
RADOVI MATEMATI�CKIVol. 12 (2003), 37{79Continuous embeddings, 
ompletionsand 
omplementation in Krein spa
esBranko �Curgus (USA) and Heinz Langer (Austria)Abstra
t. Let the Krein spa
e �A; [ � ; � ℄A� be 
ontinuously embed-ded in the Krein spa
e �K; [ � ; � ℄K�. A unique self-adjoint operatorA in K 
an be asso
iated with �A; [ � ; � ℄A� via the adjoint of thein
lusion mapping of A in K. Then �A; [ � ; � ℄A� is a Krein spa
e 
om-pletion of R(A) equipped with an A-inner produ
t. In general this
ompletion is not unique. If, additionally, the embedding of A inK is t-bounded then the operator A is de�nitizable in K and R(A)equipped with the A-inner produ
t has unique Krein spa
e 
omple-tion. The spe
tral fun
tion of A yields some information about theembedding of A in K. Appli
ations to the 
omplementation theoryof de Branges are given.1. Introdu
tion1. A

ording to de Branges [dB, p. 284℄ (see also [ADRS, Se
tion1.1.5℄), if t is a positive number, a Krein spa
e �A; [ � ; � ℄A� is t{boundedlyembedded in another Krein spa
e �K; [ � ; � ℄K� if A � K and[f; f ℄K � t [f; f ℄A; f 2 A; (1:1)and �A; [ � ; � ℄A� is 
ontinuously embedded in �K; [ � ; � ℄K� if A � K and theidentity mapping { : A ! K; {f := f; f 2 A;is 
ontinuous. If �A; [ � ; � ℄A� is 
ontinuously and t{boundedly embedded inthe Krein spa
e �K; [ � ; � ℄K�, then the bounded self{adjoint operator A := {{�2000 Mathemati
s Subje
t Classif i
ation: Primary: 46C20, 47B50, 47B25; Se
on-dary: 46C07.Key words and phrases: Krein spa
e 
ompletion, 
omplementation in Krein spa
es,operator ranges, embedding of Krein spa
es, de�nitizable operators.



Branko �Curgus and Heinz Langer38in K, whi
h we 
all the K-adjoint of the in
lusion { of A in K, has the
hara
teristi
 property that the operator tA � A2 is non-negative in theKrein spa
e K:t [Ax; x℄K � [Ax;Ax℄K � 0; x 2 K; or t A�A2 �K 0: (1:2)Fix a fundamental symmetry J in �K; [ � ; � ℄K� and denote by h � ; � iK theHilbert inner produ
t in K generated by J . As a main result of this notewe show in Se
tion 3 that if �A; [ � ; � ℄A� is 
ontinuously and t{boundedlyembedded in �K; [ � ; � ℄K� then(i) A is the range of the positive self{adjoint operator jAJ j1=2 in the Hilbertspa
e �K; h � ; � iK�,(ii) �A; [ � ; � ℄A� is the unique Krein spa
e 
ompletion of the inner produ
tspa
e �R(A); [ � ; � ℄A�, where the inner produ
t on the range R(A) of theoperator A is de�ned as follows:[Ax;Ay℄A := [Ax; y℄K; x; y 2 K: (1:3)The relation (1.2) means that the operator A is de�nitizable with the de�ni-tizing polynomial p(�) = t���2, see [L℄ and the next subse
tion. ThereforeA has a spe
tral fun
tion with the possible 
riti
al points 0 and t. Thisspe
tral fun
tion gives some more information about the embedding of Ain K, see Theorems 3.6 and 3.7.The embedding of A in K is 
alled 
ontra
tive if in (1.1) t = 1, that isif [f; f ℄K � [f; f ℄A; f 2 A;and isometri
, if (1.1) spe
i�es to[f; f ℄K = [f; f ℄A; f 2 A:If the embedding of A in K is 
ontinuous and isometri
, then A is a Kreinsubspa
e of K and the operator A is the orthogonal proje
tion onto A in K,and the last relation in (1.2) redu
es to A2 = A.In Se
tion 4, using the representation of the embedded subspa
e A asan operator range as in (i), alternative proofs for the existen
e, uniquenessand the properties of the 
omplementary subspa
e of a 
ontinuously and
ontra
tively embedded subspa
e of a Krein spa
e are given, 
omp. [dB,Theorem 2℄, [DR, Theorem 11℄ and [H, Theorem 5℄. The essential new fea-ture of 
omplementation in a Krein spa
e 
ompared with 
omplementationin a Hilbert spa
e is that the embedded spa
e A 
an be a degenerated sub-spa
e of the Krein spa
e K. We 
on
lude Se
tion 4 with a detailed analysisof the 
orresponding extremal 
ase when A is even a neutral subspa
e of K.



Complementation in Krein spa
es 39As a preparation for Se
tion 3, in Se
tion 2 we 
onsider a Krein spa
e�S; [ � ; � ℄S�, whi
h is only 
ontinuously but not ne
essarily t{boundedly em-bedded in a Hilbert or Krein spa
e. We prove in Theorems 2.3 and 2.15that a bounded self{adjoint operator S is the adjoint of the 
orrespondingin
lusion operator if and only if �S; [ � ; � ℄S� is a Krein spa
e 
ompletion ofthe range R(S), equipped with the inner produ
t [ � ; � ℄S as in (1.3). It turnsout that �R(S); [ � ; � ℄S� has in general in�nitely many Krein spa
e 
omple-tions. In order to formulate in Theorem 2.7 a 
riterion for the uniquenessof this Krein spa
e 
ompletion we use a result of T. Hara [H, Theorem 6℄.For the 
onvenien
e of the reader in the Appendix we give a proof of thisuniqueness result, whi
h is partly 
lose to Hara's proof, but our proof yieldsin�nitely many Krein spa
e 
ompletions. In Theorem 2.8 we give ne
essaryand suÆ
ient 
onditions under whi
h �S; [ � ; � ℄S� 
an be represented as anoperator range.2. Our terminology follows mainly that of the book [B℄ and of [L℄.In parti
ular, a fundamental de
omposition of the Krein spa
e �K; [ � ; � ℄� isa representation of K as the dire
t and [ � ; � ℄{orthogonal sum of two of itssubspa
es K+ and K�: K = K+ uK�; (1:4)su
h that �K+; [ � ; � ℄� is a Hilbert and �K�; [ � ; � ℄� is an anti-Hilbert spa
e(whi
h means that �K�;�[ � ; � ℄� is a Hilbert spa
e). If the de
omposition ofan element x 2 K a

ording to (1.4) is denoted by x = x+ + x�, then theinner produ
t hx; yi := [x+; y+℄� [x�; y�℄; x; y 2 K;is a Hilbert inner produ
t on K, and the operator J :Jx := x+ � x�; x; y 2 K;is 
alled the fundamental symmetry 
orresponding to the de
omposition(1.4). If in some (and hen
e in all) fundamental de
ompositions one ofthe 
omponents K� is �nite{dimensional the Krein spa
e K is 
alled aPontryagin spa
e; if e.g. dimK� = � < +1, the Pontryagin spa
e K or itsinner produ
t are said to have negative index �.The bounded self-adjoint operator A in the Krein spa
e �K; [ � ; � ℄� is
alled de�nitizable (positizable in [B℄) if there exists a polynomial p su
hthat p(A) is a non-negative operator in K: [p(A)x; x℄ � 0; x 2 K; in this 
asep is 
alled a de�nitizing polynomial for A. An interval � � R is 
alled admis-sible for the de�nitizable operator A if there exists a de�nitizing polynomialp su
h that the endpoints of � are not zeros of p. The spe
tral fun
tion ofthe de�nitizable operator A asso
iates with ea
h admissible interval � for



Branko �Curgus and Heinz Langer40A a self{adjoint proje
tion E(�) in K, su
h that the range E(�)K, 
alledthe spe
tral subspa
e of A at �, is invariant under A and it is the maximalsubspa
e L� with respe
t to the property�(AjL�) � �:The subspa
e �E(�)K; [ � ; � ℄� is a Hilbert spa
e if p > 0 on � and an anti{Hilbert spa
e if p < 0 on �. Later we use the fa
t that the elementsx 2 E(�)K are 
hara
terized by the property that the fun
tion (A� z)�1x,whi
h is holomorphi
 on �(A), has an analyti
 
ontinuation at least to C n�.A point � 2 �(A) is said to have finite negative index � if for ea
h suÆ
ientlysmall admissible interval � 
ontaining � the inner produ
t [ � ; � ℄ has �nitenegative index � on E(�)K.Two Krein spa
es �K; [ � ; � ℄K� and �L; [ � ; � ℄L� are 
alled isomorphi
 ifthere exists a 
ontinuous and 
ontinuously invertible linear bije
tion T :K ! L su
h that [Tx; Ty℄L = [x; y℄K; x; y 2 K;in this 
ase the mapping T is 
alled an isomorphism between K and L.2. Krein spa
e 
ompletions and 
ontinuous embeddings1. The Krein spa
e �K; [ � ; � ℄K� is said to be a Krein spa
e 
ompletionof the inner produ
t spa
e �L; [ � ; � ℄L� if L is a dense subspa
e of K and[x; y℄L = [x; y℄K for all x; y 2 L. An inner produ
t spa
e �L; [ � ; � ℄L� 
an havemore than one Krein spa
e 
ompletion. That is, there may exist two Kreinspa
es �K1; [ � ; � ℄K1� and �K2; [ � ; � ℄K2� whi
h are Krein spa
e 
ompletionsof �L; [ � ; � ℄L� and su
h that there is no isomorphism U : �K1; [ � ; � ℄K1� !�K2; [ � ; � ℄K2� with Ux = x for all x 2 L. Examples will 
ome up later andin the Appendix. We say that the inner produ
t spa
e �L; [ � ; � ℄L� has aunique Krein spa
e 
ompletion if any two Krein spa
e 
ompletions of L areisomorphi
 with an isomorphism whi
h a
ts as the identity on L.Spe
ial Krein spa
e 
ompletions often arise as follows. The non-degenerated inner produ
t spa
e �L; [ � ; � ℄L� is said to have a Hilbert majo-rant ( � ; � )L if the latter is a positive de�nite inner produ
t on L, su
h that�L; ( � ; � )L� is a Hilbert spa
e, and with a positive number 
 the relationj[x; y℄Lj � 
(x; x)1=2L (y; y)1=2L ; x; y 2 L;holds. The latter inequality implies that there exists a bounded self-adjointand inje
tive operator G in �L; ( � ; � )L� su
h that[x; y℄L = (Gx; y)L; x; y 2 L: (2:1)



Complementation in Krein spa
es 41The operator G is 
alled the Gram operator of [ � ; � ℄L in �L; ( � ; � )L�. Usingthe spe
tral fun
tion EG of G we introdu
e the spa
esL+ := EG�(0;+1)�L; L� := EG�(�1; 0)�L:and 
onsider the pre{Hilbert spa
es �L�; (jGj � ; � )L�. They are orthogo-nal to ea
h other with respe
t to all the inner produ
ts [ � ; � ℄L; ( � ; � )L,and (jGj � ; � )L. Denoting the 
ompletions of these pre{Hilbert spa
es by�G�; h � ; � i�� the spa
e G := G+ u G�equipped with the inner produ
t[x; y℄G := hx+; y+i+ � hx�; y�i�; x = x+ + x�; y = y+ + y�; x�; y� 2 G�;is a Krein spa
e 
ompletion of �L; [ � ; � ℄L�. The de�nition of this innerprodu
t is 
orre
t sin
e on L it 
oin
ides with the inner produ
t (2.1). We
all the spa
e �G; [ � ; � ℄G� the 
anoni
al Krein spa
e 
ompletion of �L; [ � ; � ℄L�with respe
t to the Hilbert majorant ( � ; � )H.It follows from [B, Theorem V.2.1℄ that the 
anoni
al Krein spa
e 
om-pletion of a non-degenerated inner produ
t spa
e �L; [ � ; � ℄L� with a Hilbertmajorant is uniquely determined, that is any two 
anoni
al Krein spa
e
ompletions of L are isomorphi
 with an isomorphism whi
h a
ts as theidentity on L.Let the Krein spa
e �S; [ � ; � ℄S� be 
ontinuously embedded in the Hilbertspa
e �H; h � ; � iH�. Then the adjoint {� : H ! S, of the in
lusion { of S in Hde�ned by h{f; xiH = [f; {�x℄S ; f 2 S; x 2 H;is also 
ontinuous. The operator {{� is a bounded self{adjoint operator inthe Hilbert spa
e H, 
alled the H{adjoint of the in
lusion { of �S; [ � ; � ℄S� in�H; h � ; � iH�.Remark 2.1 Let the Krein spa
e �S; [ � ; � ℄S� be 
ontinuously embeddedin the Hilbert spa
e �H; h � ; � iH� and assume S = H. Then it is well knownthat the norm topologies on �S; [ � ; � ℄S� and �H; h � ; � iH� are equivalent, seee.g. [B, Theorem IV.6.4℄. If S is the H{adjoint of the in
lusion of S in Hand Q is the Gram operator of [ � ; � ℄S in �H; h � ; � iH�, then for x; y 2 H = Swe have hx; yiH = h{x; yiH = [x; {�y℄S = [x; Sy℄S = hx;QSyiH;therefore S = Q�1.



