ: Then ðIQ0

þ
þ V�1Þaj; j ¼ 1;y; t

is a basis of R0: Let the columns of the d � t matrix Un

0 be the d � 1 vectors

ðIQ0
þ
þ V�1Þaj; j ¼ 1;y; t: Then U0 has the property (I).

Property (III) now follows from the fact that R0 is a neutral subspace of

ðCd ; ½ � ; � 
Þ and orthogonal to Q1
þ½6
Q1

� in ½ � ; � 
:
For zACþ-ðdomðUÞ\gÞ we now construct U0ðzÞ: Let b1;y; boþ be a basis of the

space Q1
þ: Then ðIQ1

þ
þ T0ðzÞnÞbj ; j ¼ 1;y;oþ; is a basis of R1ðzÞ: Let the columns

of the d � oþ matrix W1ðzÞn be the d � 1 vectors ðIQ1
þ
þ T0ðzÞnÞbj; j ¼ 1;y;oþ:

The rank of W1ðzÞn is oþ for all zACþ-ðdomðUÞ\gÞ: Since the function T0ðzÞn is
anti-holomorphic, the function W1ðzÞn is anti-holomorphic. Put

U0ðzÞn ¼ ðB0B
n

0Þ
�1
B0W1ðzÞn; zACþ-ðdomðUÞ\gÞ:

Clearly, U0ðzÞn is an o� oþ matrix and the function z/U0ðzÞn is anti-holomorphic
on Cþ-ðdomðUÞ\gÞ: Since the columns of the matrixW1ðzÞn belong to Q1

þ½6
Q1
� we

have

Bn

0U0ðzÞn ¼ Bn

0ðB0B
n

0Þ
�1
B0W1ðzÞn ¼ W1ðzÞn: ð5:11Þ

Thus, the columns of the matrix ½Un

0 Bn

0U0ðzÞn
 form an anti-holomorphic basis for

RðzÞ ¼ ranðUðzÞnÞ: Another anti-holomorphic basis of this space is formed by the

columns of UðzÞn: Denote by AðzÞn the ‘‘change of coordinates matrix’’ between
these two basis of RðzÞ; that is, the matrix with the property

UðzÞnAðzÞn ¼ ½Un

0 Bn

0U0ðzÞn 
; zACþ-ðdomðUÞ\gÞ:

By (5.8), we have AðzÞn ¼ ðPþUðzÞnÞ�1½a1 ? at b1 ? boþ 
: The matrix AðzÞ is a
dþ � dþ invertible matrix and the function z/AðzÞ is holomorphic on

zACþ-ðdomðUÞ\gÞ: An analogous construction for zAC� leads to the extension

of g in C� by at most K points, the d � o� matrix W2ðzÞn and to the o� o� matrix

U0ðzÞn :¼ B0W2ðzÞn and finally to the d� � d� matrix A2ðzÞn such that with the
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same U0 and Bn

0 as above we have

UðzÞnA2ðzÞn ¼ ½Un

0 Bn

0U0ðzÞn 
; zAC�-ðdomðUÞ\gÞ:

Thus UðzÞ has the minimal representation (5.1) for all zAC\R-ðdomðUÞ\gÞ:
It remains to show property (IV). Properties ðU1Þ and ðU2Þ follow from the

construction ofU0ðzÞ: Property ðU3Þ follows from (5.11) and the fact that the matrix

W1ðzÞn has rank oþ:
Equalities (5.1) and (5.2) yield

0 0

0 U0ðzÞQ�1
0 U0ðwÞn

" #
¼

U0Q
�1Un

0 U0Q
�1Bn

0U0ðwÞn

U0ðzÞB0Q
�1Un

0 U0ðzÞB0Q
�1Bn

0U0ðwÞn

" #

¼
U0

U0ðzÞB0

" #
Q�1 U0

U0ðwÞB0

" #n

¼AðzÞUðzÞQ�1UðwÞnAðwÞn: ð5:12Þ

Properties ðU4Þ and ðU5Þ of U0ðzÞ follow from (5.12) and from the corresponding
properties ðU4Þ and ðU5Þ of UðzÞ:
Lemma 5.3 implies that for arbitrary distinct numbers z0;y; zKACþ-ðdomðUÞ\gÞ

we have

R1ðz0Þ1
\ \K

j¼1
R1ðzjÞ

 !
¼ R1ðz0Þ

\
R1ðzn0Þ

\ \K
j¼1

R1ðzjÞ
 !

¼ f0g: ð5:13Þ

By the definitions above, R1ðzÞ ¼ ranW1ðzÞnCQ1
þ½6
Q1

�: Since the matrix

Bn

0ðB0B
n

0Þ
�1
B0 is the orthogonal projection with respect to the Euclidean inner

product of Cd onto Q1
þ½6
Q1

�; the o� d matrix ðB0B
n

0Þ
�1
B0 acts as a bijection

between R1ðzÞ and ranU0ðzÞnCCo: Therefore (5.13) is equivalent to

ranU0ðz0Þn
\

ranU0ðzn0Þ
n
\ \K

j¼1
ranU0ðzjÞn

 !
¼ f0g: ð5:14Þ

Taking the orthogonal complement in (5.14) with respect to the indefinite inner

product defined by ynQ�1
0 x; x; yACo; on Co and using the properties ðU3Þ and ðU4Þ

of U0 one can show that (5.14) is equivalent to

ranU0ðz0Þn
[

ranU0ðzn0Þ
n
[ [K

j¼1
ranU0ðznj Þ

n

 !
¼ Co; ð5:15Þ

and this is ðU6Þ: Thus U0ðzÞ is a minimal Q0-boundary coefficient. &
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6. A model for minimal boundary coefficients

In this section we provide a linear relation model for a minimal boundary
coefficient by using the theory of reproducing kernel Pontryagin spaces. To be more
precise, let Q be a d � d invertible self-adjoint matrix with dþ positive and d�
negative eigenvalues. For an arbitrary minimal Q-boundary coefficient UðzÞ we
construct

