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COMPLETENESS THEORY
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Abstract. We give an example of an indefinite weight Sturm-Liouville prob-

lem whose eigenfunctions form a Riesz basis under Dirichlet boundary condi-

tions but not under anti-periodic boundary conditions.

1. Introduction

Completeness of eigenfunctions for Sturm-Liouville equations of the form

(1.1) `(y) := −(py′)′ + qy = λry

on [−1, 1] was already investigated for the case of positive weight functions r in the
1830s. In a modern setting one seeks complete orthonormal bases in the weighted
Hilbert space L2,r(−1, 1) with inner product given by

(1.2) (y, z)r =

∫ 1

−1

ryz.

For the purposes of this note, it will suffice to consider regular positive definite `
with self-adjoint boundary conditions and r ∈ L∞(−1, 1).

Problems with indefinite r were studied around the turn of the 20th century,
and orthonormal bases of eigenfunctions were examined in a Hilbert space with the
Dirichlet inner product generated by `. We remark that early work on all the above
problems usually assumed Dirichlet boundary conditions y(1) = y(−1) = 0 for (1.1),
but the theory now encompasses arbitrary self-adjoint boundary conditions.

Around 1970, “half-range” completeness for certain forward-backward equations
led to renewed interest in the L2,r(−1, 1) setting, but now for equations (1.1) with
indefinite r. An important step in the corresponding analysis of completeness is
the production of a Riesz basis of eigenfunctions. In this case L2,r(−1, 1) is a Krein
space, but the Riesz basis is taken with respect to the underlying Hilbert space
inner product (with r replaced by |r| in (1.2)).

A standard reference in this area is [2] where Beals produces a basis (which turns
out to be a Riesz basis) of eigenfunctions for a certain class of weight functions r. In
particular, certain “extra” conditions on r are imposed at the single turning point,
i.e., where r changes sign. As Beals points out, the analysis extends to finitely
many turning points, but there is an example of Pyatkov [9] with infinitely many
turning points and no Riesz basis of eigenfunctions. Also Volkmer [11] has shown
that some “extra” condition is necessary for the Beals result to hold. Explicit
counterexamples, based on Volkmer’s ideas, can be found in [1] and [6]. We remark
that all these works assume Dirichlet boundary conditions at 1 and −1.
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We are aware of two works on completeness in L2,r(−1, 1) for problems of the
form (1.1) with indefinite r and general self-adjoint boundary conditions. One is [5]
which involves “extra” conditions on r at the turning points and at the boundary.
The other [10] assumes “extra” conditions only at the turning point. We shall
show by example that some “extra” condition is indeed required in general at the
boundary so [10, Theorems 3.1, 3.2] are incorrect as stated. An intuitive explanation
for our example can be given as follows. There is a turning point at x = 0 where
r satisfies an “extra” condition, and the Dirichlet problem has a Riesz basis of
eigenfunctions. When the boundary conditions are not separated, however, the
points 1 and −1 are linked and (1.1) can be thought of as living on a circle, with a
second turning point at ±1. In our example, there is no “extra” condition on r at
±1 and there is no Riesz basis of eigenfunctions for the antiperiodic problem.

We shall adapt Volkmer’s strategy, which is to establish an inequality, to be
denoted by I, see (2.3), satisfied by a class V, see (2.4), of absolutely continuous
functions. While such inequalities have been examined by various authors (and
they are sometimes called HELP inequalities, cf. [3]), Volkmer emphasizes the role
of the boundary conditions on the functions in V. Indeed he shows that I is false
in the absence of boundary conditions, true independently of (1.1) if two Neumann
type conditions are imposed, and true if one such condition is imposed and there
is a Riesz basis of Dirichlet eigenfunctions.

In Section 2 we shall show that I also holds if there is a Riesz basis of an-
tiperiodic eigenfunctions and another boundary condition is imposed (in addition
to Volkmer’s, giving a smaller class V0). We then show that an example of (1.1)
given in [1] generates functions in V0 and failing I, so it does not have a Riesz basis
of antiperiodic eigenfunctions. In Section 3 we modify this example so as to have
the properties in the abstract. This shows incidentally that I, even on the larger
class V, is not sufficient for a Riesz basis of antiperiodic eigenfunctions.

Finally, we note that mixed boundary conditions raise the possibility of double
eigenvalues. If there are infinitely many such eigenvalues, then there could be some
sets of (normalized) eigenfunctions which form Riesz basis and other sets which
do not. In Section 4 we prove that this difficulty cannot occur. In fact all the
eigenproblems considered here have only simple eigenvalues.