Branko �Curgus and Heinz Langer42 Remark 2.2 With the above notation for the 
anoni
al Krein spa
e
ompletion �G; [ � ; � ℄G� of �L; [ � ; � ℄L�we havehf; fiG = (jGjf; f)L � 
(f; f)L; f 2 L:Therefore the Hilbert spa
e �L; ( � ; � )L� is 
ontinuously embedded in theHilbert spa
e �G; h � ; � iG�. Let H := {{� be the G{adjoint of the in
lusion { of�L; ( � ; � )L� in �G; h � ; � iG�. It follows from the relation(f;Hg)L = (f; {�g)L = h{f; giG = hf; giG = (jGjf; g)L = (f; jGjg)L; f; g 2 L ;that H is the 
ontinuous extension of jGj to G.For a bounded self{adjoint operator S in the Hilbert spa
e (H; h � ; � iH),on its range R(S) an inner produ
t ( � ; � )S is de�ned by the relation(u; v)S := hSx; yiH; where u = Sx; v = Sy; x; y 2 H: (2:2)The inner produ
t ( � ; � )S on R(S) is well de�ned by (2.2) sin
e hSx; yiH = 0whenever x or y belongs to kerS, and it is non{degenerate sin
e, by (2.2),(u; Sy)S = 0 for all y 2 H implies that u = 0.Theorem 2.3. Let the Krein spa
e �S; [ � ; � ℄S� be 
ontinuously embed-ded in the Hilbert spa
e �H; h � ; � iH� and let S be a bounded self{adjoint oper-ator in H. The operator S is the H{adjoint of the in
lusion { of �S; [ � ; � ℄S�in �H; h � ; � iH� if and only if �S; [ � ; � ℄S� is a Krein spa
e 
ompletion of theinner produ
t spa
e �R(S); ( � ; � )S�.Proof. Suppose that S is the H-adjoint of {: S = {{�. Then R(S) =R({�) � S andhf; xiH = h{ f; xiH = [f; {�x℄S = [f; Sx℄S ; f 2 S; x 2 H: (2:3)It follows that R(S) is dense in S. Indeed, if for some f0 2 S it holds[f0; Sx℄S = 0 for all x 2 H, then, by (2.3), f0 = 0. From the de�nition of( � ; � )S and (2.3) for u = Sx; v = Sy, we have(u; v)S = (Sx; Sy)S = hSx; yiH = [Sx; Sy℄S = [u; v℄S ;therefore the inner produ
ts ( � ; � )S and [ � ; � ℄S 
oin
ide on R(S). Thus(S; [ � ; � ℄S) is a Krein spa
e 
ompletion of (R(S); ( � ; � )S).Conversely, assume that (S; [ � ; � ℄S) is a Krein spa
e 
ompletion of theinner produ
t spa
e (R(S); ( � ; � )S). Then for all x 2 H and f 2 R(S) wehave [f; Sx℄S = (f; Sx)S = hf; xiH: (2:4)
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es 43Sin
e for �xed x 2 H the fun
tionals [ � ; Sx℄S and h � ; xiH are 
ontinuous onS, we 
on
lude that (2.4) holds for all f 2 S. Therefore,hSx; yiH = hx; SyiH = hx; { SyiH = [{�x; Sy℄S = h{{�x; yiH; x; y 2 H ;and, 
onsequently, {{� = S.2. Let T be a bounded non-negative operator in the Hilbert spa
e�H; h � ; � iH�. We equip the range R(T ) with the inner produ
t ( � ; � )T as in(2.2) (u; v)T = hTx; yiH; where u = Tx; v = Ty; x; y 2 H;it turns R(T ) into a pre{Hilbert spa
e �R(T ); ( � ; � )T �. The relationj(u; v)T j2 = jhTx; yiHj2 � hTx; xiHhTy; yiH= (u; u)T (v; v)T = kT 1=2xk2HkT 1=2yk2Himplies that the inner produ
t ( � ; � )T 
an be extended to R(T 1=2) by 
on-tinuity with respe
t to the norm kT 1=2 � kH. We denote this extension alsoby ( � ; � )T .Lemma 2.4. Let T be a bounded non{negative operator in the Hilbertspa
e �H; h � ; � iH�. Then the Hilbert spa
e 
ompletion of �R(T ); ( � ; � )T � isthe Hilbert spa
e �R(T 1=2); ( � ; � )T �, and the latter is 
ontinuously embeddedin �H; h � ; � iH�.Proof. For u = Tx; x 2 H, we havehu; uiH = hTx; TxiH � kTkhTx; xiH = kTk(u; u)T : (2:5)Therefore, if (un) ; un = Txn; n 2 N, is a Cau
hy sequen
e in �R(T ); ( � ; � )T �,then both (un) and �T 1=2xn� are Cau
hy sequen
es in �H; h � ; � iH�, andif T 1=2xn ! y and un = Txn ! v in �H; h � ; � iH�; y; v 2 H, then v =T 1=2y and un ! v in �R(T 1=2); ( � ; � )T �. The inequality (2.5) shows that�R(T 1=2); ( � ; � )T � is 
ontinuously embedded in �H; h � ; � iH�.Corollary 2.5. If the Hilbert spa
e �T ; h � ; � iT � is 
ontinuously embed-ded in the Hilbert spa
e �H; h � ; � iH�, then �T ; h � ; � iT � = �R(T 1=2); ( � ; � )T �,where T denotes the H-adjoint of the in
lusion of T in H.Proof. By Theorem 2.3, the Hilbert spa
e �T ; h � ; � iT � is a 
om-pletion of the pre{Hilbert spa
e �R(T ); ( � ; � )T �. Therefore T is a posi-tive operator in �H; h � ; � iH�. It follows from Lemma 2.4 that the Hilbert
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e �R(T 1=2); ( � ; � )T � is also a 
ompletion of �R(T ); ( � ; � )T �. Sin
e both�R(T ); ( � ; � )T � and �R(T 1=2); ( � ; � )T � are 
ontinuously embedded in H andsin
e the 
ompletion of �R(T ); ( � ; � )T � 
ontained in �H; h � ; � iH� is unique,the equality in the 
orollary follows.Remark 2.6. In the notation of Lemma 2.4 we have�T 1=2x; T 1=2y�T = hPx; yiH; x; y 2 H;where P : H ! H is the orthogonal proje
tion onto the 
losure of R(T 1=2)in �H; h � ; � iH� .Now let S be a bounded self{adjoint operator in a Hilbert spa
e�H; h � ; � iH�, S = S+�S�, where S+ � 0 and S� > 0 are the non{negative andnegative parts of S, respe
tively. The inner produ
t spa
e �R(S); ( � ; � )S� isde
omposable with one fundamental de
omposition beingR(S) = R(S+) +R(S�) ; (2:6)that is, this sum is dire
t and orthogonal with respe
t to ( � ; � )S and R(S+)is a positive, R(S�) is a negative subspa
e of �R(S); ( � ; � )S�. The positivede�nite inner produ
t 
orresponding to the de
omposition (2.6) is ( � ; � )jSj,where jSj := S+ + S�; note that R(S) = R(jSj). The inner produ
t spa
e�R(S); ( � ; � )jSj� is a pre-Hilbert spa
e, its 
ompletion in �H; h � ; � iH� is theHilbert spa
e �R(jSj1=2); ( � ; � )jSj�. Sin
e for u = Sx; v = Sy; x; y 2 H; wehave j(u; v)S j2 = jhSx; yiHj2 � hjSjx; xiHhjSjy; yiH = (u; u)jSj(v; v)jSj ;the inner produ
t ( � ; � )S 
an also be extended by 
ontinuity to R(jSj1=2),and this extension is also denoted by ( � ; � )S : The inner produ
t spa
e�R(jSj1=2); ( � ; � )S� is a Krein spa
e whi
h is a Krein spa
e 
ompletion of�R(S); ( � ; � )S�. The topology of this Krein spa
e is the topology of theHilbert spa
e �R(jSj1=2); ( � ; � )jSj�. It follows from Lemma 2.4 that the Kreinspa
e �R(jSj1=2); ( � ; � )S� is 
ontinuously embedded in �H; h � ; � iH�.Theorem 2.7. Let S be a bounded self-adjoint operator in the Hilbertspa
e �H; h � ; � iH�. The following statements are equivalent.(a) For some " > 0 at least one of the intervals (�"; 0), (0; ") belongs to�(S).(b) The Krein spa
e �R(jSj1=2); ( � ; � )S� is the unique Krein spa
e whi
h is
ontinuously embedded in H and su
h that the H{adjoint of its in
lusionin �H; h � ; � iH� is the operator S.
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es 45(
) The Krein spa
e �R(jSj1=2); ( � ; � )S� is the unique 
ontinuously in H em-bedded Krein spa
e 
ompletion of the inner produ
t spa
e �R(S); ( � ; � )S�.(d) The inner produ
t spa
e �R(S); ( � ; � )S� has a unique Krein spa
e 
om-pletion.Proof. Theorem 2.3 implies that (b) and (
) are equivalent. Clearly(d) implies (
). To prove the equivalen
e of (a) and (d) note that the innerprodu
t spa
e �R(S); ( � ; � )S� has a Hilbert majorant. Indeed, (R(S); ( � ; � )S2)is a Hilbert spa
e sin
e R(S) = R((S2)1=2), and the inequalityj(x; x)S j � kSk(x; x)S2 ; x 2 R(jSj) = R(S);shows that ( � ; � )S is 
ontinuous on this Hilbert spa
e. Therefore Theo-rem 5.2 in the Appendix implies that (a) is equivalent to the 
ompletenessof at least one of the inner produ
t spa
es �R(S+); ( � ; � )jSj�, �R(S�); ( � ; � )jSj�.Sin
e �R(S+); ( � ; � )jSj� ��R(S�); ( � ; � )jSj�, respe
tively � is 
omplete if andonly if for some " > 0 the interval (0; ") ((�"; 0), respe
tively) belongs to�(S), the equivalen
e of (a) and (d) follows.It is of interest to 
hara
terize those Krein spa
es �S; [ � ; � ℄S� whi
hare 
ontinuously embedded in the Hilbert spa
e �H; h � ; � iH� and for whi
h�S; [ � ; � ℄S� = �R(jSj1=2); ( � ; � )S� holds, where S is the H-adjoint of the 
ontin-uous in
lusion of �S; [ � ; � ℄S� in �H; h � ; � iH�. We give two 
hara
terizations;(
) is a modi�
ation of [F, Theorem 3℄. Re
all that, given a positive opera-tor bS in a Krein spa
e �S; [ � ; � ℄S� (that means �bSx; x�S > 0 for x 2 S; x 6= 0),zero is a regular 
riti
al point of bS if for the spe
tral fun
tion EbS of bSthe proje
tions EbS(�); � an arbitrary admissible interval for bS, are uni-formly bounded; this is equivalent to the fa
t that for the spe
tral fun
-tion EbS also the proje
tions EbS�(�1; 0)� and EbS�(0;+1)� exist and satisfyEbS�(�1; 0)�+EbS�(0;+1)� = I.Theorem 2.8. Let the Krein spa
e �S; [ � ; � ℄S� be 
ontinuously em-bedded in the Hilbert spa
e �H; h � ; � iH�, and let S be the H{adjoint of thein
lusion of �S; [ � ; � ℄S� in �H; h � ; � iH�. The following statements are equiv-alent:(a) �S; [ � ; � ℄S� = �R(jSj1=2); ( � ; � )S�.(b) There exists a fundamental de
omposition S = S+[u℄SS� of S su
h thatS+ and S� are mutually orthogonal in �H; h � ; � iH�.(
) The operator bS := SjS : S ! S is a positive bounded operator in�S; [ � ; � ℄S� and 0 is not a singular 
riti
al point of bS.Proof. Assume that (a) holds. Denote by ES the spe
tral fun
tion ofS and put H� = ES�(�1; 0)�, H+ = ES�[0;+1)�, and S� = SjH� . Then