(a) a Pontryagin space ðH; ½ � ; � 
Þ;
(b) a closed simple symmetric operator S in H;
(c) a boundary mapping b of S with the Gram matrix �Q;
(d) a holomorphic row vector function F :C7\g-Hd7 ; where g is a finite subset

of C\R; and such that the components fjðzÞ; j ¼ 1;y; d7; of

FðzÞ ¼ ðf1ðzÞ;f2ðzÞ;y;fd7
ðzÞÞ

constitute a basis for kerðS½* 
 � zÞ; zAC\ðR,gÞ; such that

UðzÞ ¼ ðQbð #FðznÞÞÞn; ð6:1Þ

where #F is defined just before Theorem 4.2. If Eq. (6.1) holds, we say that H;S; b
and F provide a model for the minimal boundary coefficient UðzÞ:
With the kernel KUðz;wÞ in ðU5Þ we associate a reproducing kernel Pontryagin

space HðKUÞ: It is the completion of the linear space of the holomorphic functions

z/
Xn

j¼1
KUðz;wjÞxj; zAdomðUÞ;

wjAC7-domðUÞ; xjACd7 ; j ¼ 1;y; n; nAN;

with respect to the inner product

Xn

j¼1
KUð�;wjÞxj;

Xm

k¼1
KUð�; ukÞyk

" #
¼
Xn

j¼1

Xm

k¼1
yn

kKUðuk;wjÞxj: ð6:2Þ

This completion consists of column vector functions f ðzÞ which are holomorphic on
domðUÞ; and are of size d7 � 1 on C7: The inner product of f ðzÞ in HðKUÞ with a
function z/KUðz;wÞx reproduces the value of f ðzÞ at z ¼ w in the direction x:

xnf ðwÞ ¼ ½f ð�Þ;KUð�;wÞx
: ð6:3Þ

Lemma 6.1. Let Q and Q1 be d � d invertible self-adjoint matrices with dþ positive and

d� negative eigenvalues. Let U be a Q-boundary coefficient, let U1 be a Q1-boundary

coefficient and assume that

UðzÞ ¼ AðzÞU1ðzÞA
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for some invertible matrix function AðzÞ of size d8 � d8 if zAC7 and a constant

invertible d � d matrix A such that AQ�1An ¼ Q�1
1 : Then the operator of multi-

plication Að�Þ : f ðzÞ/AðzÞf ðzÞ is an isomorphism from HðKUÞ onto HðKU1
Þ and

under this isomorphism the operators SU and SU1
of multiplication by the independent

variable z coincide.
In particular, if U has a minimal representation (5.1) then the reproducing kernel

spaces HðKUÞ and HðKU0
Þ are isomorphic and under the isomorphism the operators of

multiplication by the independent variable z coincide.

Proof. The proof of this lemma is identical to the proof of [7, Lemma 4.3]. &

Next, we study the operator SU of multiplication by z in HðKUÞ: We assume that
UðzÞ is a minimal Q-boundary coefficient. The following theorem gives a
representation of a minimal boundary coefficient UðzÞ in terms of the operator SU

of multiplication by z in the reproducing kernel Pontryagin space HðKUÞ:

Theorem 6.2. Let Q be a d � d invertible self-adjoint matrix with dþ positive and d�
negative eigenvalues, d ¼ dþ þ d�: Let UðzÞ be a minimal Q-boundary coefficient.

(a) The operator SU of multiplication by z in the reproducing kernel Pontryagin

space HðKUÞ is a closed simple symmetric operator with defect index ðd�; dþÞ:
Its adjoint is given by

S
½* 

U ¼ spanffKUð�;wÞx;wnKUð�;wÞxg : wAC7-domðUÞ; xACd7g

¼fff ; ggAHðKUÞ2 : (cACd such that

gðzÞ ¼ zf ðzÞ � iUðzÞQ�1c; 8zAdomðUÞg: ð6:4Þ

The vector cACd in (6.4) is uniquely determined by ff ; ggAS
½* 

U and the

mapping #bðff ; ggÞ :¼ c is a boundary mapping for SU with Gram matrix �Q�1:
(b) There exist a boundary mapping b1 for SU with Gram matrix �Q and a

holomorphic basis F1ðzÞ for kerðS ½* 

U � zÞ; zAdomðUÞ; such that

UðzÞ ¼ ðQb1ð #F1ðznÞÞÞn:

(c) Let b2 be any boundary mapping for SU with Gram matrix Q2 and let F2ðzÞ be

any holomorphic basis for kerðS ½* 

U � zÞ; zAC\ðR,g2Þ; where g2 is a finite

subset of C\R: Then

UðzÞ ¼ AðzÞðQ2b2ð #F2ðznÞÞÞnA

on domðUÞ\g2 for some invertible matrix function AðzÞ of size d8 � d8 if

zAC7 and a constant invertible d � d matrix A such that AQ�1An ¼ �Q�1
2 :
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Proof. To prove (a) consider the following relation in HðKUÞ2:

Ŝ :¼ fff ; ggAHðKUÞ2 : (cACd such that

gðzÞ ¼ zf ðzÞ � iUðzÞQ�1c; 8zAdomðUÞg:

Note that for a given ff ; ggAŜ the vector cACd such that gðzÞ ¼ zf ðzÞ � iUðzÞQ�1c
for all zAdomðUÞ; is uniquely determined. To show this we derive a formula for c:
With z0;y; zKAdomðUÞ as in ðU6Þ (see (1.2)) we have

gðzjÞ ¼ zjf ðzjÞ � iUðzjÞQ�1c; j ¼ 0;y; K;

gðzn0Þ ¼ zn0f ðzn0Þ � iUðzn0ÞQ
�1c;

or in matrix form

Gðff ; ggÞ ¼ �iHQ�1c;

where

Gðff ; ggÞ :¼

gðz0Þ � z0f ðz0Þ
^

gðzKÞ � zKf ðzKÞ
gðzn0Þ � zn0f ðzn0Þ

2
6664

3
7775 and H :¼

Uðz0Þ
^

UðzKÞ
Uðzn0Þ

2
6664

3
7775:

Since the matrix H has maximal rank d; the matrix HnH is invertible. Therefore,

c ¼ iQðHnHÞ�1HnGðff ; ggÞ: ð6:5Þ

Hence if the pair ff ; gg ¼ 0; then c ¼ 0; and this proves the uniqueness
statement above. Since point evaluation is continuous on HðKUÞ; it also

follows from (6.5) that Ŝ is a closed subspace of HðKUÞ2: Define the mapping
#b : Ŝ-Cd by

#bðff ; ggÞ :¼ c for all ff ; ggAŜ:

Again since point evaluation is continuous, #b is a continuous linear mapping on Ŝ:

