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PROBLEMS

11747. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI. De-
termine all n ∈ N such that bn/kc divides n for 1 ≤ k ≤ n. Similarly, determine all
n ∈ N such that dn/ke divides n for 1 ≤ k ≤ n.

11748. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA, and Tudorel
Lupu, Decebal High School, Constanţa, Romania. Is there a sequence a1, a2, . . . of
positive real numbers such that

∑
∞

k=1
1

ak
converges, and

∏n
k=1 ak < nn for all n?

11749. Proposed by Branko Ćurgus, Western Washington University, Bellingham, WA.
For x ∈ Cn and p > 0, let ‖x‖p denote the standard p-norm on Cn . Prove that the
function p 7→ ‖x‖p is a strictly decreasing convex function on (0,∞) if and only if
x is not of the form cek , where ek denotes the vector with 1 in the kth position and 0
elsewhere.

11750. Proposed by Greg Oman, University of Colorado at Colorado Springs, Col-
orado Springs, CO. Prove or disprove that for every integral domain D and every
nonzero d in D, there exist infinitely many irreducible polynomials p in the ring D[x]
of polynomials in one variable over D such that p(0) = d . (A nonzero, nonunit ele-
ment f of D[x] is irreducible if g or h is a unit of D[x] whenever gh = f .)

11751. Proposed by Carol Kempiak, Aliso Niguel High School, Aliso Viejo, CA, and
Bogdan Suceavă, California State University, Fullerton, CA. In a triangle with angles
of radian measure A, B, and C , prove that

csc A + csc B + csc C

2
≥

1

sin B + sin C
+

1

sin C + sin A
+

1

sin A + sin B
,

with equality if and only if the triangle is equilateral.
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11752. Proposed by Ádám Besenyei, Eötvös Loránd University, Budapest, Hungary.
Let x1, . . . , xn be nonnegative numbers, where n ≥ 4, and let xn+1 = x1. For p ≥ 1,
prove that

n∑
k=1

(xk + xk+1)
p
≤

n∑
k=1

x p
k +

(
n∑

k=1

xk

)p

.

11753. Proposed by Prapanpong Pongsriiam, Silpakorn University, Nakhon Pathom,
Thailand. Let f be a continuous map from [0, 1] to R that is differentiable on (0, 1),
with f (0) = 0 and f (1) = 1. Show that for each positive integer n there exist distinct
numbers c1, . . . , cn in (0, 1) such that

∏n
k=1 f ′(ck) = 1.

SOLUTIONS

Equation x1 + x2 + x3 = x1x2x3 Is a Disguised Triangle

11626 [2012, 162]. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh,
PA. Let x1, x2, and x3 be positive numbers such that x1 + x2 + x3 = x1x2x3. Treating
indices modulo 3, prove that

3∑
1

1√
x2

k + 1
≤

3∑
1

1

x2
k + 1

+

3∑
1

1√
(x2

k + 1)(x2
k+1 + 1)

≤
3

2
. (1)

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technol-
ogy, Damascus, Syria. Write A = arctan(x1), B = arctan(x2), and C = arctan(x3).
The constraint x1 + x2 + x3 = x1x2x3 can be put in the form tan C = x3 = (x1 +

x2)/(x1x2 − 1) = tan[π − (A + B)]. This implies that A + B + C = π , so there is a
triangle 4ABC. It is an acute triangle, since x1, x2, x3 are positive.

The second inequality of (1), after multiplying by 2 and rearranging, reduces to

(cos A + cos B + cos C)2 ≤ sin2 A + sin2 B + sin2 C. (2)

According to a known inequality (V. Thébault and L. Bankoff, Problem E 1272, this
MONTHLY 67 (1960) 693–694): If A′, B ′, and C ′ are the angles of a triangle, then(

sin
A′

2
+ sin

B ′

2
+ sin

C ′

2

)2

≤ cos2 A′

2
+ cos2 B ′

2
+ cos2 C ′

2
. (3)

Since 4ABC is an acute triangle, (3) can be applied to it with A′ = π − 2A, B ′ =
π − 2B, C ′ = π − 2C to conclude that (2) holds for 4ABC. This proves the second
inequality of (1).