Branko �Curgus and Heinz Langer46H = H�huiHH+, jSj = �S� u S+ and jSj1=2 = (�S�)1=2 u S1=2+ . Now de�neS� = R�(�S�)1=2� and S+ = R�S1=2+ �. It is 
lear from the 
onsiderationspre
eding Theorem 2.7 that S = S�(u)SS+ is a fundamental de
ompositionof �S; [ � ; � ℄S� whi
h satis�es (b).Assume (b) and let S
� be the 
losure of S� in �H; h � ; � iH� and let So bethe orthogonal 
omplement of S
+ u S
� in �H; [ � ; � ℄H�. The Hilbert spa
es�S�;�[ � ; � ℄S� are 
ontinuously embedded in the Hilbert spa
es �S
�; h � ; � iH�.Therefore Corollary 2.5 implies that there exist bounded positive operatorsT� su
h that �S�;�[ � ; � ℄S� = �R(T 1=2� ); ( � ; � )T��:Put S = �T� u T+ u 0 (the dire
t sum with respe
t to H = S
+ u S
� u So).Then �S; [ � ; � ℄S� = �S� + S+; [ � ; � ℄S� = �R(jSj1=2); ( � ; � )S�:Thus (a) holds and S is the H{adjoint of the in
lusion of S in H. ClearlybS = �T���S� + T+��S+, and bS is a positive operator in �S; [ � ; � ℄S�. Fromthe 
onstru
tion of S it follows that the fundamental de
omposition in (b)redu
es bS. Therefore (
) holds. Note that along the way we have alsoproved that (b) implies (a).It remains to prove that (
) implies (b). Assume that bS is a positivebounded operator in �S; [ � ; � ℄S� and that 0 is not a singular 
riti
al pointof bS. Then there exists a fundamental de
omposition S = S�[u℄SS+ of�S; [ � ; � ℄S� whi
h redu
es bS, that is bSS� � S�. For arbitrary x� 2 S� wehave hx+; x�iH = [x+; Sx�℄S = 0 ;and therefore S+ and S� are mutually orthogonal in �H; h � ; � iH�:The statements of Theorem 2.8 do not depend on the 
hoi
e of theinner produ
t on H. In order to prove this, a lemma is needed whi
h is a
onsequen
e of the Closed Graph Theorem and the Heinz inequality, see[Kr, Theorem 7.1℄.Lemma 2.9 Let G and H be bounded self-adjoint operators in theHilbert spa
es �G; h � ; � iG� and �H; h � ; � iH�, respe
tively. If F :�G; h � ; � iG� �!�H; h � ; � iH� is a bounded operator su
h that FR(G) � R(H) and 0 � � � 1;then FR(jGj�) � R(jH j�) and alsoF : �R(jGj�); ( � ; � )jGj2�� �! �R(jH j�); ( � ; � )jHj2��is a bounded operator.
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es 47We shall use the following 
onsequen
e of this lemma. Let h � ; � iH andh � ; � i0H be two Hilbert inner produ
ts on H and denote by G the 
orre-sponding Gram operator: hx; yi0H = hGx; yiH, x; y 2 H. If S is a boundedself-adjoint operator in �H; h � ; � iH� and S0 = SG, then the operator S0 isself{adjoint in �H; h � ; � i0H� and�R(jSj1=2); ( � ; � )S� = �R(jS0j1=2); ( � ; � )S0�: (2:7)This follows immediately from the equality R(S) = R(SG) and Lemma 2.9with F being 
hosen to be the identity operator from �H; h � ; � iH� to�H; h � ; � i0H�.The following 
orollary is an immediate 
onsequen
e of Theorem 2.8and (2.7).Corollary 2.10. Let the Krein spa
e �S; [ � ; � ℄S� be 
ontinuously em-bedded in the Hilbert spa
es �H; h � ; � iH� and �H; h � ; � i0H� and denote theH{adjoints of these in
lusions by S and S0. Then the following statementsare equivalent:(a) �S; [ � ; � ℄S� = �R(jSj1=2); ( � ; � )S�.(b) �S; [ � ; � ℄S� = �R(jS0j1=2); ( � ; � )S0�.(
) There exists a fundamental de
omposition S = S 0+[u℄SS 0� of S su
h thatS 0+ and S 0� are mutually orthogonal in �H; h � ; � i0H�.(d) The operator bS0 := S0jS : S ! S is a positive bounded operator in�S; [ � ; � ℄S� and 0 is not a singular 
riti
al point of bS0.Remark 2.11. Obviously, ea
h statement in Corollary 2.10 is equiv-alent to ea
h statement in Theorem 2.8. In parti
ular, the statements (
)in Theorem 2.8 and (
) in Corollary 2.10 are equivalent.3. In this subse
tion we 
onsider a Krein spa
e �A; [ � ; � ℄A� whi
h is
ontinuously embedded in another Krein spa
e �K; [ � ; � ℄K�. If a fundamentalsymmetry J is 
hosen in K andhx; yiK := [Jx; y℄K; x; y 2 K;is the 
orresponding Hilbert inner produ
t on K, then we are in the situa-tion of the foregoing subse
tion. The Hilbert spa
e �K; h � ; � iK� will also bedenoted by �H; h � ; � iH�. The adjoint {+ of the in
lusion{ : �A; [ � ; � ℄A�! �K; [ � ; � ℄K�de�ned by [{f; x℄K = [f; {+x℄A; f 2 A; x 2 K;
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ontinuous mapping from K to A. The operator {{+ is a bounded self-adjoint operator in the Krein spa
e K, 
alled the K-adjoint of the in
lusion{ of �A; [ � ; � ℄A� in �K; [ � ; � ℄K�. As before let {� be the adjoint of the in
lusion{ : �A; [ � ; � ℄A�! �H; h � ; � iH�:Then, for f 2 A; x 2 K we have[f; {+x℄A = [{f; x℄K = h{f; JxiK = [f; {�Jx℄A;whi
h implies that {+ = {�J . Consequently, the operator A is the K-adjointof the in
lusion { of �A; [ � ; � ℄A� in �K; [ � ; � ℄K� if and only if the operator AJis the H{adjoint of the in
lusion { of �A; [ � ; � ℄A� in �H; h � ; � iH�.Remark 2.12. In Remark 2.2 it was shown that the Hilbert spa
e�L; ( � ; � )L� is 
ontinuously embedded in the Hilbert spa
e �G; h � ; � iG�.Therefore the Hilbert spa
e �L; ( � ; � )L� is 
ontinuously embedded in theKrein spa
e �G; [ � ; � ℄G�. Let L := {{+ be the K{adjoint of the 
orrespondingin
lusion. It follows from(f; Lg)L = (f; {+g)L = [if; g℄G = (Gf; g)L = (f;Gg)L; f; g 2 L;that L is the 
ontinuous extension of G to G.Let A be a bounded self{adjoint operator in the Krein spa
e (K; [ � ; � ℄K),and set S := AJ . Then S is a bounded self{adjoint operator in (H; h � ; � iH)with R(A) = R(S). On the range R(A) we de�ne the inner produ
t [ � ; � ℄Aby the relation[u; v℄A := [Ax; y℄K; where u = Ax; v = Ay; x; y 2 K:Then [ � ; � ℄A 
oin
ides with ( � ; � )S on R(A) = R(S). Indeed, for u = Ax; v =Ay; we have[u; v℄A = [Ax; y℄K = [SJx; y℄K = hSJx; JyiK = (SJx; SJy)S = (u; v)S :Consequently the inner produ
t [ � ; � ℄A 
an be extended by 
ontinuity toR(jAJ j1=2). This extension is also denoted by [ � ; � ℄A, and it 
oin
ides with( � ; � )S. Sin
e �R(jAJ j1=2); [ � ; � ℄A� = �R(jSj1=2); ( � ; � )S�; (2:8)the inner produ
t spa
e �R(jAJ j1=2); [ � ; � ℄A� is a Krein spa
e and it is a Kreinspa
e 
ompletion of �R(A); [ � ; � ℄A�. Note that by Lemma 2.4 the Krein spa
e
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es 49�R(jAJ j1=2); [ � ; � ℄A� is 
ontinuously embedded in �K; [ � ; � ℄K�. We summarizethese fa
ts inTheorem 2.13. Let A be a bounded self{adjoint operator in the Kreinspa
e �K; [ � ; � ℄K�. Then �R(jAJ j1=2); [ � ; � ℄A� is 
ontinuously embedded in�K; h � ; � iK� and a Krein spa
e 
ompletion of �R(A); [ � ; � ℄A�.Lemma 2.9 implies that R(jAJ j1=2) does not depend on the 
hoi
e of J .Corollary 2.14. Let J1 and J2 be fundamental symmetries in theKrein spa
e �K; [ � ; � ℄K� and let A be a bounded self{adjoint operator in K.Then R�jAJ1j1=2� = R�jAJ2j1=2�:Proof. The 
orollary follows from the relation R(AJ1) = R(AJ2) andLemma 2.9, applied to the identity operator on R(AJ1) = R(AJ2).Theorem 2.15. Let the Krein spa
e �A; [ � ; � ℄A� be 
ontinuously em-bedded in the Krein spa
e �K; [ � ; � ℄K� and let A be a bounded self{adjointoperator in K. Then �A; [ � ; � ℄A� is a Krein spa
e 
ompletion of the innerprodu
t spa
e �R(A); [ � ; � ℄A� if and only if the operator A is the K{adjointof the in
lusion of �A; [ � ; � ℄A� in �K; [ � ; � ℄K�; in this 
ase[f;Ay℄A = [f; y℄K; f 2 A; y 2 K: (2:9)Proof. Let J be a fundamental symmetry on K and S = AJ . Atthe beginning of this subse
tion we remarked that the operator A is theK{adjoint of the in
lusion { of �A; [ � ; � ℄A� in �K; [ � ; � ℄K� if and only if theoperator S is H{adjoint of the in
lusion { of �A; [ � ; � ℄A� in �H; h � ; � iH� =�K; h � ; � iK�. By Theorem 2.3, S is H{adjoint of the in
lusion { of �A; [ � ; � ℄A�in �H; h � ; � iH� if and only if �A; [ � ; � ℄A� is a Krein spa
e 
ompletion of theinner produ
t spa
e �R(S); ( � ; � )S�. Sin
e �R(S); ( � ; � )S� = �R(A); [ � ; � ℄A�,the equivalen
e in the theorem is proved.Sin
e �A; [ � ; � ℄A� is a Krein spa
e 
ompletion of �R(A); [ � ; � ℄A� we have[Av;Ay℄A = [Av;Ay℄A = [Av; y℄K; v; y 2 K:The extension of the last equality in the topology of �A; [ � ; � ℄A� yields (2.9).Corollary 2.16. Let the Krein spa
e �A; [ � ; � ℄A� be 
ontinuously em-bedded in the Krein spa
e �K; [ � ; � ℄K� and let A be the K{adjoint of thein
lusion of A in K. Then A is dense in K if and only if 0 =2 �p(A); A = Kif and only if 0 2 �(A); in the latter 
ase the norm topologies on �A; [ � ; � ℄A�and �K; [ � ; � ℄K) 
oin
ide.