For arbitrary wAC7-domðUÞ and aACd7 we have

fKUð�;wÞa;wnKUð�;wÞagAŜ

and

#bðfKUð�;wÞa;wnKUð�;wÞagÞ ¼ UðwÞna: ð6:6Þ
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The minimality of U and (6.6) imply that the mapping #b is onto Cd : By the

definitions of SU and ker #b we have SU ¼ ker #b: Therefore

dim Ŝ=SU ¼ d: ð6:7Þ

As before, define the Lagrange inner product on HðKUÞ2 by

1ff ; gg; fu; vgU :¼ 1

i
ð½g; u
 � ½f ; v
Þ:

Put

To
max :¼

Xn

j¼1
KUð�;wjÞxj;

Xn

j¼1
wn

j KUð�;wjÞxj

( )
:

(

nAN; wjAC7-domðUÞ; xjACd7

)

and denote by Tmax the closure of To
max in HðKUÞ2: Note that, for

wjAC7-domðUÞ; xjACd7 ;

z
Xn

j¼1
KUðz;wjÞxj �

Xn

j¼1
wn

j KUðz;wjÞxj ¼
Xn

j¼1
ðz � wn

j ÞKUðz;wjÞxj

¼ iUðzÞQ�1Xn

j¼1
UðwjÞnxj:

Therefore, since Ŝ is closed, To
maxCTmaxCŜ and

#b
Xn

j¼1
KUð�;wjÞxj;

Xn

j¼1
wn

j KUð�;wjÞxj

( ) !
¼
Xn

j¼1
UðwjÞnxj : ð6:8Þ

Let

To
min :¼

Xn

j¼1
KUð�;wjÞxj;

Xn

j¼1
wn

j KUð�;wjÞxj

( )
:

(

Xn

j¼1
UðwjÞnxj ¼ 0; nAN; wjAC7-domðUÞ; xjACd7

)
:

Denote by Tmin the closure of To
min:

It follows from property (6.3) of the inner product in the reproducing kernel space

HðKUÞ that for fu; vgATmax and ff ; ggAŜ we have

1ff ; gg; fu; vgU ¼ #bðfu; vgÞnð�Q�1Þ #bðff ; ggÞ: ð6:9Þ
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Equality (6.9) implies that SUCT
½* 

max: Conversely, if ff ; ggAT

½* 

max ¼ ðTo

maxÞ
½* 
; then

0 ¼ ½gð�Þ;KUð�;wÞa
 � ½f ð�Þ;wnKUð�;wÞa


¼ anðgðwÞ � wf ðwÞÞ; for all wAC7-domðUÞ; aACd7 :

Hence, gðwÞ ¼ wf ðwÞ for all wAdomðUÞ; that is, ff ; ggASU: Thus T
½* 

max ¼ SU:

Next we prove that T
½* 

min ¼ Ŝ: It is sufficient to prove that ðTo

minÞ
½* 
 ¼ Ŝ:

The inclusion ŜCðTo
minÞ

½* 
 follows from (6.8) and (6.9). To prove the converse

inclusion observe that

g;
Xn

j¼1
KUð�;wjÞxj

" #
� f ;

Xn

j¼1
wn

j KUð�;wjÞxj

" #
¼
Xn

j¼1
xn

j ðgðwjÞ � wjf ðwjÞÞ;

for wjAC7-domðUÞ; xjACd7 : Therefore, for ff ; ggAT
½* 

min;

Xn

j¼1
UðwjÞnxj ¼ 0 )

Xn

j¼1
xn

j ðgðwjÞ � wjf ðwjÞÞ ¼ 0:

Consequently, the relation

spanffUðzÞnx; ðgðzÞ � zf ðzÞÞnxg : zAC7-domðUÞ; xACd7g

is an operator from Cd to C: Therefore there exists an aACd such that

anUðzÞnx ¼ ðgðzÞ � zf ðzÞÞnx; for all zAC7-domðUÞ; xACd7 ;

or

xnUðzÞa ¼ xnðgðzÞ � zf ðzÞÞ; for all zAC7-domðUÞ; xACd7 :

Thus UðzÞa ¼ gðzÞ � zf ðzÞ and consequently ff ; ggAŜ:

Since TminCSUCŜ and T
½* 

min ¼ Ŝ; Tmin is a symmetric operator in ðHðKUÞ;

½ � ; � 
Þ: Next we will prove that its defect index is ðd�; dþÞ:
Let mACþ-domðUÞ:We have to determine the dimension of the subspace Ŝ-mI :

Note that SU-mI ¼ ff0; 0gg: Therefore #bj
Ŝ-mI

is an injection. Let ff ; mf gAŜ: Then

mf ðzÞ ¼ zf ðzÞ � iUðzÞQ�1 #bðff ; mf gÞ;

and consequently

UðmÞQ�1 #bðff ; mf gÞ ¼ 0:
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This equality and conditions ðU4Þ and ðU3Þ imply that #bðff ; mf gÞAranUðmnÞn:
Thus, the range of the injection #bj

Ŝ-mI
is contained in the ðd�Þ-dimensional space

ranUðmnÞn: Therefore dimðŜ-mIÞpd�: Since

fKUð�; mnÞa; mKUð�; mnÞa : aACd�gCŜ-mI ð6:10Þ

and since the subspace on the left-hand side of (6.10) has the dimension d�; it follows
that

dim Ŝ-mI ¼ d�:

In a similar way one can prove that

dim Ŝ-mnI ¼ dþ:

Thus the defect index of Tmin is ðd�; dþÞ: It follows from Theorem 2.3 that

dim Ŝ=Tmin ¼ d� þ dþ ¼ d: ð6:11Þ

Since TminCSUCŜ; (6.7) and (6.11) imply that Tmin ¼ SU: Therefore, Tmax ¼ S
½* 

U ¼

T
½* 

min ¼ Ŝ: Consequently, the operator SU of multiplication by the independent

variable is symmetric in ðHðKUÞ; ½ � ; � 
Þ; it has defect index ðd�; dþÞ; and its

adjoint is Tmax ¼ Ŝ: The last statement in (a) now follows from (6.9).