The first inequality of (1) is equivalent, after multiplying by 2 and rearranging, to
the inequality

sin2 A + sin2 B + sin2 C ≤ 2+ (cos A + cos B + cos C − 1)2. (4)

Let a, b, and c denote the side lengths BC, CA, and AB, let R denote the circumradius,
r the inradius, and s the semiperimeter of 4ABC. With this notation,
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cos A + cos B + cos C − 1 = 4 sin
A

2
sin

B

2
sin

C

2

= 4

√
(s − b)(s − c)

bc

√
(s − c)(s − a)

ca

√
(s − a)(s − b)

ab

= 4
(s − a)(s − b)(s − c)

abc
=

sr 2

sr R
=

r

R
,

so that inequality (4) is equivalent to

a2
+ b2
+ c2
≤ 8R2

+ 4r 2. (5)

Using the fact that ab+ bc+ ac = s2
+ r 2
+ 4r R, it can be seen that (5) is equivalent

to s2
≤ 3r 2

+ 4r R + 4R2, which is the Gerretsen inequality (J. C. Gerretsen, “Ongelij
Kheden in the Driehoek,” Nieuw Tijdschr. Wisk. 41 (1953) 17—which unravels to the
simple fact that the square of the distance between the incenter and the orthocenter is
nonnegative). This proves the first inequality of (1).

Also solved by G. Apostolopoulos (Greece), M. Bataille (France), M. Can, C. Curtis, O. Geupel (Germany),
E. A. Herman, B. Karaivanov, O. P. Lossers (Netherlands), P. Perfetti (Italy), C. R. Pranesachar (India), N. C.
Singer, R. Stong, T. Viteam (Germany), Z. Vörös (Hungary), J. Zacharias, GCHQ Problem Solving Group
(U. K.), and the proposer.

A Circumradius Inequality

11630 [2012, 247]. Proposed by Constantin Mateescu, High School ‘Zinca Golescu’,
Pitesti, Romania. For triangle ABC, let H be the orthocenter, I the incenter, O the
circumcenter, and R the circumradius. Let b and c be the lengths of the sides opposite
B and C , respectively, and let l be the length of the line segment from A to BC along
the angle bisector at A. Let α be the radian measure of angle BAC. Prove that

bc

l
+max{b, c} ≤ 4R cos

(α
4

)
,

with equality if and only if rays AH, AI, and AO divide angle BAC into four equal
angles.

Solution I by John G. Heuver, Grand Prairie, AB, Canada.
Let β and γ be the radian measures of the angles at B and C , respectively. With-

out loss of generality, suppose b ≥ c, and recall that l = 2bc cos(α/2)/(b + c). The
inequality becomes

bc

l
+max{b, c} =

b + c

2 cos(α/2)
+ b ≤ 4R cos

α

4
.

Assuming that4ABC is nondegenerate, and using cos(α/2) > 0, the inequality can be
rewritten as

1

2R

(
b + c + 2b cos

α

2

)
≤ 4 cos

α

4
cos

α

2
.

Since b = 2R sinβ and c = 2R sin γ , and putting d = (b + c + 2b cos(α/2))/(2R),
we have
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d = sinβ + sin γ + 2 sinβ cos
α

2
= 2 sin

(
β + γ

2

)
cos

(
β − γ

2

)
+ 2 sinβ cos

α

2

= 2 cos
α

2

(
cos

(
β − γ

2

)
+ cos

(
α

2
+
γ

2
−
β

2

))
= 4 cos

α

2
cos

α

4
cos

(
β

2
−
γ

2
−
α

4

)
≤ 4 cos

α

4
cos

α

2
.