2. A necessary condition for a Riesz basis

Throughout, w will denote an odd function in L∞(−1, 1). Here odd will mean
that w(−x) = −w(x) for all x 6= 0. We use ‖ · ‖ to denote the norm in L2(−1, 1).

We define an operator A in L2(−1, 1) on

dom(A) =
{

f ∈ W 2

2 (−1, 1) : f(1) + f(−1) = 0, f ′(1) + f ′(−1) = 0
}

by

Af = −f ′′.

It is well known, see [12], that A is self-adjoint with compact resolvent, and an easy
calculation shows that the eigenvalues are all positive.

We shall consider the weighted eigenvalue problem

(2.1) Af = λwf,

which can be studied in a natural way as the standard eigenvalue problem for the
positive self-adjoint operator w−1A in the weighted space L2,w(−1, 1).
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The first step in our analysis is the following modification of [11, Section 4]. We
use the notation

(2.2) K(h) =

(

∫ 1

0

|h′|2

w

)2

∫ 1

0
|h|2

∫ 1

0

∣

∣

∣

(

h′

w

)′
∣

∣

∣

2

whenever the right hand side makes sense.

Lemma 2.1. If w is an odd essentially bounded function on [−1, 1] such that

xw(x) > 0 for all nonzero x and if there is a Riesz basis of eigenfunctions in

L2,w(−1, 1) for the eigenvalue problem (2.1), then there exists C > 0 such that

(2.3) K(h) ≤ C2

for all nonzero h such that

(2.4) h ∈ AC(0, 1), h′/w ∈ W 1

2 (0, 1), (h′/w)(1) = 0,

and

(2.5) h(1) = 0.

Proof. Since A has a positive compact inverse in L2(−1, 1), [11, Theorem 2.2] ap-
plies and gives C such that

(2.6)

∫ 1

−1

|w||f |2 ≤ C‖A1/2g‖‖A1/2f‖

for all f ∈ dom(A1/2) and g = A−1(wf).
Let h satisfy (2.4) and (2.5). Extend h to an even function on [−1, 1] and put

f := −h′/w. By (2.4) we have f(−1) = f(1) = 0 and therefore f belongs to

dom(A1/2) =
{

y ∈ W 1

2 (−1, 1) : y(−1) + y(1) = 0
}

,

see [7, §7]. Moreover,

(2.7) ‖A1/2f‖2 =

∫ 1

−1

|f ′|2.

Solving −g′′ = wf = −h′ for g ∈ dom(A) we obtain

(2.8) g(x) =

∫ x

0

h(t)dt, x ∈ [−1, 1].

Since g ∈ dom(A) and h(−1) = h(1) = 0, integration by parts yields

(2.9) ‖A1/2g‖2 =

∫ 1

−1

Agg =

∫ 1

−1

wfg = −

∫ 1

−1

h′g =

∫ 1

−1

|h|2.

Substituting (2.7) and (2.9) in (2.6) we obtain

(
∫ 1

−1

|w||f |2
)2

≤ C2

∫ 1

−1

|h|2
∫ 1

−1

|f ′|2,

and since all the integrands are even functions it follows that K(h) ≤ C2 for all h
satisfying (2.4) and (2.5). �
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The next step is to show that functions w exist which fail the conclusion of
Lemma 2.1. An analogous approach has already been used for Dirichlet boundary
conditions in [1] and [6] via Volkmer’s version of Lemma 2.1, see [11, Section 4],
which includes conditions (2.4), but not (2.5).

Theorem 2.2. There exists an odd essentially bounded function w defined on

[−1, 1] with xw(x) > 0 for all nonzero x, continuously differentiable near 1, and

such that no set of eigenfunctions of the problem Af = λwf is a Riesz basis of

L2,w(−1, 1).

Proof. In [1, Theorem 1] a condition (see [1, equation (5)]) for w is given under
which Lemma 2.1 fails for the set of functions h that satisfy (2.4) (but not (2.5)).