To prove (b) put b1 ¼ Q�1 #b; where #b is the boundary mapping for SU with

Gram matrix �Q�1 introduced in the proof of part (a). Then b1 is a boundary
mapping for SU with Gram matrix �Q: Note that for the jth basis vector ej

of Cd8 ; j ¼ 1;y; d8; the vectors KUð�; znÞej; j ¼ 1;y; d8; form a basis of

kerðS ½* 

U � zÞ; zAC7-domðUÞ: Let F1ðzÞ; zAC7-domðUÞ; be the vector whose

components are the vectors KUð�; znÞej ; j ¼ 1;y; d8: Since UðzÞ is holomorphic on
domðUÞ; F1ðzÞ is holomorphic there too. Using the above definitions we get

b1ð #F1ðzÞÞ ¼Q�1 #bð #F1ðzÞÞ

¼Q�1½UðznÞne1 ? UðznÞned8 


¼Q�1UðznÞn:

This readily implies (b).
Part (c) follows from Theorem 4.2(b). The theorem is proved. &

Corollary 6.3. Let S be a closed simple symmetric operator in a Pontryagin

space ðH; ½ � ; � 
Þ with defect index ðdþ; d�Þ; d ¼ dþ þ d�oN: Then there exist a

d � d invertible matrix Q with dþ positive and d� negative eigenvalues and a minimal

ð�QÞ-boundary coefficient UðzÞ such that S is isomorphic to the operator SU of
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multiplication by the independent variable in the reproducing kernel Pontryagin space

HðKUÞ and

S½* 
 ¼ spanfff; zfg : fAkerðS½* 
 � zÞ; zAC\Rg:

Proof. Assume that S is a closed simple symmetric operator in a Pontryagin space

ðH; ½ � ; � 
HÞ with defect index ðdþ; d�Þ; d ¼ dþ þ d�oN: Let UðzÞ ¼
ðQbð #FðznÞÞÞn; zAC\ðR,gÞ; where b is a boundary mapping for S with Gram

matrix Q and FðzÞ is a holomorphic basis for kerðS½* 
 � zÞ; zAC\ðR,gÞ; where g is
a finite subset of C\R: By Theorem 4.2,UðzÞ is a minimal ð�QÞ-boundary coefficient.
It follows that the kernel

KUðz;wÞ ¼ �i
UðzÞQ�1UðwÞn

z � wn

has a finite number of negative squares. We show that S in H is isomorphic to the
operator SU of multiplication by the independent variable in the reproducing kernel
space ðHðKUÞ; ½ � ; � 
HðKUÞÞ: By Theorem 6.2 the defect index of SU is equal to that

of S: Denote by U :H-HðKUÞ the linear operator

UðFðwnÞxÞ ¼ KUð�;wÞx; wAC7\g; xACd7 :

From (4.4)

½FðwnÞx;FðznÞy
H ¼ ynKUðz;wÞx ¼ ½KUð�;wÞx;KUð�; zÞy
HðKUÞ:

Hence U is isometric. As S is simple, domðS½* 
Þ is dense in H and as the kernel
functions KUð�;wÞx are total inHðKUÞ the range of U is dense inHðKUÞ: Therefore
the closure of U is a unitary operator which we also denote by U :Using Theorem 6.2
we conclude

SCU�1SUU

CU�1S
½* 

U U

¼ spanffFðwnÞx;wnFðwnÞxg :wAC7\g; xACd7g

CS½* 
:

Since by Theorem 2.3 dimðS½* 
=SÞ ¼ dimðS ½* 

U =SUÞ ¼ d; we have S ¼ U�1SUU and

the formula for S½* 
 holds. &
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Example 6.4. Let

Q ¼
0 �iI

iI 0

" #
;

where I is the 3� 3 identity matrix. The matrix valued function

z/UðzÞ ¼
0 0 z �1 0 0

0 0 0 z �1 0

z z2 0 0 0 �1

2
64

3
75; zAC

satisfies ðU1Þ–ðU4Þ and

KUðz;wÞ ¼
0 0 �1
0 0 �wn

�1 �z 0

2
64

3
75:

This kernel has 2 positive and 2 negative squares and therefore the dimension of
HðKUÞ is 4. Since the determinant of the matrix

UðzÞ
UðwÞ

" #

evaluates to 0 for each z;wAC; this matrix is degenerate. The row reduction yields
that for any three distinct numbers z;w; vAC the matrix

UðzÞ
UðwÞ
UðvÞ

2
64

3
75

has the maximal rank 6. Thus UðzÞ is a minimal Q-boundary condition. The
reproducing kernel space HðKUÞ is

a1
a2

a3 þ za4

2
64

3
75 : a1; a2; a3; a4AC

8><
>:

9>=
>;:

A basis of this space is

1

0

0

2
64
3
75 ¼KUðz; 0Þ

0

0

�1

2
64

3
75;
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0

1

0

2
64
3
75 ¼KUðz; 0Þ

0

0

i

2
64
3
75� KUðz; iÞ

0

0

i

2
64
3
75;

0

0

1

2
64
3
75 ¼KUðz; 0Þ

�1
0

0

2
64

3
75;

0

0

z

2
64
3
75 ¼KUðz; 0Þ

0

�1
0

2
64

3
75:

Applying definition (6.2) to these basis vectors we conclude that the space HðKUÞ is
isomorphic to the space C4

D with the inner product

½x; y
 :¼ ynDx; x; yAC4; D ¼

0 0 �1 0

0 0 0 �1
�1 0 0 0

0 �1 0 0

2
6664

3
7775:

Under this isomorphism the operator of multiplication by z is isomorphic to the
operator

S ¼

0

0

a

0

2
6664
3
7775;

0

0

0

a

2
6664
3
7775

8>>><
>>>:

9>>>=
>>>;
: aAC

8>>><
>>>:

9>>>=
>>>;
;

with the adjoint

S½* 
 ¼

x1

x2

x3

x4

2
6664

3
7775;

x2

y2

y3

y4

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
: xj ; yjAC

8>>><
>>>:

9>>>=
>>>;
:

Using (6.4) and the proof of Theorem 6.2(b), we find that the boundary mapping

b :

x1

x2

x3

x4

2
6664

3
7775;

x2

y2

y3

y4

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
/

y4 � x3

�x4

�x1

�x2

�y2

�y3

2
6666666664

3
7777777775
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of S has Gram matrix �Q: Since

S½* 
-zI ¼

x1

zx1

x3

x4

2
6664

3
7775;

zx1

z2x1

zx3

zx4

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
: xjAC

8>>><
>>>:

9>>>=
>>>;
;

we conclude that

FðzÞ ¼

0

0

�1
0

2
6664

3
7775;

0

0

0

�1

2
6664

3
7775;