Equality holds whenever cos( β2 −
γ

2 −
α

4 ) = 1. The inequality yields β

2 −
γ

2 ≤
α

4 . By
assumption ∠B ≥ ∠C , hence ∠BAH = α

2 +
γ

2 −
β

2 , ∠HAI = β

2 −
γ

2 , ∠IAO = β

2 −
γ

2 ,
and ∠OAC = α

2 +
γ

2 −
β

2 , so equality of the four angles follows.

Solution II by Prithwijit De, HBCSE, Mumbai, India. Using the known results l =
2bc cos( α2 )/(b + c) and max{b, c} = 1

2 (b + c + |b − c|), we have

bc

l
+max{b, c} =

b + c

2 cos(α/2)
+

b + c + |b − c|

2
=
(b + c)(1+ cos(α/2))

2 cos(α/2)
+
|b − c|

2
.

(1)
Now,

b + c = 2R(sin B + sin C) = 4R cos
α

2
cos

B − C

2
,

b − c = 2R(sin B − sin C) = 4R sin
B − C

2
sin

α

2
.

Substituting these into (1) yields

bc

l
+max{b, c} =

(b + c)(1+ cos α

2 )

2 cos(α/2)
+

1

2
|b − c|

= 2R

(
cos

B − C

2

(
1+ cos

α

2

)
+

∣∣∣∣sin
B − C

2

∣∣∣∣ sin
α

2

)
= 4R cos

α

4

(
cos

B − C

2
cos

α

4
+

∣∣∣∣sin
B − C

2

∣∣∣∣ sin
α

4

)
. (2)

Let 1
2 (B − C) = θ . Applying the Cauchy–Schwarz inequality to (2) yields

cos θ cos
α

4
+ | sin θ | sin

α

4
≤

√(
cos2 θ + sin2 θ

) (
cos2

α

4
+ sin2 α

4

)
= 1.

Thus

bc

l
+max{b, c} ≤ 4R cos

α

4
.

Equality occurs if and only if equality holds in the Cauchy–Schwarz inequality. That
is, it holds if and only if

cos β−γ

2

cos α

4

=
| sin β−γ

2 |

sin α

4

,

which is equivalent to tan(α/4) = |tan((β − γ )/2)|.
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Now the tangent function is increasing on [0, π/2), and | β−γ2 | <
β+γ

2 < π−α

2 , so
α

4 < π/2 and | β−γ2 | < π/2. Therefore, α

4 =
β−γ

2 if β ≥ γ , and α

4 =
γ−β

2 if β < γ .
In either case, α = 2|β − γ |. Now ∠HAI = ∠OAI = 1

2 |β − γ |, and since ∠BAH =
∠CAO, we also have ∠BAH = ∠CAO = 1

2 (α − ∠HAI − ∠OAI) = 1
2 |β − γ |. Thus

the rays AH, AI, and AO divide angle BAC into four equal angles.

Also solved by G. Apostolopoulos (Greece), M. Bataille (France), D. Beckwith, E. Braune (Austria), R. Chap-
man (U. K.), M. Daher (Lebanon), P. P. Dályay (Hungary), D. Fleischman, V. V. Garcı́a (Spain), O. Geupel
(Germany), A. Habil (Syria), B. Karaivanov, O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II, O. P.
Lossers (Netherlands), J. Minkus, C. R. Pranesachar (India), M. A. Prasad (India), F. Richman, R. Stong, Z.
Vörös (Hungary), J. Zacharias, GCHQ Problem Solving Group (U. K.), and the proposer.

A Real Inequality

11632 [2012, 248]. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA,
and Dan Schwarz, Bucharest, Romania. Let n be a positive integer, and write a vector
x ∈ Rn as (x1, . . . , xn). For x, y, a,b ∈ Rn , let

[x, y]a,b =
∑

1≤i, j≤n

xi y j min(ai , b j ).