Branko �Curgus and Heinz Langer50 Proof. If 0 =2 �p(A), then R(A) is dense in K. By Theorem 2.15R(A) � A, and therefore A is dense in K. Assume that A is dense in K. ByTheorem 2.15 R(A) is dense in �A; [ � ; � ℄A�. Sin
e by assumption �A; [ � ; � ℄A�is 
ontinuously embedded in �K; [ � ; � ℄K�, R(A) is also dense in A in thetopology of �K; [ � ; � ℄K�. Therefore R(A) is dense in �K; [ � ; � ℄K�, and thus0 =2 �p(A). This proves the �rst statement.If 0 2 �(A), then K = R(A) = A. Conversely, if A = K then, sin
e�A; [ � ; � ℄A� is 
ontinuously embedded in the Hilbert spa
e �K; h � ; � iK�, Re-mark 2.1 implies that the operator S = AJ has bounded inverse. Con-sequently 0 2 �(A). The last statement is also an easy 
onsequen
e ofRemark 2.1.Corollary 2.17. Let the Krein spa
e �A; [ � ; � ℄A� be 
ontinuously em-bedded in the Krein spa
e �K; [ � ; � ℄K�. Assume that the subspa
e F is densein K, F � A, and [f; g℄A = [f; g℄K; f; g 2 F : (2:10)Then �A; [ � ; � ℄A� = �K; [ � ; � ℄K�.Proof. Let A be the K{adjoint of the in
lusion of A in K. Combining(2.9) and (2.10) we get[f;Ag℄A = [f; g℄K = [f; g℄A; f; g 2 F :Sin
e F is dense in K the last relation yields A = I and then Theorem 2.15implies the 
laim.Remark 2.18. Let A be a bounded self{adjoint operator in the Kreinspa
e �K; [ � ; � ℄K�. It follows from Theorem 2.13 that �R(jAJ j1=2); [ � ; � ℄A� is
ontinuously embedded in K and a Krein spa
e 
ompletion of �R(A); [ � ; � ℄A�.Therefore Theorem 2.15 implies that the operator A is the K{adjoint of thein
lusion { of �R(jAJ j1=2); [ � ; � ℄A� in �K; [ � ; � ℄K�.Remark 2.19. In the notation of Theorem 2.15, let A be the K{adjointof the in
lusion of A in K. Then for f 2 A the relation0 = [f;Ax℄A = [f; x℄K; x 2 A ;implies that the range R�AjA� of the restri
tion of A to A is dense in�A; [ � ; � ℄A� if and only if �A; [ � ; � ℄K� is non{degenerate.Corollary 2.20. Let the Krein spa
e �A; [ � ; � ℄A� be 
ontinuously em-bedded in the Krein spa
e �K; [ � ; � ℄K� and let A be the K{adjoint of the in
lu-sion of �A; [ � ; � ℄A� in �K; [ � ; � ℄K�. Then A is a non-negative (non-positive,
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es 51respe
tively) subspa
e of �K; [ � ; � ℄K� if and only if A2 is a non{negative (non{positive, respe
tively) operator in K; in parti
ular, A is a neutral subspa
eof �K; [ � ; � ℄K� if and only if A2 = 0.Proof. By Theorem 2.15 R(A) is dense in �A; [ � ; � ℄A� and sin
e A is
ontinuously embedded in K, R(A) is also dense in A with respe
t to thenorm topology of �K; [ � ; � ℄K�. Therefore A is non{negative in �K; [ � ; � ℄K� ifand only if R(A) is non{negative in K, and this is equivalent to A2 �K 0.3. Continuous and t{bounded embeddings1. Re
all that, for a positive number t, the Krein spa
e �A; [ � ; � ℄A� issaid to be t{boundedly (
ontra
tively, isometri
ally, respe
tively) embeddedin the Krein spa
e �K; [ � ; � ℄K� if A � K and for all f 2 A we have[f; f ℄K � t [f; f ℄A � [f; f ℄K � [f; f ℄A; [f; f ℄K = [f; f ℄A; respe
tively �: (3:1)If �A; [ � ; � ℄A� is 
ontinuously and t{boundedly embedded in �K; [ � ; � ℄K� wedenote the K{adjoint of the in
lusion of �A; [ � ; � ℄A� in �K; [ � ; � ℄K� again by A.Applying the inequality (3.1) to the element f = Ax; x 2 K, and observing(2.9), we obtain [A2x; x℄K = [Ax;Ax℄K � t [Ax; x℄K; x 2 K ;that is t A � A2 �K 0: (3:2)If �A; [ � ; � ℄A� is 
ontinuously and 
ontra
tively (isometri
ally, respe
tively)embedded in the Krein spa
e �K; [ � ; � ℄K�, the relation (3.2) be
omesA � A2 �K 0 (A � A2 = 0; respe
tively):In the latter 
ase this means that A is the orthogonal proje
tion onto A inK. Theorem 3.1. Let �K; [ � ; � ℄K� be a Krein spa
e and let A be a boundedde�nitizable operator in K with the de�nitizing polynomialp(�) = t �� �2; (3:3)where t > 0. Then the Krein spa
e �R(jAJ j1=2); [ � ; � ℄A� is 
ontinuously andt{boundedly embedded in the Krein spa
e �K; [ � ; � ℄K�. Moreover, the map-ping A 7�! �R(jAJ j1=2); [ � ; � ℄A� (3:4)
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tive 
orresponden
e between all bounded de�nitizable op-erators A in K with a de�nitizing polynomial (3.3) and all Krein spa
es�A; [ � ; � ℄A� whi
h are 
ontinuously and t{boundedly embedded in the Kreinspa
e �K; [ � ; � ℄K�. The inverse of the mapping (3.4) maps ea
h Krein spa
e�A; [ � ; � ℄A�, whi
h is 
ontinuously and t{boundedly embedded in �K; [ � ; � ℄K�,to the K{adjoint A of the in
lusion of �A; [ � ; � ℄A� in �K; [ � ; � ℄K�; in parti
ular�A; [ � ; � ℄A� = �R(jAJ j1=2); [ � ; � ℄A�: (3:5)Proof. By Theorem 2.13 the Krein spa
e �R(jAJ j1=2); [ � ; � ℄A� is 
ontinu-ously embedded in (K; [ � ; � ℄K). For f = Ax; x 2 K, the inequality tA�A2 �K 0yields [f; f ℄K = [Ax;Ax℄K � t [Ax; x℄K = t [f; f ℄A; (3:6)whi
h extends by 
ontinuity to R(jAJ j1=2). Thus �R(jAJ j1=2); [ � ; � ℄A� is 
on-tinuously and t{boundedly embedded in K, and the �rst statement of thetheorem is proved.Now let �A; [ � ; � ℄A� be a Krein spa
e whi
h is 
ontinuously and t{boundedly embedded in K; denote by A the K{adjoint of the in
lusion of�A; [ � ; � ℄A) in �K; [ � ; � ℄K�. From Theorem 2.15 we 
on
lude that �A; [ � ; � ℄A�is a Krein spa
e 
ompletion of the inner produ
t spa
e �R(A); [ � ; � ℄A�. Sin
e�A; [ � ; � ℄A� is t{boundedly embedded in K the 
onsiderations pre
eding The-orem 3.1 show that A is a bounded de�nitizable operator with the de�ni-tizing polynomial (3.3). To show that the image of A under the mapping(3.4) is �A; [ � ; � ℄A� we shall show that for some fundamental symmetry Jin K we have [�"; 0) � �(AJ) with an " > 0. Fix d, 0 < d < t, and 
onsiderthe intervals �0 := (�1; d℄ and �1 := (d;+1). The 
orresponding spe
tralsubspa
es of A are denoted by K�0 and K�1 , respe
tively. They are Kreinspa
es and their orthogonal sum is the Krein spa
e K. We 
hoose funda-mental symmetries J0 and J1 in K�0 and K�1 , respe
tively, and in K thefundamental symmetry J := J0uJ1. If the restri
tions of A to K�0 and K�1are denoted by A0 and A1, respe
tively, then A is the dire
t and orthogonalsum of A0 and A1. The operator A0 in the Krein spa
e K0 is non{negative,and hen
e also �(A0J0) is non{negative. Sin
e 0 belongs to �(A1) and hen
ealso to �(A1J1), an interval of the form [�"; 0) belongs to �(AJ).Now Theorem 2.7 implies that the Krein spa
e �R(jAJ j1=2); [ � ; � ℄A� isthe unique 
ontinuously in H embedded Krein spa
e 
ompletion of theinner produ
t spa
e �R(A); [ � ; � ℄A�. Sin
e �A; [ � ; � ℄A� is also 
ontinuouslyembedded in K and a Krein spa
e 
ompletion of the inner produ
t spa
e�R(A); [ � ; � ℄A� we 
on
lude that (3.5) holds.Corollary 3.2. If the Hilbert spa
e �A; ( � ; � )A� is 
ontinuously embed-ded in the Krein spa
e �K; [ � ; � ℄K�, then there exist a t > 0 and a unique
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es 53non{negative bounded operator A in �K; [ � ; � ℄K� su
h that �A; ( � ; � )A� is t{boundedly embedded in the Krein spa
e �K; [ � ; � ℄K� and�A; ( � ; � )A� = �R(AJ1=2); [ � ; � ℄A�:The mapping (3.4) establishes a bije
tive 
orresponden
e between all boun-ded non{negative operators A in �K; [ � ; � ℄K� and all Hilbert spa
es �A; [ � ; � ℄A�whi
h are 
ontinuously embedded in K.Proof. Let J be a fundamental symmetry on �K; [ � ; � ℄K�, and denote byh � ; � iK the 
orresponding Hilbert spa
e inner produ
t. Sin
e the in
lusion{ : A ! K is 
ontinuous, there exists a t > 0 su
h that hx; xiK � t(x; x)A; x 2A. The relation [x; x℄K � j[x; x℄Kj � hx; xiK; x 2 K, implies that [x; x℄K �t(x; x)A; x 2 A, that is, �A; ( � ; � )A� is t{boundedly embedded in the Kreinspa
e �K; [ � ; � ℄K�. Now the Corollary 3.2 follows from Theorem 3.1.2. Let again the Krein spa
e �A; [ � ; � ℄A� be 
ontinuously and t{boundedly embedded in the Krein spa
e �K; [ � ; � ℄K� and let A be the K{adjoint of the 
orresponding in
lusion. Then A is a de�nitizable operatorwith the de�nitizing polynomial p from (3.3). Hen
e A is determined byits spe
tral fun
tion E and two non-negative nilpotent operators N0; N1 inthe Krein spa
e K with the propertiesN20 = N21 = 0; N0N1 = 0; N0E(�) = 0 if 0 =2 �; N1E(�) = 0 if t =2 �;for all intervals � with endpoints di�erent from 0 and t. In fa
t with theintervals �0; �1 in the proof of Theorem 3.1 we haveA = Z 0�0 � dE� + N0 + N1 + Z 0�1 (�� t) dE� + t E(�1);the prime at the integrals indi
ates that they are improper at 0 and t inthe strong operator topology.Sin
e R(A) is 
ontained in A, the operator A maps also the spa
e�A; [ � ; � ℄A� into itself. Denote the restri
tion of A to A by bA. Then theoperator bA is 
ontinuous in A sin
e it is 
losed in A. Indeed, if fxn; bAxng !fu; vg; n ! +1, in A � A, then, sin
e A is 
ontinuously embedded in K,xn ! u and bAxn = Axn ! v in K, and hen
e v = Au.Lemma 3.3. The operator bA in the Krein spa
e �A; [ � ; � ℄A� is de�ni-tizable with the de�nitizing polynomial bp(�) = t� �.Proof. If f = Ax, then[(t�A)f; f ℄A = [A(t�A)x;Ax℄A = [A(t�A)x; x℄K � 0;
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ontinuity this relation extends to all elements f 2 A.For simpli
ity we formulate the following statements only for an admis-sible intervals �. They 
an be extended in an obvious way to �nite unionsof admissible intervals and also to more general (measurable) sets. Hav-ing in mind only the operators A and bA with the de�nitizing polynomialsp(�) = t� � �2 and bp(�) = t � �, an admissible interval for A ( bA, respe
-tively) denotes here an interval � for whi
h 0 and t (t, respe
tively) are notboundary points of �. Further, the spe
tral subspa
e of A in K ( bA in A,respe
tively) 
orresponding to � is denoted by K� (A�, respe
tively).Lemma 3.4. If � is an admissible interval for A thenA� = K� \ A; (3:7)Proof. For g 2 A we havef := ( bA� z)g = (A� z)g 2 Aand hen
e ( bA� z)�1f = ( bA� z)�1f; z 2 �( bA) \ �(A); f 2 A: (3:8)If f 2 A� then f 2 A and, as a fun
tion of z, ( bA� z)�1z has a holomorphi

ontinuation outside �. A

ording to (3.8) and be
ause of the 
ontinuityof the in
lusion of A in K also the fun
tion (A � z)�1z has a holomorphi

ontinuation outside �, and hen
e f 2 K�. Conversely, if f 2 K� \ A then(3.8) implies that the fun
tion�( bA� z)�1f;Ay�A = �(A� z)�1f; y�Khas a holomorphi
 
ontinuation outside �. Sin
e k( bA� z)�1fkA � CzkfkA,with 
onstants Cz whi
h 
an be 
hosen lo
ally uniformly bounded withrespe
t to z outside �, also ( bA � z)�1f has a holomorphi
 