�1
�z

0

0

2
6664

3
7775

0
BBB@

1
CCCA

is a holomorphic basis for kerðS½* 
 � zÞ: Therefore

ðQ½bðFðznÞÞ
Þn ¼
0 0 z �1 0 0

0 0 0 z �1 0

z z2 0 0 0 �1

2
64

3
75;

that is C4
D;S; b and F provide a relation model for the minimal Q-boundary

coefficient UðzÞ:

Example 6.5. A meromorphic m � m matrix valued function N defined on C\R is

called a generalized Nevanlinna function with K negative squares if NðzÞn ¼ NðznÞ
for zAholðNÞ and the kernel

NðzÞ � NðwÞn

z � wn

has K negative squares. We denote the class of such functions by Nm�m
K : It is easily

checked that

UðzÞ :¼ ½NðzÞ I 


is a Q-boundary coefficient with

Q ¼ i
0 �I

I 0

" #
:

The 2m � 2m matrix

UðzÞ
UðznÞ

" #
¼

NðzÞ I

NðzÞn I

" #
ð6:12Þ
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is invertible if and only if ImNðzÞ is invertible. Indeed,

det
UðzÞ
UðznÞ

" #
¼ det

2i ImNðzÞ 0

NðzÞn I

" #
¼ ð2iÞmdet ImNðzÞ:

We shall assume that ImNðnÞ is invertible for some nAholðNÞ and relate the
representation of UðzÞ given in Theorem 6.2 to the operator representation of NðzÞ:
For this we use results from [1,11,15], where also earlier references can be found.

As NANm�m
K ; it admits a representation of the form

NðzÞ ¼ NðmnÞ þ ðz � mnÞGnðI þ ðz � mÞðA � zÞ�1ÞG;

where A is a self-adjoint relation in a Pontryagin space ðH; ½ � ; � 
Þ with non-empty
resolvent set rðAÞ; m is a point in rðAÞ-Cþ; and G is a linear mapping from Cm in

H: Evidently, rðAÞCholðNÞ:We set Gz ¼ I þ ðz � mÞðA � zÞ�1G; zArðAÞ: Then for
z; wArðAÞ;

Gz ¼ ðI þ ðz � wÞðA � zÞ�1ÞGw ð6:13Þ

and

NðzÞ � NðwÞn

z � wn
¼ Gn

wGz: ð6:14Þ

Define the relation S in H by

S ¼fff ; ggAA : Gn

z ðg � znf Þ ¼ 0g

¼fff ; ggAA :1ff ; gg; fGzx; zGzxgU ¼ 0 for all xACmg:

It is closed and since it is a restriction of a self-adjoint relation it is symmetric. The
sets on the right-hand side are independent of zArðAÞ; because by (6.13), for
ff ; ggAA we have

Gn

z ðg � znf Þ ¼ Gn

wðI þ ðzn � wnÞðA � znÞ�1Þðg � znf Þ ¼ Gn

wðg � wnf Þ:

From the definition of S it follows that ranðS � znÞ ¼ ðran GzÞ½>
 and hence

kerðS½* 
 � zÞ ¼ ran Gz; zArðAÞ: Hence the defect indices of S coincide and are equal
to m � dimðker GzÞ: This number is independent of zArðAÞ; because by (6.13),
ker Gz ¼ ker Gw; z;wArðAÞ:
The definition of S implies that for all zArðAÞ;

S½* 
 ¼ A6ffGzx; zGzxg : xACmg; direct sum:

The map Gz maps C
m onto the kernel kerðS½* 
 � zÞ:
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The model consisting of H; A; and G can always be constructed such that

H ¼ spanfGzx : xACm; zArðAÞg:

We shall assume that the model satisfies this closely connectedness condition. Then

(a) H; A; and G are uniquely determined by N up to unitary equivalence,
(b) the negative index of H equals K; the number of negative squares of N;
(c) holðNÞ ¼ rðAÞ;
(d) S is a simple symmetric operator.

We now assume that for some nAholðNÞ; ImNðnÞ is invertible. Since by (6.14)
and (6.13), we have

NðzÞ ¼ NðnnÞ þ ðz � nnÞGn

n ðI þ ðz � nÞðA � zÞ�1ÞGn;

without loss of generality we may assume that n ¼ m: Then by (6.14), Gm is injective

and consequently, for all zArðAÞ; Gz is injective, that is, Gz :C
m-kerðS½* 
 � zÞ is a

bijection. Also, the defect indices of S are equal to m and, because kerðS½* 
 � zÞ is a
non-degenerate subspace, von Neumann’s formula holds:

S½* 
 ¼ S þ S½* 
-zI þ S½* 
-znI ; zArðAÞ\R:

Let e1; e2;y; em be the standard orthonormal basis in Cm and define the boundary
operator for S by

bðf ; gÞ ¼ A�1

1ff ; gg; fGme1; mGme1gU
^

1ff ; gg; fGmem; mGmemgU
1ff ; gg; fGmne1; mnGmne1gU

^

1ff ; gg; fGmnem; mnGmnemgU

2
6666666664

3
7777777775
;

where

A ¼
NðmÞn I

NðmÞ I

" #
¼ i

2

ðImNðmÞÞ�1 �ðImNðmÞÞ�1

�NðmÞðImNðmÞÞ�1 NðmÞnðImNðmÞÞ�1

" #�1
:

If we set

FðzÞ ¼ ðGze1;Gze2;y;GzemÞ

then after some calculations we find that b is a boundary mapping for S with Gram

matrix �Q and UðzÞ ¼ ðQbð #FðznÞÞÞn:
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The operator U :H-HðKUÞ defined by U : f/f ðzÞ :¼ Gn
znf is unitary; U�1

maps the function Kðz;wÞx to Gn
wx; xACm: The symmetric operator S and the self-

adjoint relation A in H in the operator representation of N are isomorphic under U

to the operator SU of multiplication by the independent variable in the spaceHðKUÞ
and

AU :¼ fff ; ggAHðKUÞ2 : (cACm s:t: gðzÞ � zf ðzÞ ¼ c; 8zAC\Rg;

for details, see [1,11]. Finally, note that UðzÞ in Example 6.4 is of the form

UðzÞ ¼ AðzÞ½NðzÞ I 
;

where

AðzÞ ¼
�1 0 0

z �1 0

0 0 �1

2
64

3
75; NðzÞ ¼

0 0 �z

0 0 �z2

�z �z2 0

2
64

3
75;