Show that for x, y, z, a, b, c in Rn with nonnegative entries,

[x, x]a,a · [y, z]2b,c + [y, y]b,b · [z, x]2c,a ≤ [x, x]1/2a,a · [y, y]1/2b,b · [z, z]c,c

·

(
[x, x]1/2a,a · [y, y]1/2b,b + [x, y]a,b

)
.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. We will use the following lemma.

Lemma. Let E be a real vector space equipped with an inner product 〈·, ·〉 and its
corresponding norm ‖ · ‖. For any x, y, z, u, v ∈ E with ‖u‖ = |v‖ = 1,

(i) 〈u, z〉2 + 〈v, z〉2 ≤
(
1+ |〈u, v〉|

)
‖z‖2,

(ii) ‖x‖2
〈y, z〉2 + ‖y‖2

〈x, z〉2 ≤ ‖x‖ ‖y‖ ‖z‖2
(
‖x‖ ‖y‖ + |〈x, y〉|

)
. (∗)

Proof. (i) Let t = 〈u, v〉. The case t = ±1 corresponds to v = ±u and the inequality is
simply the Cauchy–Schwarz inequality 〈u, z〉2 ≤ ‖z‖2. Next, suppose that −1 < t <
1, so that the vectors α and β defined by α = 1

√
2(1+t)

(u + v) and β = 1
√

2(1−t)
(u − v)

are orthogonal unit vectors and

(1+ t)〈α, z〉2 + (1− t)〈β, z〉2 =
1

2

(
〈u + v, z〉2 + 〈u − v, z〉2

)
= 〈u, z〉2 + 〈v, z〉2.

Using the Bessel inequality 〈α, z〉2 + 〈β, z〉2 ≤ ‖z‖2, we see that

〈u, z〉2 + 〈v, z〉2 ≤
(
1+ |t |

)(
〈α, z〉2 + 〈β, z〉2

)
≤
(
1+ |t |

)
‖z‖2,

as claimed.
(ii) The inequality (∗) is easy if x = 0 or y = 0. Otherwise, it follows from (i) by

writing u = x/‖x‖ and v = y/‖y‖.

Now return to our problem. For a nonnegative real number λ, write χλ for the char-
acteristic function of the interval [0, λ]. Our vector space E will consist of the fi-
nite linear combinations of the functions {χλ : λ ≥ 0}, with inner product 〈 f, g〉 =
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∫
∞

0 f (t)g(t) dt . For nonnegative x, a ∈ Rn , let fx,a =
∑n

k=1 xkχak , and note that it is
in E . Now 〈χλ, χµ〉 = min(λ, µ), so [x, y]a,b = 〈 fx,a, fy,b〉 and similarly for the other
cases. We obtain the required inequality by substitution in (∗) of fx,a, fy,b, and fz,c for
x , y, and z, respectively, and noting that 〈 fx,a, fy,b〉 = [x, y]a,b ≥ 0.

Also solved by B. Karaivanov, R. Stong, and the proposers.

This Inequality Needs Adjustment

11634 [2012, 248]. Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National Col-
lege, Bucharest, Romania, and Neculai Stanciu, George Emil Palade, Buzău, Roma-
nia. Let (x1, . . . , xn) be an n-tuple of positive numbers, and let X =

∑n
k=1 xk . Let a

and m be nonnegative numbers, and let b, c, d be positive. Suppose that p ≥ 1 and
cX p > d max1≤k≤n x p

k . Show that

n∑
k=1

aX + bxk

cX p − dx p
k

≥
(an + b)nmp

(cn p − d)m
X 1−mp.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. The published inequality is false, in general (see comment below).
We prove the corrected version,

n∑
k=1

aX + bxk(
cX p − dx p

k

)m ≥
(an + b)nmp

(cn p − d)m
X 1−mp.