ontinuation inA outside �, and hen
e f 2 A�.A

ording to [L, Theorem 3.1℄, as an immediate 
onsequen
e of thede�nitizability of the operators A and bA we have the following
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es 55Corollary 3.5. (a) Let � be an admissible interval for A. If � � (0; t)then �K�; [ � ; � ℄K� is a Hilbert spa
e; if � � R n (0; t), then �K�; [ � ; � ℄K�is an anti{Hilbert spa
e.(b) Let � be an admissible interval for bA. If � � (�1; t) then �A�; [ � ; � ℄A�is a Hilbert spa
e; if � � (t;+1), then �A�; [ � ; � ℄A� is an anti-Hilbertspa
e.Theorem 3.6. Suppose that the Krein spa
e �A; [ � ; � ℄A� is 
ontinuouslyand t{boundedly embedded in the Krein spa
e �K; [ � ; � ℄K�, and denote by Athe K{adjoint of the 
orresponding in
lusion. If � is an admissible intervalfor A, then the following statements hold:(a) If 0 =2 � then A� = K� � R(A).(b) If � � (0;+1), then the Krein spa
es �K�; [ � ; � ℄K� and �A�; [ � ; � ℄A� areisomorphi
, if � � (�1; 0), then the Hilbert spa
es �K�;�[ � ; � ℄K� and�A�; [ � ; � ℄A� are isomorphi
.(
) The spa
e �A; [ � ; � ℄A� is a Pontryagin spa
e with negative index � ifand only if the total multipli
ity of the spe
trum of A in (t;+1) andthe negative index of t as a spe
tral point of A in K are both �nite andtheir sum equals �; it is a Hilbert spa
e if and only if �(A) � (�1; t℄and �ker(t�A); [ � ; � ℄K� is a Hilbert spa
e.Proof. If 0 =2 � then K� � R(A) and the �rst 
laim of (a) follows from(3.7). To prove (b) let � � (0;+1). Then K� = A�, and if the restri
tionof A to K� is denoted by A1, we have �(A1) � (0;+1) and[x; y℄A = [A�11 x; y℄K; x; y 2 K�:By means of the Riesz-Dunford fun
tional 
al
ulus a bounded, boundedlyinvertible and self{adjoint operator A�1=21 : K� = A� ! K� 
an be de�nedin �K�; [ � ; � ℄K� su
h that (A�1=21 )2 = A1, and the relation (3.9) be
omes[x; y℄A = [A�1=21 x;A�1=21 y℄K; x; y 2 K� = A�:Therefore A�1=21 is an isomorphism between �A�; [ � ; � ℄A� and �K�; [ � ; � ℄K�.A similar reasoning, applied to a negative interval �, yields the se
ondstatement of (b).In the next theorem, under some additional assumptions on the operatorA we give a 
hara
terization of A by means of the spe
tral fun
tion of A.Theorem 3.7. Suppose that the Krein spa
e �A; [ � ; � ℄A� is 
ontinuouslyand t{boundedly embedded in the Krein spa
e �K; [ � ; � ℄K�, and denote byA the K{adjoint of the 
orresponding in
lusion. If �0 is an admissible
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h that 0 2 �0, 1 =2 �0, and kerA is proje
tionally 
ompletein �K; [ � ; � ℄K�, thenA = �x 2 K : x[?℄K kerA; Z 0�0 1� d[E�x; x℄ < +1� :Proof. Denote by A0 the restri
tion of the operator A to the subspa
eK�0 , and let J0 be a fundamental symmetry in K�0 . Sin
e kerA is proje
-tionally 
omplete in �K; [ � ; � ℄K�, it follows from [�C, Proposition 3.1℄ thatR���A0J0��1=2� = �x 2 K�0 : x[?℄K kerA; Z 0�0 1� d[E�x; x℄ < +1� :The fa
t that the restri
tion of the operator A to KRn�0 has a boundedinverse implies R���AJ��1=2� = KRn�0[u℄KR���A0J0��1=2�:Denote by y the [ � ; � ℄K{orthogonal proje
tion of x onto K�0 . Then x 2R���AJ��1=2� if and only if y 2 R���A0J0��1=2�. Sin
e the integralsZ 0�0 1� d[E�x; x℄ and Z 0�0 1� d[E�y; y℄
onverge simultaneously the theorem is proved.4. Continuous 
ontra
tive embeddings and 
omplementation1. Let the Krein spa
e �A; [ � ; � ℄A� be 
ontinuously and 
ontra
tivelyembedded in the Krein spa
e �K; [ � ; � ℄K�. Then the K{adjoint A of thein
lusion of A in K is de�nitizable:A � A2 �K 0; (4:1)and, moreover, by Theorem 3.1 the mappingA 7�! �R(jAJ j1=2); [ � ; � ℄A�establishes a bije
tive 
orresponden
e between all bounded de�nitizableoperators in K satisfying (4.1) and all Krein spa
es �A; [ � ; � ℄A�, whi
h are
ontinuously and 
ontra
tively embedded in the Krein spa
e �K; [ � ; � ℄K�. We
all the operator A the generalized proje
tion 
orresponding to the Kreinspa
e �A; [ � ; � ℄A� in �K; [ � ; � ℄K�.
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es 57If �A; [ � ; � ℄A� is 
ontinuously and isometri
ally embedded in �K; [ � ; � ℄K�then A2 = A and A is the orthogonal proje
tion onto A in K. There is an-other \extremal" 
ase, namely A2 = 0; A �K 0. This 
ase will be 
onsideredin more detail at the end of this se
tion.If the operator A satis�es the relation (4.1) also the operator B := I�Adoes: B �B2 = (I �A)� (I �A)2 = A�A2 �K 0:Therefore also B is the K{adjoint of the in
lusion of the Krein spa
e�R(jBJ j1=2); [ � ; � ℄B� = �B; [ � ; � ℄B�in �K; [ � ; � ℄K�, whi
h is 
ontinuously and 
ontra
tively embedded in K.As we show in Theorem 4.2 below, the two Krein spa
es �A; [ � ; � ℄A� and�B; [ � ; � ℄B� are 
omplementary in the sense of the following de�nition ofL. de Branges.De�nition 4.1. If the Krein spa
es �A; [ � ; � ℄A� and �B; [ � ; � ℄B� are
ontinuously embedded in the Krein spa
e �K; [ � ; � ℄K�, they are said to be
omplementary in �K; [ � ; � ℄K�, or �B; [ � ; � ℄B� is said to be 
omplementary to�A; [ � ; � ℄A�, if(i) 
 = a+ b with a 2 A; b 2 B implies[
; 
℄K � [a; a℄A + [b; b℄B: (4:2)(ii) Ea
h element 
 2 K admits some de
omposition 
 = a+ b; a 2 A; b 2 B,for whi
h the equality sign in (4.2) holds: [
; 
℄K = [a; a℄A + [b; b℄B:The de
omposition in (ii) is 
alled a minimal de
omposition of 
 2 K, andthe spa
e �A\B; [ � ; � ℄A+ [ � ; � ℄B� is 
alled the overlapping spa
e of the 
om-plementary spa
es A and B.The relation (4.2) with b = 0 or a = 0 implies that 
omplementary Kreinspa
es �A; [ � ; � ℄A� and �B; [ � ; � ℄B� are 
ontra
tively embedded in �K; [ � ; � ℄K�.Below we show that to ea
h Krein spa
e �A; [ � ; � ℄A�, 
ontinuously and 
on-tra
tively embedded in the Krein spa
e �K; [ � ; � ℄K�, there 
orresponds aunique Krein spa
e �B; [ � ; � ℄B� whi
h is also 
ontinuously and 
ontra
tivelyembedded in the Krein spa
e �K; [ � ; � ℄K� and 
omplementary to �A; [ � ; � ℄A�,and the 
omplementary spa
e of �B; [ � ; � ℄B� is �A; [ � ; � ℄A�.Theorem 4.2. Let the Krein spa
e �A; [ � ; � ℄A� be 
ontinuously and
ontra
tively embedded in the Krein spa
e �K; [ � ; � ℄K�. Let A be the 
orre-sponding generalized proje
tion; hen
e A = �R(jAJ j1=2); [ � ; � ℄A�. If B = I�A,
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e �R(jBJ j1=2); [ � ; � ℄B� = �B; [ � ; � ℄B� is the unique 
omple-mentary spa
e to �A; [ � ; � ℄A� in �K; [ � ; � ℄K�, and ea
h element 
 2 K has theunique minimal de
omposition 
 = a+ b with a = A
 and b = B
.Proof. Let A be the generalized proje
tion for �A; [ � ; � ℄A�, that is A isa self{adjoint operator in the Krein spa
e �K; [ � ; � ℄K� su
h that�R(jAJ j1=2); [ � ; � ℄A� = �A; [ � ; � ℄A�and A�A2 �K 0. Set B = I �A. Then AB = A(I �A) = BA is also a non{negative operator in �K; [ � ; � ℄K�, therefore �R(AB); [ � ; � ℄AB� is a pre{Hilbertspa
e. Its 
ompletion is the Hilbert spa
e �R((ABJ)1=2); [ � ; � ℄AB�. It followsfrom Lemma 2.9 that the mappingsA : �R(jBJ j1=2); [ � ; � ℄B�! �R((ABJ)1=2); [ � ; � ℄AB� (4:3)and B : �R(jAJ j1=2); [ � ; � ℄A�! �R((BAJ)1=2); [ � ; � ℄BA� (4:4)are bounded.To prove that the Krein spa
e �R(jBJ j1=2); [ � ; � ℄B� is a 
omplementaryspa
e to �A; [ � ; � ℄A� note that for x; y 2 K we have[Ax+By;Ax+By℄K � [Ax;Ax℄A � [By;By℄B= [Ax;Ax +By℄K + [By;Ax+By℄K � [Ax; x℄K � [By; y℄K= [y � x;AB(x� y)℄K= �[AB(x � y); AB(x� y)℄AB � 0: (4:5)Sin
e R(A) is dense in R(jAJ j1=2) and R(B) is dense in R(jBJ j1=2); for givena 2 R(jAJ j1=2) and b 2 R(jBJ j1=2) there exist sequen
es (xn) and (yn) inK su
h that Axn ! a (n ! +1) in R(jAJ j1=2) and Byn ! b (n ! +1)in R(jBJ j1=2). It follows from the boundedness of A and B in (4.3) and(4.4) that BAxn ! Ba and AByn ! Ab (n! +1) in �R((ABJ)1=2); [ � ; � ℄AB�.This, together with (4.5), implies[a+ b; a+ b℄K � [a; a℄A � [b; b℄B = �[Ba�Ab;Ba�Ab℄AB � 0 (4:6)for all a 2 R(jAJ j1=2) and b 2 R(jBJ j1=2), and the inequality (4.2) is proved.It is 
lear that with a = A
 and b = B
 in (4.2) the equality sign holdsfor arbitrary 
 2 K. Therefore the Krein spa
e �R(jBJ j1=2); [ � ; � ℄B� is a
omplementary spa
e to �R(jAJ j1=2); [ � ; � ℄A�.



Complementation in Krein spa
es 59It remains to show that the minimal de
omposition 
 = a + b of anelement 
 2 K is unique. The relation (4.6) implies that[
; 
℄K = [a; a℄A + [b; b℄B; 
 = a+ b; a 2 R(jAJ j1=2); b 2 R(jBJ j1=2) (4:7)is equivalent to [Ab � Ba;Ab � Ba℄AB = 0. Sin
e the inner produ
t [ � ; � ℄ABis positive de�nite, we have Ab = Ba. Therefore,A
 = Aa+Ab = Aa+Ba = a; B
 = Ba+Bb = Ab+Bb = b;and, 
onsequently, a and b are uniquely determined by (4.7).The uniqueness of the 
omplementary subspa
e will be proved in The-orem 4.4 below.2. In Theorem 4.4 we give another 
hara
terization of the 
omple-mentary spa
e whi
h implies its uniqueness. Our proof is di�erent fromthe proofs in [DB℄ and [DR℄. It is based on the following variation of a
hara
terization of operator ranges due to �Smul0jan [�S℄ (see also [FW℄).Lemma 4.3. Let �H; h � ; � iH� be a Hilbert spa
e and let S be a boundedoperator in H. Then y 2 R(S) if and only ifsup�2jhx; yiHj � hS�x; S�xiH : x 2 H	< +1:Proof. A simple 
al
ulation shows thatsup�2jhx; yiHj � hS�x; S�xiH : x 2 H	= sup�2jhx; yiHj � hS�x; S�xiH : x 62 ker(S�)	= sup�2tjhx; yiHj � t2hS�x; S�xiH : t > 0; x 62 ker(S�)	= sup� jhx; yiHj2hS�x; S�xiH : x 62 ker(S�)� :Now the lemma follows from [�S, Lemma 3℄.Theorem 4.4. Let �A; [ � ; � ℄A� be a Krein spa
e whi
h is 
ontinuouslyand 
ontra
tively embedded in the Krein spa
e �K; [ � ; � ℄K�, and let A bethe 
orresponding generalized proje
tion. Then the 
omplementary spa
e�B; [ � ; � ℄B� to �A; [ � ; � ℄A� in �K; [ � ; � ℄K� is uniquely determined: It is the setof all b 2 K su
h that�(b) := supn[b+ a; b+ a℄K � [a; a℄A : a 2 Ao < +1