AðzÞ is invertible and NðzÞAN2�2
K : Thus the reproducing kernel space HðKUÞ is

isomorphic to the space associated with NðzÞ:

Example 6.6. As remarked in the Introduction the case where d� ¼ 0 or dþ ¼ 0 is
included in the theory. We consider the first case in more detail; the other case where
dþ ¼ 0 can be treated similarly. If d� ¼ 0; then d ¼ dþ and Q is assumed to be a
positive d � d matrix. According to the definition Q-boundary coefficient UðzÞ is a
meromorphic d � d matrix valued function on the upper half plane Cþ which has
maximal rank, that is, invertible on its domain domðUÞ of holomorphy in the upper
half plane Cþ: The minimality condition is now superfluous. Since Q is positive, the
kernel KUðz;wÞ; now only defined for z;wAdomðUÞ; is non-negative. Indeed, using
complex contour integration and the residue theorem we obtain that for points

z1; z2;y; znACþ and vectors x1; x2;y; xnACd

Xn

j;k¼1
xn

j Kðzj; zkÞxk ¼ i
Xn

j;k¼1

xn
j UðzjÞQ�1UðzkÞnxk

zj � znk

¼ 1

2p

Z þN

�N

Xn

j¼1

UðzjÞnxj

t � znj

 !n

Q�1
Xn

k¼1

UðzkÞnxk

t � znk

 !

X 0:

Since UðzÞQ�1=2 is invertible, on account of, for example, [2, Theorem 1.5.7], the
reproducing Hilbert space HðKUÞ is isomorphic to the (infinite dimensional) Hardy
space H associated with the kernel iI

z�wn of functions defined on the upper half-plane

Cþ: The isomorphism is given by the map f ðzÞAH/UðzÞQ�1=2f ðzÞ: Thus we may as
well assume that UðzÞ ¼ Q ¼ I : Theorem 6.2 holds true provided, in for example,
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(6.4) we consider only wACþ and zACþ: The boundary operator b1ðff ; ggÞ is simply
the vector c for which gðzÞ � zf ðzÞ 
 c: With

F1ðzÞ ¼
e1

z � wn
;

e2

z � wn
;y;

em

z � wn

# $
;

where e1; e2;y; em; is the usual orthonormal basis for C
m; we see that part (b) of

Theorem 6.2 holds.
These results are consistent with the facts that (i) a standard maximal symmetric

operator in a Pontryagin space H has a unique (up to unitary equivalence) minimal

self-adjoint extension in Pontryagin space *H and (ii) the exit space *H~H is
necessarily an infinite dimensional Hilbert space; see [3].

Example 6.7. For j ¼ 1; 2; let UjðzÞ be a Qj-boundary coefficient. Then

UðzÞ ¼ AðzÞ
U1ðzÞ 0

0 U2ðzÞ

" #
A;

where AðzÞ is an invertible holomorphic matrix function on domðU1Þ-domðU2Þ
and A is an invertible matrix, is a Q-boundary coefficient with Q ¼
AndiagonalðQ1;Q2ÞA: This includes the case that for example U1ðzÞ is only defined
for zACþ; because d1� ¼ 0: Then UðzÞ ¼ U2ðzÞ for zAC�:

Appendix A. A Krein space version of the maximum principle for

generalized Schur functions

In this appendix we give a geometric interpretation of the maximum modulus
principle [9, Proposition 8.1] for generalized Schur functions with K negative squares
in terms of subspaces of a Krein space. This is used in the proof of Theorem 5.1, see
Lemmas 5.2(e),(f) and 5.3.
As in Section 5 ðF;/�; �SFÞ and ðG;/�; �SGÞ are Hilbert spaces and

T :Cþ-LðF;GÞ is a meromorphic operator function such that the kernel

KTðz;wÞ ¼ i
I � TðzÞTðwÞn

z � wn
; z;wAholðTÞ

has K negative squares. Here if T is a meromorphic operator valued function holðTÞ
stands for its domain of holomorphy. By Tn :Cþ-LðG;FÞ we denote the function
defined by TnðzÞ :¼ TðzÞn; zACþ: In Theorem A.5, the main theorem in this
appendix, we consider the graphs of TðzÞ;

LðzÞ :¼ G½TðzÞ
 ¼ fff ;TðzÞf g : fAFgCK; zACþ;
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as subspaces of the Krein space

ðK; ½ � ; � 
Þ :¼ ðF;/�; �SFÞ"ðG;�/�; �SGÞ:

The maximum modulus principle [9, Proposition 8.1] for generalized Schur functions
reads as follows

Theorem A.1 (Maximum principle). Let S :D/LðF;GÞ be a meromorphic

operator function with 0AholðSÞ such that the kernel

KSðz;wÞ ¼ I � SðzÞSðwÞn

1� zwn
; z;wAholðSÞ; ðA:1Þ

has K negative squares.

(a) Let fAF; gAG and assume g ¼ SðzÞf for more then K points zAholðSÞ: Then

we have jjgjjpjjf jj; and the equality jjgjj ¼ jjf jj implies that g ¼ SðzÞf and

f ¼ SðzÞng for all zAholðSÞ:
(b) Let fAF; gAG and assume f ¼ SðzÞng for more then K points zAholðSÞ: Then

we have jjf jjpjjgjj; and the equality jjf jj ¼ jjgjj implies that f ¼ SðzÞng and

g ¼ SðzÞf for all zAholðSÞ:

The statement (a) follows from [9, Proposition 8.1] since by Alpay et al.
[2, Theorem 2.5.2], the kernel

ðz;wÞ/I � SðwÞnSðzÞ
1� zwn

; z;wAholðSÞ;

has K negative squares on holðSÞ: In addition to the original statement of

[9, Proposition 8.1], statement (a) claims the equality f ¼ SðzÞng: That this
equality holds true is clear from the proof of [9, Proposition 8.1]. As to (b) we

consider the meromorphic function S1ðzÞ :¼ SðznÞn; zAD: Since S is holomorphic
at 0; S1 is holomorphic at 0 and, since kernel (A.1) has K negative squares,
the kernel

ðz;wÞ/I � S1ðwÞnS1ðzÞ
1� zwn

; z;wAholðSÞn;

has K negative squares on holðS1Þ ¼ holðSÞn: Now statement (b) follows from
[9, Proposition 8.1] applied to S1:
In the following corollary we prove that the family of operators