This is easy for m = 0, so we assume m > 0. Consider the function f defined for
t ∈

[
0, (c/d)1/p

)
by

f (t) =
a + bt

(c − dt p)m
.

We have

f ′(t) =
b

(c − dt p)m
+ mdp · (a + bt) · t p−1

·
1

(c − dt p)m+1 ,

and thus f ′ is increasing, so f is convex on
[
0, (c/d)1/p

)
. Using the assumption

cX p > d max1≤k≤n x p
k , we see that tk = xk/X belongs to

[
0, (c/d)1/p

)
for every k

in {1, 2, . . . , n}. Therefore

1

n

n∑
k=1

f (tk) ≥ f

(
t1 + · · · + tn

n

)
= f

(
1

n

)
,

which is equivalent to the required (corrected) inequality.

Editorial comment. The missing m is the fault of the editors, not the proposers. Richard
Stong notes as follows that the version without that m is not correct: In the case where
xk = 1 for all k, we compute X = n and the requested inequality becomes

n(an + b)

cn p − d
≥
(an + b)n

(cn p − d)m
.

This reduces to (cn p
− d)m−1

≥ 1, which need not hold.
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Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), B. Karaivanov, O. P. Lossers (Netherlands), P.
Perfetti (Italy), M. A. Prasad (India), R. Stong, T. Viteam (Uruguay), GCHQ Problem Solving Group (U. K.),
and the proposers.

When Sums of Powers Determine Their Terms

11635 [2012, 344]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu”, Bârlad, Romania, and Nicuşor Minculete, “Dimitrie Cantemir” Univer-
sity, Braşov, Romania.
(a) Let α and β be distinct nonzero real numbers. Let a, b, c, x, y, z be real, with
0 < a < b < c and a ≤ x < y < z ≤ c. Prove that if

xα + yα + zα = aα + bα + cα and xβ + yβ + zβ = aβ + bβ + cβ,

then x = a, y = b, and z = c.
(b) Let α1, α2, α3 be distinct nonzero real numbers. Let a1, a2, a3, a4, x1, x2, x3, x4 be
real, with 0 < a1 < a2 < a3 < a4 and a1 ≤ x1 < x2 < x3 < x4 ≤ a4. If

4∑
k=1

x
α j
k =

4∑
k=1

a
α j
k

for 1 ≤ j ≤ 3, must ak then equal xk for 1 ≤ k ≤ 4?

Solution by Grahame Bennett, Indiana University, Bloomington, IN.
(a) If α > 0, then zα ≥ yα ≥ xα and cα ≥ bα ≥ aα. We then have

zα + yα + xα = cα + bα + aα,

zα + yα ≥ cα + bα (since xα ≥ aα),

zα ≤ cα.

That is, the triple (xα, yα, zα) is majorized by (aα, bα, cα) in the sense of the Hardy–
Littlewood–Pólya book, Inequalities. It follows from Theorem 108 of that book that
either (x, y, z) = (a, b, c) or

ϕ(xα)+ ϕ(yα)+ ϕ(zα) < ϕ(aα)+ ϕ(bα)+ ϕ(cα),

whenever ϕ is strictly convex. The latter alternative may be ruled out by taking

ϕ(t) =

{
tβ/α if β/α > 1 or β/α < 0,
−tβ/α if 0 < β/α < 1,

to deduce xβ + yβ + zβ 6= zβ + bβ + cβ . Therefore, (x, y, z) = (a, b, c).
The case α < 0 is similar. We then have xα ≥ yα ≥ zα and aα ≥ bα ≥ cα. Also

xα + yα + zα = aα + bα + cα,

xα + yα ≤ aα + bα,

xα ≤ aα,

so again (xα, yα, zα) is majorized by (aα, bα, cα).
(b) The answer here is no. A counterexample is provided by noting that

1p
+ 5p

+ 8p
+ 12p

= 2p
+ 3p

+ 10p
+ 11p

for p = 1, 2, and 3.
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Editorial comment. Problems of a similar nature are considered from a more advanced
point of view in G. Bennett, “p-free `p inequalities,” this MONTHLY 117 (2010), 334–
351. The tool of choice there is Steinig’s version of Descartes’ Rule of Signs.