Branko �Curgus and Heinz Langer60with inner produ
t given by the relation�b1; b2�B := 14��(b1 + b2)� �(b1 � b2) + i �(b1 + i b2)� i �(b1 � i b2)�;where i = p�1.Proof. Denote by B the set of all elements b 2 K su
h that �(b) < +1.First we prove that B = R(jBJ j1=2), where B = I � A. Sin
e R(A) is densein (A; [ � ; � ℄A) we have�(b) = sup�[b+Ax; b+Ax℄K � [Ax;Ax℄A : x 2 K	:For all x 2 K,[b+Ax; b+Ax℄K � [Ax;Ax℄A = [b; b℄K + 2 [Ax; b℄K � [A(I �A)x; x℄K;therefore �(b) = [b; b℄K + sup�2 [Ax; b℄K � [A(I �A)x; x℄K : x 2 K	= [b; b℄K + sup�2j[Ax; b℄Kj � [ABx; x℄K : x 2 K	= [b; b℄K + sup�2jhx;AbiKj � hABJx; xiK : x 2 K	: (4:8)By Lemma 4.3 the last supremum is �nite if and only if Ab 2 R�(ABJ)1=2�.(Note that the operator ABJ is positive in the Hilbert spa
e �K; h � ; � iK�:)We have Ab 2 R�(ABJ)1=2� if and only if b 2 R(jBJ j1=2). Indeed, (4.3)implies that if b 2 R(jBJ j1=2), then Ab 2 R�(ABJ)1=2�. Conversely, if Ab 2R�(ABJ)1=2�, then, by Theorem 2.9, Ab 2 R(jBJ j1=2). Therefore, b = Ab +Bb 2 R(jBJ j1=2). Hen
e, the supremum in (4.8) is �nite if and only ifb 2 R(jBJ j1=2). This yields B = R(jBJ j1=2) = R�j(I �A)J j1=2�.It follows from (4.8) and Lemma 4.3 that �(b) = [b; b℄K+ [Ab;Ab℄AB ; b 2R(jBJ j1=2) = B. This and (4.3) imply that � : R(jBJ j1=2)! R is a 
ontinuousfun
tion. It is not diÆ
ult to see that �(b) = [b; b℄B for all b 2 R(B). Sin
eR(B) is dense in R(jBJ j1=2); we have �(b) = [b; b℄B for all b 2 R(jBJ j1=2).Let the Krein spa
e (C; [ � ; � ℄C) be 
omplementary to�A; [ � ; � ℄A� = �R(jAJ j1=2); [ � ; � ℄A�:Then C � B = R(jBJ j1=2) and[b; b℄C � �(b) = [b; b℄B for all b 2 B:If 
 = a+ b, a 2 A, b 2 C and if [
; 
℄K = [a; a℄A + [b; b℄C, then[a; a℄A + [b; b℄B � [
; 
℄K = [a; a℄A + [b; b℄C � [a; a℄A + [b; b℄B:
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e [b; b℄B = [b; b℄C = [
; 
℄K� [a; a℄A. Now the relation (4.6) implies b = B
and a = A
. Sin
e 
 2 K was arbitrary, it follows that R(B) � C andthat [ � ; � ℄C 
oin
ides with [ � ; � ℄B on R(B). Sin
e �C; [ � ; � ℄C� is 
ontinuouslyembedded in �R(jBJ j1=2); [ � ; � ℄B� we 
an apply Corollary 2.17 with F =R(B); A = C and K = R(jBJ j1=2) to 
on
lude C = R(jBJ j1=2).Theorem 4.5. Let Krein spa
es �A; [ � ; � ℄A� and �B; [ � ; � ℄B� be 
ontin-uously and 
ontra
tively embedded in the Krein spa
e �K; [ � ; � ℄K�. Supposethat A and B are 
omplementary to ea
h other in the Krein spa
e K andlet A and B = I �A be the 
orresponding generalized proje
tions. Then forthe overlapping spa
e we have�A\ B; [ � ; � ℄A + [ � ; � ℄B� = �R�(ABJ)1=2�; [ � ; � ℄AB�:In parti
ular, the spa
e �A \ B; [ � ; � ℄A + [ � ; � ℄B� is a Hilbert spa
e and theinterse
tion of the sets of non{positive ve
tors of �A; [ � ; � ℄A� and �B; [ � ; � ℄B�is f0g.Proof. Let u 2 R�jAJ j1=2� \ R�jBJ j1=2�. Then there exist sequen
es(xn); (yn) in K, su
h that for n! +1Byn ! u in �R(jBJ j1=2); [ � ; � ℄B�; Axn ! u in �R(jAJ j1=2); [ � ; � ℄A�:By (4.3) and (4.4), it follows that for n! +1AByn ! Au and BAxn ! Bu in �R((ABJ)1=2); [ � ; � ℄AB�:Thus, Au;Bu 2 R�(ABJ)1=2� and, 
onsequently, u = Au+Bu 2 R�(ABJ)1=2�.It follows that R�jAJ j1=2� \ R�jBJ j1=2� � R�(ABJ)1=2�:To prove the 
onverse in
lusion note that, sin
e the identity mappingon K maps R(ABJ) into R(AJ), Lemma 2.9 impliesR�(ABJ)1=2� � R�jAJ j1=2�; R�(ABJ)1=2� � R�jBJ j1=2�:Hen
e R�(ABJ)1=2� is the overlapping subspa
e of the 
omplementaryspa
es (R(jAJ j1=2); [ � ; � ℄A) and (R(jBJ j1=2); [ � ; � ℄B). For u = ABx; v = ABywe have[u; v℄A + [u; v℄B = [ABx;By℄K + [ABx;Ay℄K = [ABx; y℄K = [u; v℄AB : (4:9)
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on-tinuity to R�(ABJ)1=2�. Further, sin
e �R�(ABJ)1=2�; [ � ; � ℄AB� is a Hilbertspa
e, also �A \ B; [ � ; � ℄A + [ � ; � ℄B� is a Hilbert spa
e. If x 2 A \ B is anon{positive ve
tor in both �A; [ � ; � ℄A� and �B; [ � ; � ℄B�, then we have0 � [x; x℄A + [x; x℄B � 0;and, sin
e �A \ B; [ � ; � ℄A + [ � ; � ℄B� is a Hilbert spa
e, x = 0.Corollary 4.6. Let Krein spa
es �A; [ � ; � ℄A� and �B; [ � ; � ℄B� be 
om-plementary in the Krein spa
e �K; [ � ; � ℄K� and let A and B = I � A be the
orresponding generalized proje
tions. Let B = B�[u℄BB+ be a fundamentalde
omposition of B.(a) The sum K = A+ B is dire
t if and only if A is a proje
tion, that is, ifand only if A = A2.(b) If 0 2 �(A), then the norm topologies of �A; [ � ; � ℄A� and �K; [ � ; � ℄K) 
o-in
ide, and on B� they are equivalent to the Hilbert spa
e topology of�B�;�[ � ; � ℄B�.(
) If � is an admissible interval for A and B and if 0; 1 =2 � then A� =B� = K�; in parti
ular, A\ B 
ontains all su
h subspa
es K�.Proof. To prove (a) assume that the sum K = A + B is dire
t. The-orem 4.5 implies that AB = 0 and 
onsequently A = A2. The 
onverse is
lear.Let h � ; � iA and h � ; � iK be Hilbert spa
e inner produ
ts on �A; [ � ; � ℄A�and �K; [ � ; � ℄K�, respe
tively. Assume that 0 2 �(A). Sin
e by Corollary 2.16the norm topologies on �A; [ � ; � ℄A� and �K; [ � ; � ℄K� are equivalent, there exist
1; 
2 > 0 su
h that
1 hx; xiK � hx; xiA � 
2 hx; xiK; x 2 K: (4:10)The assumption 0 2 �(A) implies that A = K. Therefore B� � B = A \ Band by Theorem 4.5 0 � �[x; x℄B � [x; x℄A; x 2 B�: (4:11)Clearly [x; x℄A � hx; xiA; x 2 A: (4:12)Sin
e the Krein spa
e �B; [ � ; � ℄B� is 
ontinuously embedded in �K; h � ; � iK�,the Hilbert spa
e �B�;�[ � ; � ℄B� is also 
ontinuously embedded in �K; h � ; � iK�.Therefore there exist 
3 > 0 su
h thathx; xiK � �
3 [x; x℄B ; x 2 B�: (4:13)
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es 63Combining the inequalities (4.13), (4.11), (4.12) and (4.10) we gethx; xiK � �
3 [x; x℄B � 
3 [x; x℄A � 
3 hx; xiA � 
3
2 hx; xiK; x 2 B�:This proves the statement about �B�;�[ � ; � ℄B�.The 
laim (
) follows immediately from Theorem 3.6.3. In the next theorem we suppose that the embedded subspa
e A isa neutral subspa
e of K. The representations of the elements of K and theoperators in K that we use bellow refer to the 
hosen 
anoni
al de
ompo-sition.Theorem 4.7. Let the Krein spa
e �A; [ � ; � ℄A� be 
ontinuously and
ontra
tively embedded in the Krein spa
e �K; [ � ; � ℄K� with the 
orrespond-ing generalized proje
tion A and denote by �B; [ � ; � ℄B� the 
orresponding
omplementary spa
e. Let K = K+[u℄KK� be a fundamental de
ompositionof K. The following statements are equivalent:(a) A is a neutral subspa
e of �K; [ � ; � ℄K�.(b) A2 = 0.(
) There exists a bounded operator Q : �K+; [ � ; � ℄K� ! �K�;�[ � ; � ℄K� su
hthat A = � jQj �Q�Q �jQ�j� :(d) There exist a Hilbert spa
e �L; h � ; � iL�, whi
h is 
ontinuously embeddedin �K+; [ � ; � ℄K�, and an isometry U : �L; [ � ; � ℄K� ! �K�;�[ � ; � ℄K� su
hthat A = �� x+Ux+� : x+ 2 L� ;and �� x+Ux+� ;� y+Uy+��A = [x+; y+℄L; x+; y+ 2 L:(e) B = K, and A is a neutral subspa
e of �B; [ � ; � ℄B�.Proof. (a) , (b) follows from Corollary 2.20.(b)) (
). Sin
e A is a generalized proje
tion we have A�A2 �K 0, hen
e, by(b), A �K 0. With the 
hosen fundamental de
omposition K = K+[u℄KK�the 
orresponding fundamental symmetry is J = � 1 00 �1�, and we writethe self{adjoint operator A asA = �P �Q�Q R �



Branko �Curgus and Heinz Langer64with P; R; Q, being bounded operators in or between the 
orrespondingHilbert spa
es �K+; [ � ; � ℄K� and �K�;�[ � ; � ℄K�, P and R being self{adjoint.The relation A2 = 0 is equivalent toP 2 = Q�Q; QP = �RQ; R2 = QQ�;and the non{negativity of A in the Krein spa
e �K; [ � ; � ℄K� implies P �0; R � 0. This yields the following representation for A:A = � jQj �Q�Q �jQ�j�and (
) is proved.(
) ) (d). Let �L; h � ; � iL� = �R�jQj1=2�; ( � ; � )jQj�. There exists an isometryU : �R(jQj); [ � ; � ℄K�! �K�;�[ � ; � ℄K�su
h that Q = U jQj; Q� = jQjU�1 and jQ�j = U jQjU�1. ThenA = 0� jQj �jQjU�1U jQj �U jQjU�11A = � IU � jQj ( I �U�1 ) ;AJ = 0� jQj jQjU�1U jQj U jQjU�11A = � IU � jQj ( I U�1 ) :Sin
e U is a 
ontinuous mapping it 
an be extended to the 
losure of R(jQj)in �K+; [ � ; � ℄K�, and therefore also to the smaller subspa
e L = R�jQj1=2�.This extension is still an isometry, and we denote it by U as well:U : �L; [ � ; � ℄K�! �K�;�[ � ; � ℄K�:It is easily 
al
ulated that(AJ)1=2 = � IU � jQj1=2 ( I U�1 ) : (4:14)The ve
tor y 2 K belongs to R�(AJ)1=2� if and only if there exists an x 2 Ksu
h that (AJ)1=2x = y. By (4.14) this is equivalent toy = 0� jQj1=2�x+ + U�1x��U jQj1=2�x+ + U�1x��1A :
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es 65Sin
e A = R�(AJ)1=2� this proves the �rst equality in (d). SimilarlyAJx = 0� jQj �x+ + U�1x��U jQj �x+ + U�1x��1A :Let Ax = � jQju+U jQju+� and Ay = � jQjv+U jQjv+� with u+; v+ 2 K+. Then[Ax;Ay℄A = (AJJx;AJJy)AJ = hAJJx; JyiK = �� jQju+U jQju+� ;� y+� y���K= �jQju+; y+�K + �U jQju+; y��K = �jQju+; y+ + U�1y��K= �jQju+; v+�K = �jQju+; jQjv+�jQj = �jQju+; jQjv+�L:This shows that�� x+Ux+� ;� y+Uy+��A = �x+; y+�L; x+; y+ 2 L; (4:15)holds on a dense subspa
e of �A; [ � ; � ℄A�. The equality (4.15) implies thatthe restri
tion P+jA of the orthogonal proje
tion P+ : K ! K+ is an isometrybetween dense subspa
es of the Hilbert spa
es �A; [ � ; � ℄A� and �L; [ � ; � ℄L�.It follows that P+��A maps �A; [ � ; � ℄A� isometri
ally onto �L; [ � ; � ℄L�, whi
hproves (d).(d) ) (a) is 
lear, hen
e we have proved that the statements from (a) to(d) are equivalent.(b) ) (e). If (b) holds then the generalized proje
tion B = I � A has theproperty 0 2 �(B) and hen
e R(B) = B = K. The inner produ
t [ � ; � ℄B isgiven by [x; y℄B = �(I �A)�1x; y�K = [(I +A)x; y℄K; x; y 2 K:Applying this to the elements in R(A) we get[Ax;Ay℄B = [(I +A)Ax;Ay℄K = [Ax;Ay℄K = [A2x; y℄K = 0; x; y 2 K;whi
h implies the se
ond statement in (e).(e) ) (b). Sin
e B = K, by Corollary 4.6, B is invertible, and therefore[x; y℄B = �B�1x; y�K; x; y 2 K:
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e R(A) � A is a neutral subspa
e of �B; [ � ; � ℄B� we have0 = [Ax;Ay℄B = �B�1Ax;Ay�K = �B�1A2x; y�K x; y 2 K:Consequently B�1A2 = 0 and therefore A2 = 0.Remark 4.8. In Theorem 4.7 the spa
e �A; [ � ; � ℄A� is a Hilbert spa
e.Clearly A\B = A and the inner produ
t on the overlapping spa
e 
oin
ideswith [ � ; � ℄A. Namely we have AB = A(I �A) = A and[x; y℄A = [x; y℄AB = [x+; y+℄L; x; y 2 A:5. Appendix: Uniqueness of Krein spa
e 
ompletionsAs mentioned in the introdu
tion, in this se
tion we prove a slightlyextended version of a result of T. Hara [H, Theorems 5 and 6℄ about theuniqueness of the Krein spa
e 
ompletion of an inde�nite inner produ
tspa
e with a Hilbert majorant.Lemma 5.1. If �L; [ � ; � ℄L� is a non{degenerate inner produ
t spa
e and[ � ; � ℄L has a Hilbert majorant ( � ; � )L, then an equivalent Hilbert inner prod-u
t ( � ; � )0L 
an be 
hosen in L su
h that the spe
trum of the 
orrespondingGram operator G0 
onsists outside zero of isolated eigenvalues only.Proof. Let G be the Gram operator for the inner produ
t [ � ; � ℄L, anddenote by E its spe
tral fun
tion: G = R kGk�kGk � dE�. Note that G is inje
tiveand 
onsider the fun
tion'(�) := 8>>>>>>><>>>>>>>:
�1 if � 2 (�1;�1℄;� 1n+1 if � 2 �� 1n ;� 1n+1�; n 2 N;1n+1 if � 2 � 1n+1 ; 1n�; n 2 N;1 if � 2 [1;+1):Then 1 � �'(�) � max�kGk; 2	 if � 2 ��kGk; kGk� n f0g:De�ne on L the positive de�nite inner produ
t(x; y)0L := Z kGk�kGk �'(�) d(E�x; y)L:
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es 67With �+0 := �1; kGk�; �+n := � 1n+1 ; 1n�; ��n := �� 1n ;� 1n+1�; n 2 N, and ��0 :=��kGk;�1� we obtain:hx; yiL = (Gx; y)L = Z kGk�kGk '(�) �'(�) d(E�x; y)L= Z�+0 � d(E�x; y)L + +1Xn=1 1n+ 1 Z�+n �'(�) d(E�x; y)L� Z��0 � d(E�x; y)L � +1Xn=1 1n+ 1 Z��n �'(�) d(E�x; y)L= (G0x; y)0L;where the operator G0 is de�ned by the relationG0x := � 1n+ 1 x if x 2 E(��n )L; n 2 N:Thus, the spe
trum of G0 is 
ontained in ��(n+ 1)�1 : n 2 N	 [ f0g.Theorem 5.2. Let �L; [ � ; � ℄L� be a de
omposable non{degenerate innerprodu
t spa
e. If for one and hen
e for all fundamental de
ompositionsL = L+[u℄LL� at least one of the spa
es �L�;�[ � ; � ℄L� is a Hilbert spa
e,then �L; [ � ; � ℄L� has a unique Krein spa
e 
ompletion. Conversely, if [ � ; � ℄Lhas a Hilbert majorant and �L; [ � ; � ℄L� has a unique Krein spa
e 
ompletion,then at least one of the spa
es �L�;�[ � ; � ℄L� is a Hilbert spa
e.Proof. It was proved in [B, Theorem IV.7.2℄ that if L = L+[u℄LL� andL0 = L0+[u℄LL0� are two fundamental de
ompositions, then �L�;�[ � ; � ℄L� isa Hilbert spa
e if and only if �L0�;�[ � ; � ℄L� is a Hilbert spa
e. Assume thatL = L+[u℄LL� is a fundamental de
omposition of �L; [ � ; � ℄L� and that forexample �L+; [ � ; � ℄L� is a Hilbert spa
e. Let �K1; [ � ; � ℄K1� and �K2; [ � ; � ℄K2� betwo Krein spa
e 
ompletions of �L; [ � ; � ℄L�. Then �L+; [ � ; � ℄L� is a uniformlypositive subspa
e of both �K1; [ � ; � ℄K1� and �K2; [ � ; � ℄K2). Denote by Pj theorthogonal proje
tion onto L+ in �Kj ; [ � ; � ℄Kj� and set (1� Pj)Kj =: Lj ; j =1; 2. Then L� � Lj ; j = 1; 2, and for x = x+ + x�; x� 2 L�, we have(1� Pj)x = x�; j = 1; 2. Sin
e for arbitrary u 2 Lj and �xn� � L, su
h thatxn ! u in Kj , it follows that xn;� = (1 � Pj)xn ! (1 � Pj)u = u, n ! +1,the subspa
e L� is dense in Lj ; j = 1; 2. Consequently, �L1; [ � ; � ℄K1� and�L2; [ � ; � ℄K2� are isometri
ally isomorphi
 anti{Hilbert spa
es, 
ontainingboth L� as a dense subspa
e. Thus they 
an be identi�ed; denote thisspa
e by �L
�; [ � ; � ℄��. Finally, the spa
e L
 := L+ u L
�, equipped with theinner produ
t [x; y℄L
 := [x+; y+℄L � [x�; y�℄�;