TðzÞ; zAholðTÞ; Kþ 1 of the operators can coincide on a subspace of F only as
contractions. If Kþ 1 of the operators TðzÞ coincide on a subspace of F as
isometries, then TðzÞ is independent of zAholðTÞ on this subspace. We recall from

T. Azizov et al. / Journal of Functional Analysis 198 (2003) 361–412406



Section 5 that

NðTÞ ¼
\

z;vAholðTÞ
kerðTðzÞ � TðvÞÞ

0
@

1
A\ \

wAholðTÞ
kerðI � TðwÞnTðwÞÞ

0
@

1
A: ðA:2Þ

Corollary A.2. Let z0; z1;y; zKAholðTÞ be distinct complex numbers and put

MðTÞ ¼ MðT ; z0;y; zKÞ :¼
\K
j¼0

kerðTðzjÞ � Tðz0ÞÞ:

Then for j ¼ 0; 1;y; K; TðzjÞjMðTÞ :MðTÞ-G and TðzjÞnjMðTnÞ :MðTnÞ-F are

contractions and

MðTÞ
\

kerðI � TðzjÞnTðzjÞÞ ¼ NðTÞ; ðA:3Þ

MðTnÞ
\

kerðI � TðzjÞTðzjÞnÞ ¼ NðTnÞ: ðA:4Þ

That is, the sets on the left-hand sides of (A.3) and (A.4) are independent of the choice

of the distinct points z0; z1;y; zKAholðTÞ:

Proof. Let u0ACþ be a point at which T is holomorphic. The holomorphic

transformation f : z/z�u0
z�un

0
¼ l maps R onto T and Cþ onto D: Its inverse is the

holomorphic mapping c : l/u0�lun

0

1�l ¼ z which maps T onto R and D onto Cþ: The

composition S ¼ T3c is a meromorphic function on D which is holomorphic at 0:
The equality

I � SðlÞSðmÞn

1� lmn
¼ z � un

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Im u0

p
& '

i
I � TðzÞTðwÞn

z � wn

w � un
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 Im u0
p
& 'n

implies that the kernel

I � SðlÞSðmÞn

1� lmn
; l; nAholðSÞ;

has K negative squares. Hence we may apply Theorem A.1(a) to S:
Let z0; z1;y; zKAholðTÞ be distinct complex numbers. Then lj :¼ cðzjÞ; j ¼

0; 1;y; K; are distinct numbers in holðSÞ: Let fAMðTÞ be arbitrary. Then, by the
definition of SðljÞ andMðTÞ; we have SðljÞf ¼ Sðl0Þf ¼: g: Theorem A.1(a) implies

that jjgjj ¼ jjSðljÞf jjpjjf jj and consequently jjTðzjÞf jjpjjf jj for all j ¼ 0; 1;y; K:
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Since fAMðTÞ was arbitrary this proves that TðzjÞjMðTÞ :MðTÞ-G is a contraction

for each j ¼ 0; 1;y; K:
To prove equality (A.3), let jAf0; 1;y; Kg and let fAMðTÞ be such that f ¼

TðzjÞnTðzjÞf : Then TðzjÞf ¼ SðljÞf ¼ Sðl0Þf ¼ g for all j ¼ 0; 1;y; K; and jjgjj ¼
jjf jj: By Theorem A.1 it follows that g ¼ SðmÞf and f ¼ SðmÞng for all mAholðSÞ:
Consequently SðmÞf ¼ SðnÞf and f ¼ SðnÞnSðnÞf for all m; nAholðSÞ; or equivalently,
with n ¼ cðwÞ and m ¼ cðzÞ; fAkerðTðzÞ � TðwÞÞ and fAkerðI � TðzÞnTðzÞÞ for all
z;wAholðTÞ: Thus, the left-hand side of (A.3) contained in NðTÞ: The opposite
inclusion is trivial, and hence (A.3) is proved. The statements about Tn are proved in
a similar way using Theorem A.1(b). &

Remark A.3. It follows from the definition ofNðTÞ that the conditionNðTÞ ¼ f0g
is equivalent to the condition that for one (and equivalently for each) set of Kþ 1
distinct complex numbers z0;y; zKAholðTÞ the operator Tðz0ÞjMðT ;z0;y;zKÞ is a strict

contraction. For K ¼ 0 the conditionNðTÞ ¼ f0g is equivalent to the condition that
at least one (and, equivalently all) of the operators TðzÞ; zAholðTÞ; are strict
contractions.

A part of the following corollary is a restatement of [10, Corollary, p. 356] in terms
of the function T from Corollary A.2. In the proof of this corollary we use the first
part of Lemma 5.2.

Corollary A.4. Let z0;y; zKAholðTÞ and w0;y;wKAholðTÞ be two sets of Kþ 1
distinct complex numbers. Then for NðTÞ defined in (A.2) we have

NðTÞ ¼ MðT ; z0;y; zKÞ
\ \K

j¼0
kerðI � TðwjÞnTðzjÞÞ

 !
ðA:5Þ

and

NðTÞ ¼
\

z;vAholðTÞ
kerðTðzÞ � TðvÞÞ

0
@

1
A\ \

u;wAholðTÞ
kerðI � TðuÞnTðwÞÞ

0
@

1
A: ðA:6Þ

Proof. The matrix representations (5.4) and (5.6) imply that the set on the
left-hand side of (A.5) is contained in the set on the right-hand side. To
prove the opposite inclusion, let f be an arbitrary element of the inter-

section in (A.5). Then fAMðT ; z0;y; zKÞ and TðwjÞnTðz0Þf ¼ f for all

j ¼ 0;y; K: Therefore

Tðz0ÞfAMðTn;w0;y;wKÞ:
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Corollary A.2, applied to both Tn and T ; yields

jjf jj ¼ jjTðw0ÞnTðz0Þf jjpjjTðz0Þf jjpjjf jj:

This implies jjTðz0Þf jj ¼ jjf jj and jjTðw0ÞnTðz0Þf jj ¼ jjTðz0Þf jj: Using again

Corollary A.2, we conclude that TðzÞf is independent of z and that TðwÞnTðz0Þf
is independent of w: Therefore

TðwÞTðzÞf ¼ Tðw0ÞnTðz0Þf ¼ f for all w; zACþ:

Thus

fAMðT ; z0;y; zKÞ-
\

u;wACþ

kerðI � TðuÞnTðwÞÞ

0
@

1
ACNðTÞ:

This proves (A.5). Equality (A.6) can be proved in the same way. &

The next theorem concerns the geometric interpretation of the maximum
modulus principle. The isotropic part of a subspace L of a Krein space is denoted
by L1:

Theorem A.5. For arbitrary distinct complex numbers z0;y; zK in the set

holðTÞ ðCCþÞ; the intersection
TK

j¼0LðzjÞ is a non-negative subspace of K and

Lðz0Þ1-
\K
j¼1

LðzjÞ
 !