Also solved by P. P. Dályay (Hungary), J.-P. Grivaux (France), Y. J. Ionin, J. H. Lindsey II, O. P. Lossers
(Netherlands), R. Stong, and the proposers. Part (a) only by O. Geupel (Germany).

A Point on a Diagonal of a Quadrilateral

11636 [2012, 344]. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan.
Let ABCD be a convex quadrilateral, and suppose there is a point M on the diagonal
BD with the property that the perimeters of ABM and CBM are equal and the perimeters
of ADM and CDM are equal. Prove that |AB| = |CB| and |AD| = |CD|.

Solution by Hugo Caerols and Rely Pellicier, Adolfo Ibáñez University, Chile. The
condition that the perimeters of ABM and CBM are equal implies that A and C lie on a
certain ellipse with foci B and M . The condition that the perimeters of ADM and CDM
are equal implies that A and C lie on a certain ellipse with foci D and M . Thus A and
C are the two intersections of these ellipses. Now, line BMD is the major axis of both
ellipses, so by symmetry in that line we obtain |AB| = |BC| and |AD| = |DC|.

Also solved by G. Apostolopoulos (Greece), M. Bataille (France), D. Beckwith, C. Blatter (Switzerland),
J. Cade, R. Chapman (U. K.), C. Curtis, M. Daher (Lebanon), P. P. Dályay (Hungary), S. Durbha, A. Er-
can (Turkey), D. Fleischman, O. Geupel (Germany), D. Gove, J.-P. Grivaux (France), J. W. Grossman, E. A.
Herman, D. Hetzel & E. Ionascu, J. G. Heuver (Canada), E. Ionascu, Y. J. Ionin, W. Janous (Austria), B.
Karaivanov, Y. H. Kim, O. Kouba (Syria), P. T. Krasopoulos (Greece), J. H. Lindsey II, G. Lord, O. P. Lossers
(Netherlands), C. Martin, M. D. Meyerson, J. Minkus, J. H. Nieto (Venezuela), V. Pambuccian, I. Pinelis,
M. A. Prasad (India), U. Schneider (Switzerland), M. Slattery, J. H. Steelman, R. Stong, D. B. Tyler, T. Viteam
(Uruguay), Z. Vörös (Hungary), J. Zacharias, GCHQ Problem Solving Group (U. K.), TCDmath Problem
Group (Ireland), and the proposer.

A Rearrangement Inequality

11638 [2012, 345]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let
a, b, c be positive real numbers. Prove that

a3
+ b3
+ c3
+ 3 ≥ 3

(
(a2b + 1)(b2c + 1)(c2a + 1)

)1/3
.

Solution by John Zacharias, Melbourne, FL. By the Rearrangement Inequality, we
have a3

+ b3
+ c3
≥ a2b + b2c + c2a. After adding 3 to each side and applying the

AM–GM inequality, we get

a3
+ b3
+ c3
+ 3 ≥ (a2b + 1)+ (b2c + 1)+ (c2a + 1)

≥ 3((a2b + 1)(b2c + 1)(c2a + 1))1/3.

Editorial comment. The Rearrangement Inequality states: xn y1 + · · · + x1 yn ≤ xσ(1)y1

+ · · · + xσ(n)yn ≤ x1 y1 + · · · + xn yn for every choice of real numbers x1 ≤ · · · ≤ xn

and y1 ≤ · · · ≤ yn and every permutation σ of {1, . . . , n}. See: G. H. Hardy, J. E.
Littlewood & G. Pólya, Inequalities (2nd ed., 1952, Cambridge Univ. Press), Section
10.2, Theorem 368.

Also solved by 49 other readers and the proposer.
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