Branko �Curgus and Heinz Langer68where x = x+ + x�; y = y+ + y�; x+; y+ 2 L+; x�; y� 2 L
�;is the unique Krein spa
e 
ompletion of �L; [ � ; � ℄L�.It remains to show that if �L; [ � ; � ℄L� has a Hilbert majorant ( � ; � )Land for a fundamental de
omposition L = L+[u℄LL� both 
omponents�L+; [ � ; � ℄L�, �L�;�[ � ; � ℄L� are not 
omplete then �L; [ � ; � ℄L� has more thanone Krein spa
e 
ompletion. For this we give two proofs in items (I) and(II) below. In (I) we 
onstru
t a pair of di�erent Krein spa
e 
ompletionsin a straightforward way, the 
onstru
tion in (II) uses operator ranges andis therefore more related to the 
onsiderations in the �rst se
tions of thispaper; besides, it supplies an in�nite family of Krein spa
e 
ompletions.We begin with the preliminaries whi
h are 
ommon to both 
onstru
-tions. Denote the Gram operator of the inde�nite inner produ
t [ � ; � ℄L onL with respe
t to the Hilbert majorant ( � ; � )L by G:[x; y℄L = (Gx; y)L; x; y 2 L:It is easy to see that the 
omponent �L+; [ � ; � ℄L� ��L�;�[ � ; � ℄L�, respe
tively�is not 
omplete if and only if zero is an a

umulation point of �(G) fromthe right (left, respe
tively). Thus, sin
e both 
omponents are supposedto be non-
omplete, zero is an a

umulation point of �(G) from both sides.A

ording to Lemma 5.1, without loss of generality we 
an also supposethat the spe
trum of G 
onsists outside zero of isolated eigenvalues only,hen
e it 
onsists of two sequen
es of eigenvalues �+n and ���n , n 2 N, su
hthat ���1 < ���2 < � � � < 0 < � � � < �+2 < �+1 ; limn!+1 ��n = limn!+1�+n = 0:In ea
h of the eigenspa
es 
orresponding to ���n we 
hoose an eigenve
tore�n ; n 2 N, su
h that (e�n ; e�n )L = 1. Instead of L 
onsider the subspa
eL0 := span�e+n ; e�n : n 2 N	 ; the 
losure in the topology of �L; ( � ; � )L�;equipped with the Hilbert inner produ
t ( � ; � )L and with the inde�nite innerprodu
t [ � ; � ℄L. If �L0; [ � ; � ℄L� has more than one Krein spa
e 
ompletionthen the same is true for �L; [ � ; � ℄L�. Therefore without loss of generalitywe 
an suppose that L = L0.(I) Set Ln := spanfe+n ; e�n g and Hn := C 2 , n 2 N. All 2 � 2{matri
es in thisproof relate to the standard basis 
onsisting of the ve
tors � 10� ; � 01� of



Complementation in Krein spa
es 69Hn. We introdu
e a positive de�nite inner produ
t ( � ; � )Hn on Hn by theGram matrix bAn := � 1 00 ��+n ��n ��1�and the operator bGn on Hn by the matrixbGn := ��+n � ��n 1�+n��n 0� :The operator bGn is self{adjoint with respe
t to the positive de�nite innerprodu
t ( � ; � )Hn on Hn. Indeed, an easy 
al
ulation shows thatbSn := bAn bGn = ��+n � ��n 11 0� : (5:1)It is 
lear that the eigenvalues of the operator bGn are ���n and �+n . Astraightforward 
al
ulation gives that the 
orresponding eigenve
tors, nor-malized with respe
t to ( � ; � )Hn , are��n =s ��n�+n + ��n ��1�+n � ; �+n =s �+n�+n + ��n � 1��n � ;respe
tively. The linear mapping Un de�ned, throughUn : e�n 7�! ��n ; (5:2)is an isomorphism between the (2{dimensional) Hilbert spa
es �Ln; ( � ; � )L�and �Hn; ( � ; � )Hn�. The de�nitions of ( � ; � )Hn , bGn, and Un imply that[u; v℄L = �Unv��� bAn bGn Unu�; u; v 2 Ln: (5:3)De�ne the Hilbert spa
e �H; ( � ; � )H� as follows: H � `2,x = ��n�n2N 2 H () ��2n�1�n2N 2 `2 and  �2np�+n ��n !n2N 2 `2;and (x; y)H := +1Xn=1 ��2n�1 �2n�1 + 1�+n��n �2n �2n� ;here and in the rest of the proof we usex = ��n�n2N; y = ��n�n2N 2 H:



Branko �Curgus and Heinz Langer70It follows from (5.1) that the formula[x; y℄H := +1Xn=1���+n � ��n ��2n�1�2n�1 + �2n�2n�1 + �2n�1�2n� (5:4)de�nes an inde�nite inner produ
t on H. Sin
eL = +1Mn=1Ln; in�nite dire
t sum in �L; ( � ; � )L�;H = +1Mn=1Hn; in�nite dire
t sum in �H; ( � ; � )H�;it follows from (5.2) that the Hilbert spa
es �L; ( � ; � )L� and �H; ( � ; � )H� areisomorphi
, the isomorphism being established by the mappingU := +1Mn=1Un:Further, the relations (5.1), (5.3) and (5.4) yield[u; v℄L = [Uu;Uv℄H; u; v 2 L:Consequently, the inde�nite inner produ
t spa
es �L; [ � ; � ℄L� and �H; [ � ; � ℄H�,and also the Hilbert spa
es �L; ( � ; � )L� and �H; ( � ; � )H�, 
an be identi�ed.Therefore the inner produ
t spa
e �L; [ � ; � ℄L� has a unique Krein spa
e
ompletion if and only if �H; [ � ; � ℄H� has a unique Krein spa
e 
ompletion.To 
omplete the proof we shall show that �H; [ � ; � ℄H� has at least two Kreinspa
e 
ompletions.First 
onsider the usual `2{inner produ
t on H:(x; y)2 := +1Xn=1 �n�n;and denote by k � k2 the 
orresponding norm. The inde�nite inner produ
t[ � ; � ℄H is 
ontinuous with respe
t to this norm sin
e it 
learly follows from(5.4) that [x; y℄H � �2kGk+ 1�kxk2 kyk2; x; y 2 H:Sin
e H 
ontains all �nite sequen
es, its 
ompletion with respe
t to thenorm k � k2 is �`2; ( � ; � )2�. As the formula in (5.4) is valid for all elements in`2, the extension by 
ontinuity of [ � ; � ℄H onto the entire spa
e `2 is also givenby (5.4). Thus �`2; [ � ; � ℄H� is a non{degenerate inner produ
t spa
e with
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es 71the Hilbert majorant ( � ; � )2. It follows from (5.1) that the Gram operatorin �`2; ( � ; � )2� of this inner produ
t isbS := +1Mn=1 bSn; in�nite dire
t sum in �`2; ( � ; � )2�:The eigenvalues of the operators bSn are12 ��+n � ��n �q4 + ��+n � ��n �2� ; n 2 N;
onsequently, they are 6= 0 and a

umulate only at �1 and 1, yielding that bSis a bounded and boundedly invertible self{adjoint operator in �`2; ( � ; � )2�.Therefore �`2; [ � ; � ℄H� is a Krein spa
e whi
h is a Krein spa
e 
ompletion of�H; [ � ; � ℄H�.Note also thatbA := +1Mn=1 bAn; in�nite dire
t sum in �`2; ( � ; � )2�;is an unbounded uniformly positive operator in �`2; ( � ; � )2�, H = D� bA1=2�and �x; y�H = � bA1=2x; bA1=2y�2; x; y 2 H:To 
omplete the proof we shall show that the 
anoni
al Krein spa
e
ompletion of �H; [ � ; � ℄H� di�ers from `2. The operatorbG = +1Mn=1 bGn; in�nite dire
t sum in �H; ( � ; � )H�;is the Gram operator of the inde�nite inner produ
t [ � ; � ℄H in the Hilbertspa
e �H; ( � ; � )H�. Sin
e the de
omposition topology of �H; [ � ; � ℄H� is givenby the inner produ
t (j bGj � ; � )H to 
al
ulate the 
anoni
al Krein spa
e
ompletion of the inner produ
t spa
e �H; [ � ; � ℄H� we need to study theoperator j bGj in the Hilbert spa
e �H; ( � ; � )H�. First observe that the sub-spa
e F(� H) 
onsisting of all �nite sequen
es is dense in �H; (j bGj � ; � )H�.Therefore the 
ompletion of �H; (j bGj � ; � )H� 
oin
ides with the 
ompletionof �F ; (j bGj � ; � )H�. A straightforward 
al
ulation shows that the matrixrepresentation j bGjn of the restri
tion of j bGj to Hn isj bGjn = j bGnj = 1�+n + ��n 0� (�+n )2 + (��n )2 �+n � ��n�+n��n ��+n � ��n � 2�+n��n 1A :
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e the operator j bGj has the same eigenve
tors as bG, the subspa
esHn; n 2N, are mutually orthogonal with respe
t to (j bGj � ; � )H. The restri
tion of(j bGj � ; � )H to Hn; n 2 N, is given by the positive operator bBn := bAn j bGjnwhose matrix representation isbBn = 1�+n + ��n 0� (�+n )2 + (��n )2 �+n � ��n�+n � ��n 2 1A ; n 2 N: (5:5)The operator bB de�ned bybB := +1Mn=1 bBn; in�nite dire
t sum in �`2; ( � ; � )2�;is a positive self{adjoint operator in �`2; ( � ; � )2�. As ea
h matrix in (5.5)has determinant 1, its eigenvalues are positive numbers whi
h are re
ipro
alto ea
h other. Sin
e the tra
es of the matri
es in (5.5) are unbounded asn ! +1, we 
on
lude that the eigenvalues of the operator bB a