¼
\

zAholðTÞ
LðzÞ1 ðA:7Þ

holds. Moreover, for any two sets of Kþ 1 distinct complex numbers z0;y; zKAholðTÞ
and w0;y;wKAholðTÞ we have

\
zAholðTÞ

LðzÞ1 ¼
\K
j¼0

ðLðzjÞ-LðwjÞ½>
Þ

¼
\

u;vAholðTÞ
ðLðuÞ-LðvÞ½>
Þ: ðA:8Þ

Proof. First note that

\K
j¼0

LðzjÞ ¼ G½Tðz0ÞjMðT ;z0;y;zKÞ
: ðA:9Þ

Indeed, if ff ; gg belongs to the intersection in (A.9), then g ¼ TðzjÞf for j ¼ 0;y; K:
This clearly means that ff ; gg belongs to the graph in (A.9). Conversely, if ff ; gg
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belongs to the graph in (A.9), then fAMðT ; z0;y; zKÞ and g ¼ Tðz0Þf : Since, by the
definition of the subspace MðT ; z0;y; zKÞ; the operators TðzjÞ; j ¼ 0;y; K;
coincide on MðT ; z0;y; zKÞ; we have g ¼ TðzjÞf ; that is, ff ; gg belongs to LðzjÞ
for each j ¼ 0;y; K: Corollary A.2 implies that Tðz0ÞjMðT ;z0;y;zKÞ is a contraction,

and consequently
TK

j¼0LðzjÞ is a non-negative subspace of K: With the unitary

operator V ¼ Tðz0ÞjNðTÞ from Lemma 5.2(a) and (b) we have

Lðz0Þ1
\ \K

j¼1
LðzjÞ

 !
¼ G½Tðz0ÞjNðTÞ
 ¼ G½V 
: ðA:10Þ

Indeed, if ff ; gg belongs to the left-hand side of (A.10) then, by (A.9), g ¼ Tðz0Þf
with fAMðT ; z0;y; zKÞ and ff ;Tðz0Þf g½>
fu;Tðz0Þug for all uAF; that is,

0 ¼ /f ; uSF �/Tðz0Þf ;Tðz0ÞuSG ¼ /ðI � Tðz0ÞnTðz0ÞÞf ; uSF;

and consequently fAkerðI � Tðz0ÞnTðz0ÞÞ: By (A.3), fANðTÞ: Thus the left-hand
side of (A.10) is contained in the right-hand side. The proof of the opposite inclusion
is similar.
Analogous to (A.9), we have

\K
j¼0

LðzjÞ½>
 ¼ G½Tðz0ÞnjMðTn;z0;y;zKÞ
: ðA:11Þ

To justify (A.7) and (A.8) it suffices to show

\K
j¼0

LðzjÞ1CG½V 
C
\

z;vAholðTÞ
ðLðzÞ-LðvÞ½>
Þ: ðA:12Þ

Let ff ; gg belong to the first intersection in (A.12). Then, by (A.9) and (A.11), ff ; gg
belongs to both

G½Tðz0ÞjMðT ;z0;y;zKÞ
 and G½Tðz0ÞnjMðTn;z0;y;zKÞ
:

This means that g ¼ Tðz0Þf and f ¼ Tðz0Þng: Consequently, fAkerðI �
Tðz0ÞnTðz0ÞÞ and therefore, on account of (A.3), fANðTÞ: According
to Lemma 5.2, g ¼ Tðz0Þf ¼ Vf ; that is, ff ; ggAG½V 
: Further, if ff ; ggAG½V 
;
then g ¼ Vf : Therefore g ¼ TðzÞf and f ¼ TðvÞng for arbitrary z; vAholðTÞ:
Consequently ff ; ggALðzÞ-LðvÞ½>
; that is, ff ; gg belongs to the last intersection
in (A.12). &

From the proof of Theorems 5.1 and A.5 we obtain the following list of equivalent
formulations of ðU6Þ: Note that items (a) and (d) contain each 4 statements.
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Corollary A.6. Let U be a ðQÞ-boundary coefficient satisfying ðU1Þ–ðU5Þ: The

following statements are equivalent:

(a) For some (and then for any) set of distinct complex numbers z0;y; zK in

C7-domðUÞ; the matrix

½Uðz0Þn Uðzn0Þ
n Uðzn1Þ

n ? UðznKÞ
n 


has the maximal rank d

(b) spanfranUðzÞn : zAdomðUÞg ¼ Cd :
(c)

T
zAdomðUÞ ranUðzÞn ¼ f0g:

(d) For some (and then for any) set of distinct numbers z0;y; zKAC7-domðUÞ;

ranUðzn0Þ
n
\ \K

j¼0
ranUðzjÞn

 !
¼ f0g:

Proof. These equivalences follow from the construction of the subspaces RðzÞ and
RðznÞ ¼ RðzÞn in the proof of Theorem 5.1, the equivalences between equalities
(5.13)–(5.15) and Theorem A.5. We leave the details to the reader. &
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[15] M.G. Krein, H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher

Operatoren in Raume Pk zusammenhängen, Teil I: Einige Funktionenklassen und ihre Darstellun-

gen, Math. Nachr. 77 (1977) 187–236.

[16] P. Sorjonen, Extensions of isometric and symmetric linear relations in Krein spaces, Ann. Acad. Sci.

Fenn. Ser. A I 5 (1980) 355–376.

T. Azizov et al. / Journal of Functional Analysis 198 (2003) 361–412412


	Standard symmetric operators in Pontryagin spaces: a generalized von Neumann formula and minimality of boundary coefficients
	Introduction
	Standard symmetric relations in Pontryagin spaces
	Von Neumann’s formula
	An application to boundary coefficients
	Reduction to a minimal boundary coefficient
	A model for minimal boundary coefficients
	A Krein space version of the maximum principle for generalized Schur functions
	Maximum principle
	References