The proof of [1, Theorem 1] involves functions fn defined by fn(x) = −
∫ 1

x
gn, x ∈

[0, 1], and these evidently vanish at x = 1. The functions fn play the role of
our h and so our additional condition (2.5) is automatically incorporated in the
construction in [1, Theorem 1]. Thus, [1, Theorem 1] gives a sufficient condition for
w under which no set of eigenfunctions of the problem Af = λwf is a Riesz basis
of L2,w(−1, 1). Therefore [1, Example 2] applies to our situation. �

Remarks. It follows from the construction in [1] that the function w in Theorem
2.2 can in fact be selected to be arbitrary (essentially bounded) function on any
interval [δ, 1], 0 < δ < 1. In view of this, the set of functions w as above is dense
in L2,w (and indeed in other spaces; see [1, Theorem 2] for the Dirichlet case). In
[11, Section 5] Volkmer gave a similar Dirichlet density result using (2.4) alone.

3. Boundary conditions and Riesz bases

In this section we modify the construction in Section 2 to produce the example
promised in the abstract.

Let w be the essentially bounded function whose existence is established in The-
orem 2.2. Define S on L2,w(−1, 1) by

(Sf)(x) = f(x − sgnx), x ∈ [−1, 1],

where for definiteness we take sgn 0 = 1. Then r := Sw is essentially bounded and
odd. Since S2f = f for all f ∈ L2,w(−1, 1), we have Sr = w. We also define Q on
L2,w(−1, 1) by

(Qf)(x) = (Sf)(x) sgn x.

The operator Q will be our main tool below and it enjoys the following properties.

Lemma 3.1. (a) The operator Q is a unitary isomorphism between the Hilbert

spaces L2,|w|(−1, 1) and L2,|r|(−1, 1).
(b) If f ∈ dom(A), then Qf ∈ dom(A) and (Qf)′′ = Q(f ′′) a.e.

(c) If f ∈ dom(A), then Q(rf) = wQf a.e.

Proof. (a) If f, g ∈ L2,|w|(−1, 1) we calculate
∫ 1

−1

|r|QfQg =

∫ 1

−1

S(|w|fg)

=

∫ 1

0

|w|fg +

∫ 0

−1

|w|fg

=

∫ 1

−1

|w|fg .
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Thus Q is an isometry. Now suppose that g ∈ L2,|r|(−1, 1) and redefine g on
the null set {−1, 0, 1} by g(−1) = g(0) = g(1) = 0. If we define f = Qg, then it
is easily checked that g = Qf and f ∈ L2,|w|(−1, 1) so Q maps L2,|w|(−1, 1) onto
L2,|r|(−1, 1) and hence is unitary.

(b) The continuity of Qf and (Qf)′ at zero follow from the boundary condi-
tions on f ∈ dom(A), and conversely (interchanging the roles of f and Qf). The
remaining contentions are straightforward.

(c) Since Sr = S2w = w, the result follows from

Q(rf)(x) = S(rf)(x) sgn x = (Sr)(x)(Sf)(x) sgn x = w(x)(Qf)(x).

�

Now we are ready for the main result.

Theorem 3.2. There exists odd essentially bounded r, with x r(x) > 0 for all

nonzero x ∈ (−1, 1), continuously differentiable near 0, and such that

(a) appropriately normalized eigenfunctions of the Dirichlet problem

(3.1) −f ′′ = λrf

with f(−1) = f(1) = 0 form a Riesz basis of L2,|r|(−1, 1), but

(b) no set of eigenfunctions of the corresponding antiperiodic problem

(3.2) Af = λrf

forms such a basis.

Proof. (a) Since the function w is continuously differentiable in the interval [δ, 1], 0 <
δ < 1, it follows that the function r is continuously differentiable on [−1 + δ, 0) ∪
(0, 1 − δ]. Thus [5, Theorem 3.6] shows that the normalized eigenfunctions of the
Dirichlet problem form a Riesz basis in L2,|r|(−1, 1).

(b) Suppose there is a Riesz basis of eigenfunctions fn for (3.2) in L2,|r|(−1, 1).
By Lemma 3.1(a), the functions Qfn form a Riesz basis of L2,|w|(−1, 1), and by
Lemma 3.1(b) and (c), they satisfy

AQfn = λwQfn.