umulateat 0 and +1. Therefore bB is not bounded and it does not have a boundedinverse. Consequently for the 
ompletion �B; ( � ; � )B� of the pre{Hilbertspa
e �D( bB); ( bB � ; � )2� we have that neither B � `2 nor `2 � B, see Re-mark 5.4. Clearly F is dense in �D( bB); ( bB � ; � )2�. Therefore the 
ompletionof �F ; ( bB � ; � )2� is also B. By the de�nitions above we have�F ; (j bGj � ; � )H� = �F ; ( bB � ; � )2�:Thus the 
anoni
al Krein spa
e 
ompletion of �H; [ � ; � ℄H� is �B; [ � ; � ℄H�. Sin-
e neither B � `2 nor `2 � B, we have 
onstru
ted two di�erent Krein spa
e
ompletions.(II) Let the Krein spa
e �K; [ � ; � ℄K� be the 
anoni
al Krein spa
e 
ompletionof �L; [ � ; � ℄L�. By Remark 2.12 the Hilbert spa
e �L; ( � ; � )L� is 
ontinuouslyembedded in �K; [ � ; � ℄K� and the K{adjoint T : K ! K of the 
orrespondingin
lusion is the extension to K by 
ontinuity of the Gram operator G : L !L. Therefore the eigenvalues and the eigenve
tors of T 
oin
ide with theeigenvalues ��n and the 
orresponding eigenve
tors e�n ; n 2 N, of G. Wenormalize these eigenve
tors:!�n := 1p��n e�n ; n 2 N;then �!�n ; !�n �K = �1; n 2 N.
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es 73Let �K; h � ; � iK� be the Hilbert spa
e 
ompletion of �L; (jGj � ; � )L�. ByRemark 2.2 the Hilbert spa
e �L; ( � ; � )L� is 
ontinuously embedded in�K; h � ; � iK� and the H{adjoint T1 : K ! K of the 
orresponding in
lusionis the extension to K by 
ontinuity of the operator jGj : L ! L. Then theextension to K of the signum of G is the fundamental symmetry 
onne
tingthe inner produ
ts [ � ; � ℄K and h � ; � iK. We denote this fundamental symme-try by J . Clearly J 
ommutes with T and 
onsequently T is a self{adjointoperator in the Hilbert spa
e �K; h � ; � iK�. In this spa
e, jT j = JT = T1. Itfollows from Corollary 2.5 that�L; ( � ; � )L� = �R(jT j1=2); ( � ; � )jT j�:The eigenve
tors !�n ; n 2 N, are also the eigenve
tors of jT j 
orresponding tothe eigenvalues ��n ; n 2 N. Thus these ve
tors form an orthonormal systemof ve
tors in the Hilbert spa
e �K; h � ; � iK�.Earlier in this proof, without loss of generality, we assumed thatL = span�!�n : n 2 N	 ; the 
losure in the topology of �L; ( � ; � )L�:This assumption implies thatK = span�!�n : n 2 N	 ; the 
losure in the topology of �K; h � ; � iK�:Let K = K+ [u℄KK� be the fundamental de
omposition 
orrespondingto the fundamental symmetry J . ThenK� = span�!�n : n 2 N	; the 
losure in the topology of �K; h � ; � iK�:Let Kn = spanf!+n ; !�n g. ThenK = K+ [u℄KK� = +1Mn=1 Kn:Here and in the rest of the proof the in�nite dire
t sums are 
onsidered inthe topology of �K; h � ; � iK�. The matrix ��+n 00 ��n � is the representationof the restri
tion jT jn of jT j to Kn with respe
t to the basis f!+n ; !�n g. Thenthe equality jT j = +1Mn=1 jT jnholds.Let f�ngn2N be a sequen
e with the following properties:�n > 0; n 2 N; limn!+1�n = 0; supn2N ��n�n < +1: (5:6)



Branko �Curgus and Heinz Langer74De�ne the operators Sn and Qn on Kn by their matrix representations withrespe
t to the basis f!+n ; !�n g:Sn = 1p�n 0�p1 + �n �11 �p1 + �n1Aand Qn = 1p�n 0�p1 + �n �1�1 p1 + �n1A : (5:7)Setting �n := p1 + �n + p�n, the eigenvalues and the 
orresponding nor-malized in �Kn; h � ; � iK� eigenve
tors of the operator Sn are�1 with ��n = p22 4p1 + �n � 1p�n !+n +p�n !�n� ;1 with �+n = p22 4p1 + �n �p�n !+n + 1p�n !�n� :The eigenvalues and the 
orresponding normalized in �Kn; h � ; � iK� eigenve
-tors of the operator Qn arep�n1 +p1 + �n with  �n = 1p2 �!+n + !�n �;1 +p1 + �np�n with  +n = 1p2 �!+n � !�n �:Put S := +1Mn=1 Sn and Q := +1Mn=1 Qn: (5:8)The operator Q is a positive self{adjoint operator in the Hilbert spa
e�K; h � ; � iK�. The assumptions (5.6) imply that the eigenvalues of Q forman unbounded sequen
e whi
h also a

umulates at 0. Therefore Q is un-bounded and its inverse is also unbounded. Clearly, S = JQ. ConsequentlyS is a positive self{adjoint operator in the Krein spa
e �K; [ � ; � ℄K�. It isalso neither bounded nor it has a bounded inverse. It is important to notethat S is idempotent, that is, S = S�1. Put M = D(S) = D(Q). Here D(�)denotes the domain of an operator.Next we prove that L � M. Sin
e L = R�jT j1=2� and M = D(Q), thiswill be a

omplished by proving that the operator QjT j1=2 is bounded in�K; h � ; � iK�. The boundedness of QjT j1=2 is equivalent to the boundedness



Complementation in Krein spa
es 75of �QjT j1=2��QjT j1=2, where � denotes the adjoint in �K; h � ; � iK�. Consider�rst the operators �Qn(jT jn)1=2��Qn(jT jn)1=2; n 2 N;whose matrix representation with respe
t to the basis f!+n ; !�n g is2�n 0� �+n �q�+n��n (1 + �n)�q�+n��n (1 + �n) ��n 1A+��+n 00 ��n � : (5:9)The eigenvalues of the �rst matrix in (5.9) are�+n + ��n�n �s��+n + ��n�n �2 + 4�+n��n�n ; n 2 N: (5:10)The assumptions (5.6) about the sequen
e (�n) imply that the sequen
esin (5.10) are bounded. Sin
e these sequen
es represent all the eigenvaluesof the self{adjoint in �K; h � ; � iK� operator �QjT j1=2��QjT j1=2 � jT j and sin
ethe 
orresponding normalized eigenve
tors form an orthonormal basis for�K; h � ; � iK�, we 
on
lude that �QjT j1=2��QjT j1=2 � jT j is bounded. Conse-quently �QjT j1=2��QjT j1=2, and therefore QjT j1=2, is bounded in �K; h � ; � iK�.It follows that R�jT j1=2� = L �M = D(Q).De�ne a positive de�nite inner produ
t on M by(x; y)M = hQx; yiK; x; y 2M:With this inner produ
t M is a pre-Hilbert spa
e. PutM+ = ker(1� S) and M� = ker(1 + S):Sin
e S is a 
losed operator the subspa
esM� are 
losed in �K; h � ; � iK� andM =M+[u℄KM�: (5:11)Let x; y 2 M and let x = x+ + x�; y = y+ + y� be the de
ompositions withrespe
t to (5.11). Now we 
al
ulate(x; y)M = hQx; yiK = [Sx; y℄K = [Sx+; y+℄K + [Sx�; y�℄K= [x+; y+℄K � [x�; y�℄K:Therefore the topology of �M; ( � ; � )M� is a de
omposition topology on�M; [ � ; � ℄K�. Sin
e the operator Q is invertible and sin
e the elements �n ; n 2 N, form a 
omplete set in �K; h � ; � iK�, it follows that the (�nite)



Branko �Curgus and Heinz Langer76linear 
ombinations of the eigenve
tors  �n ; n 2 N, of Q, and therefore alsothe linear 
ombinations of the elements !�n ; n 2 N, form a dense subspa
eof �M; ( � ; � )M�. Consequently, the subspa
e L, whi
h 
ontains all the lin-ear 
ombinations of !�n ; n 2 N, is dense in �M; ( � ; � )M�. Sin
e Q is neitherbounded nor has it a bounded inverse for any 
ompletion �Q; h � ; � iQ� of�M; ( � ; � )M� we have that neither Q � K nor K � Q. Therefore the 
om-pletion �Q; h � ; � iQ� of �M; ( � ; � )M� gives rise to the Krein spa
e 
ompletion�Q; [ � ; � ℄K� of �M; [ � ; � ℄K� whi
h is di�erent from �K; [ � ; � ℄K�. Sin
e L is densein �M; ( � ; � )M� we have 
onstru
ted two di�erent Krein spa
e 
ompletionsof �L; [ � ; � ℄K�. In fa
t, by 
hoosing di�erent sequen
es �n; n 2 N, we getin�nitely many di�erent Krein spa
e 
ompletions for �L; [ � ; � ℄L�.Remark 5.3. Let (�n); (�0n) be two sequen
es of real numbers su
hthat �n > 0; n 2 N; supn2N �n < +1; supn2N ��n�n < +1; (5:12)and that the same relations hold for �0n instead of �n. Then the 
onditionsupn2N �n�0n < +1; supn2N �0n�n < +1 (5:13)is ne
essary and suÆ
ient for the two sequen
es (�n) and (�0n) to generatethe same Krein spa
e 
ompletion �Q; [ � ; � ℄K� of �L; [ � ; � ℄L� in the 
onstru
-tion (II) of the above proof.Indeed, let Q be the positive self{adjoint operator de�ned by (5.7) and(5.8). The eigenvalues of Q are�f(�n); 1f(�n) : n 2 N� where f(t) = pt1 +p1 + t ; t > 0:Clearly, limt!+1 f(t)=1; limt!0+ f(t)=0: The Hilbert spa
e 
ompletion �Q; h � ; � iQ�of �D(Q); hQ � ; � iK� is isomorphi
 to the spa
e bQ � C N de�ned by(�n)n2N 2 bQ () �pf(�n) �2n�1�n2N 2 `2 and  �2npf(�n)!n2N2 `2; (5:14)with the inner produ
thx; yibQ := +1Xn=1�f(�n) �2n�1 �2n�1 + 1f(�n) �2n �2n�:
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es 77Sin
e limt!0 f(t)=pt = 1, from the de�nition (5.14) we have(�n)n2N 2 bQ () � 4p�n �2n�1�n2N 2 `2 and � �2n4p�n�n2N2 `2; (5:15)and, be
ause of (5.13) and (5.14), the in
lusions on the right hand side areequivalent to � 4p�0n �2n�1�n2N 2 `2 and  �2n4p�0n!n2N2 `2:By (5.12) and (5.13), the 
ompletion �Q; [ � ; � ℄K� 
oin
ides with �K; [ � ; � ℄K�if and only if inf��n : n 2 N	 > 0, in parti
ular, if �n = 1.Remark 5.4. In part (I) of the proof of Theorem 5.2 we obtainedtwo di�erent Krein spa
e 
ompletions, among them being the 
anoni
alone. In part (II) of the proof we obtained the 
anoni
al 
ompletion anda whole 
lass of non{
anoni
al 
ompletions. However, the non{
anoni
al
ompletion of part (I) is not among the non{
anoni
al 
ompletions of part(II).To see this we des
ribe the 
anoni
al Krein spa
e 
ompletion �B; [ � ; � ℄H�of �H; [ � ; � ℄H� as in (I). The eigenvalues of the positive self{adjoint operatorbB in �`2; ( � ; � )2� are �n; 1�n ; n 2 N; where�n := 2 + ���n �2 + ��+n �2 +r4� 8�+n ��n + ����n �2 + ��+n �2�22���n + �+n � :Note that �n!+1; n!+1. The 
ompletion �B; h � ; � iH� of �D( bB); ( bB � ; � )2�is isomorphi
 to the spa
e bB � C N de�ned by(�n)n2N 2 bB () �p�n �2n�1�n2N 2 `2 and � �2np�n�n2N2 `2: (5:16)Sin
e limn!+1 �n���n + �+n � = 2, the relation (5.16) is equivalent to(�n)n2N 2 bB ()  �2n�1p��n + �+n !n2N2 `2 and �p��n + �+n �2n�n2N 2 `2: (5:17)Comparing (5.17) and (5.15) we 
on
lude that we would need to 
hoose�n = ���n + �+n �2 to obtain the non{
anoni
al 
ompletion of part (I). Butthis 
hoi
e violates (5.6).
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Complementation in Krein spa
es 79Neprekidna ulaganja, upotpunjenja i komplementarnostu Kreinovim prostorimauBranko �Curgus i Heinz LangerSadr�zajNeka je Kreinov prostor �A; [ � ; � ℄A� neprekidno ulo�zen u Kreinov pros-tor �K; [ � ; � ℄K�. Koriste�
i operator koji je adjungiran operatoru ulaganjaprostora A u prostor K, jedinstven hermitski operator A u K je pridru�zenprostoru �A; [ � ; � ℄A�. Tada je Kreinov prostor �A; [ � ; � ℄A� upotpunjenje pros-tora R(A) snabdjevenog sa A{s
alarnim produktom. Op�
enito ovo upot-punjenje nije jedinstveno odred-eno. Ako je ulaganje prostora A u prostorK jo�s i t{neprekidno, onda je operator A de�nitizabilan u K i prostor R(A)snabdjeven sa A{s
alarnim produktom ima jedinstveno upotpunjenje doKreinovog prostora. U ovom slu�
aju spektralna funk
ija operatora A dajeodred-ene informa
ije o ulaganju prostora A u K. Rezulatati su primjenjenina de Branges{ovu teoriju komplementiranja.