This evidently contradicts Theorem 2.2, and the proof is complete. �

Remarks. As in Section 2, various modifications are possible. By virtue of [5,
Theorem 3.6], Dirichlet conditions can be replaced by any separated boundary
conditions. One can also restate the results in the Naimark framework [8] as follows.
Denote by W the operator in L2,w(−1, 1) defined on

dom(W ) =
{

f ∈ L2,w(−1, 1) : f, f ′ ∈ AC[−1, 1], (1/w)f ′′ ∈ L2,w(−1, 1),

f(1) + f(−1) = 0, f ′(1) + f ′(−1) = 0
}

by Wf = −(1/w)f ′′, and denote by R the analogous operator with w replaced by r.
Then QW = RQ so W and R are unitarily similar and therefore if either operator
has a Riesz basis of eigenfunctions, so must the other.
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4. Simplicity of the eigenvalues

As mentioned in Section 1, if infinitely many double eigenvalues λn exist, then
the question of whether the (normalized) eigenfunctions form a Riesz basis can be
ambiguous. Specifically, if the angles αn in L2,|r|(−1, 1) between the two eigen-
functions at λn tend to 0 as λn → ∞, then the eigenfunctions do not form a Riesz
basis, even though other choices (for which αn do not tend to 0) could form a Riesz
basis. We mention the related (abstract) example in [4] where angles between pairs
of eigenvectors must tend to 0, preventing existence of a Riesz basis.

Below we prove that all the eigenvalues of the problems considered earlier are in
fact simple.

Lemma 4.1. Let v : [0, 1] → R be a positive essentially bounded measurable func-

tion. Then the unique solutions of the initial value problems

−y′′ = vy, y(0) = 0, y′(0) = 1,(4.1)

z′′ = vz, z(0) = 0, z′(0) = 1,(4.2)

satisfy z(t) > y(t) for all t ∈ (0, 1].

Proof. We write

s = z + y and d = z − y

for the sum and difference of z and y. We note that

s(0) = d(0) = d′(0) = 0 and s′(0) = 2.

Thus s(t) > 0 for sufficiently small t > 0.
Arguing by contradiction we assume that there is b ≤ 1 so that s(t) > 0 for

0 < t < b, but s(b) = 0. Then

d′(t) =

∫ t

0

vs > 0,

so

(4.3) d(t) =

∫ t

0

d′ > 0,

for all t ∈ (0, b]. Moreover

s′(t) = 2 +

∫ t

0

vd > 0,

so

s(b) =

∫ b

0

s′ > 0.

This the desired contradiction. Thus s > 0, and then from (4.3) also d > 0, on
(0, 1]. �

Proposition 4.2. Let r be an odd, essentially bounded, and measurable function

defined on [−1, 1] such that xr(x) > 0 for all nonzero x ∈ [−1, 1]. Then the eigen-

values of the problems (3.1) and (3.2) in Theorem 3.2 are real, symmetric with

respect to 0 and simple.
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Proof. It is standard that the eigenvalues of the Dirichlet problem (3.1) are real
and simple. The fact that all the eigenvalues of (3.2) are real follows from [5,
Propositions 1.1, 2.3 and 2.6]. To see that the eigenvalues of both problems are
symmetric with respect to 0, replace f(t) by f(−t), t ∈ [−1, 1], and λ by −λ.

It remains to prove simplicity of the eigenvalues of (3.2). By the symmetry
expressed above, it is sufficient to consider the positive eigenvalues, so let λ be a
positive double eigenvalue of (3.2). Then the space of all f such that

− f ′′ = λrf,(4.4)

f(1) + f(−1) = 0,(4.5)

f ′(1) + f ′(−1) = 0,(4.6)

is two dimensional. Equivalently, all solutions of (4.4) satisfy (4.5) and (4.6).
Let f = z be the unique solution of (4.4) such that z(0) = 0 and z ′(0) = 1,

and define y(x) := −z(−x), x ∈ [0, 1]. Then with v = λr, z is a solution of (4.1)
and y is a solution of (4.2). By Lemma 4.1 it follows that z(1) > −z(−1), that
is z(1) + z(−1) > 0. Thus f = z satisfies (4.4) but not (4.5), and we have a
contradiction. �

Remark. With the aid of different initial conditions in (4.1) and (4.2) of Lemma
4.1, similar reasoning shows that the eigenvalues of the periodic problem

(4.7) −f ′′ = λrf, f(1) − f(−1) = 0, f ′(1) − f ′(−1) = 0,

are also simple. In particular, all the eigenvalues of (3.2) and (4.7) are simple for
the function r(x) = sgn(x), x ∈ [−1, 1]. It is interesting to observe that all the
nonzero eigenvalues of the corresponding definite problems (with |r| = 1 instead of
r), viz.,

−f ′′ = λf, f(1) + f(−1) = 0, f ′(1) + f ′(−1) = 0,

−f ′′ = λf, f(1) − f(−1) = 0, f ′(1) − f ′(−1) = 0,

are double.
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