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SPECTRAL PROPERTIES OF SELFADJOINT ORDINARY DIFFERENTIAL OPERATORS
WITH AN INDEFINITE WEIGHT FUNCTION

B. burgus*
H. Langer **

Abstract

Spectral properties of the equation I(f) - Arf = 0 with an indefinite weight func-
tion r are studied in Lf,|. The main tool is the theory of definitizable operators
in Krein spaces. Under special assumptions on the weight function, for the
operator associated with the problem, the regularity of the critical point infinity
is proved. Some relations to full- and half-range expansions are indicated.

1. Basic Properties
1.1. We consider the formal differential expression I{f) of order 2n on the
interval (a,b), —»<a <b < +oo; \

Ls): = () @of O™ + (1) oy YD 4 4 p,

where the functions po....p, are real, po>0 ae. on (a,b) and 1/p,,
P1...0n€LL:(a,b). The exact meaning of L(f) under this general assumption is
that of the quasi-derivative of order 2n (see Krein [1947] and Naimark [1968]):
1(r): = r®1 We study the spectral properties of the equation

W{f)=Aaf =0, (1.1)

where the real weight function r€Ll.(a,b) is indefinite, that is, the sets
A,:={z:7(x)>0}, A_: = {z:7(z)<0} are both of positive Lebesgue measure. For
the sake of simplicity we assume that 7 # 0 a.e. on (a,b). The problem (1.1) is
called regular if —=<a <b <= and ;—}—-, PyPn. TELY(a,b); the boundary
0
point a (b) is called singular if @ = —= (b = =) or at least one of the functions
pl—. Py, . . . .Pn.7 is not summable at a (b, respectively).
0 . ,
By L? we denote the Krein space [Bogrgar. 1974, Langer, 1982] of all measur-
able functions f on (a,b) such that flf |?|7 |dz < =, equipped with the
a

indefinite and definite inner products
i i

[f9)=ffgrdz' and (f.g):= [fg|r|dz, resp. (1.2)
a a

Evidently, the operator J
(Jf)(=z): = (sgn7(z))f (z) (ze(a,b))
is the fundamental symmetry connecting the scalar products in (1.2).

By D° we denote the set of all J €L? which vanish identically in neighbor-
hoods of @ and b and have absolutely continuous quasi-derivatives up to order
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2n —1 such that

rel=1(r)=lrlg
with some geL? On D° we define the operators B, and
A% D(AS, ): = D(BS:): = DP
Binf:=g it U(f)=|rlg. geLf

and A% : = JBYy Evidently, A%/ =g if and only if for f €DP, g€L? we have
I1(f) =rg. Itis easy to see that the definition of these operators is cgrrect. The
closure of A%, in L? exists; it is denoted by Amin and called the minimal opera-
tor associated with the problem (1.1). It is easy to see that ASi, and Ay, are
Hermitian with respect to the inner product [-,-], that is, they are Hermitian in
the Krein space L? (for the definition of Hermitian and selfadjoint operators in
Krein spaces, we refer to Bognar [1974] and Langer [1982]).

1.2. Recall that an inner product on a linear space L is said to have a finite
number « of negative squares, if it is negative definite on a x-dimensional sub-
space of L and there exists no (x+1)-dimensional subspace with this property. In
this paper we study the problem (1.1) under the following assumptions (Al) and
(A2).

(A1). The inner product { - , - ], defined on D by
if .93 = [Adws 9] (= io,:fm-lf‘”g_mdz)
has a finite number of negative squares. ’
PROPOSITION 1. The condition (A1) is satisfied in each of the following cases:
(a) Yhe problem (1.1) is regular.

(b) For each singular boundary point a or b of the problem (1.1), there
erists a'c(a,b) or b'e(a,b) such that the inner product {- , -{ is nonnega-
tive definite on the set of all functions f €DP which vanish outside of (a,a')
or (b',b), respectively.
To prove the first statement, we observe that [A%wf.g]=(B%.f.9)
(f .g €DP) and use M. G. Krein's results that B2;, is bounded from below and that
an arbitrary selfadjoint extension of B, in L\"’,.l has discrete spectrum (see
Krein {1947] and Naimark [1968]). The second statement follows if we use the
decomposition method of I. M. Glazman [1967], restricting A% to all functions
f €D° with the property f (b)) = fUl(b") = ... = f®-1(p7) = 0 (if, for example,
b is singular), and use statement (a).

1.3. The Hermitian operator Amy, in the Krein space L2 has selfadjoint exten-
sions in L2 Infact, A is a selfadjoint extension of Ay, if and only if the operator
B:. = JA is a selfadjoint extension of the Hermitian operator B, in the Hilbert
space LF,. |- Therefore the selfadjoint extensions A of Ami, are completely
described by boundary conditions at a and b which are the same for 4 and
B = JA and which can be found, for example, in Naimark [1968]. Now we formu-
late the second assumption.

(A2). For some (and hence for all) selfadjoint ezxtensions A of ASi, in L2 the
resolvent sef is nonempty.
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We mention {cf. Daho and Langer [1977]) that this condition is equivalent to
each of the following:

(A2') For some (and hence for all) A€C, the range R(A, — NJ) is closed.

(A2'') For some selfadjoint extension A of Amyp and for some AEC, the range
R(A — \I) is closed.

PROPOSITION 2. The condition (A2) is satisfied in each of the following cases:
(a) The problem (1.1) is regular.

(b) For each singular boundary point a or b of the problem (1.1) there
exists a'€{a,b) or b'e(a,b) such that the weight function r is of consta
signa.e. on (a,a’) or (b'.b), respectively. :
Here the statement (a) is a classical result, and (b) follows again from an
application of Glazman's decomposition method [Glazman, 1967].

2. Definitizability of the Selfadjoint Extensions

2.1. Recall that a selfadjoint operator 4 in a Krein spacé K is said to be
definitizable [Langer, 1982] if p(A) # ¢ and there exists a polynomial p such
that [p(4)f.f ] = 0 for all f €D(4*), where k is the degree of p.

THEOREM 1. Suppose that the operatar A, in Section 1.1 satisfies the conditions
(A1) and (A2). Then every selfadjoint extension A of AS;, in L? is definitizable.

Indeed, it is easy to see that for such a selfadjoint extension A the inner
product [Af.g] (f.9€D(4)) has a finite number of negative squares. Hence we
can apply Langer [1982: 1.3(c)], and the statement follows.

Suppose, for example, that the problem (1.1) is regular. Then we have for
J.gE€ED(A '

b
[4f g] = ji;)o[pn-,-f WgTldz + b(f .g). (2.1)

where b(f.g) ("the boundary form") is an inner product, depending for a regular
(singular) boundary point only on the values of f,g and their first 2n~1 quasi-
derivatives at this point (in the neighborhood of this point, respectively). The
number of negative squares of the inner product, given by the first term on the
righthand side of 2.?), coincides with the number of negative squares of the
inner product [ASimf.g] on D° Thus, the number of negative squares of
{Af 9] (f.g€D(A)) is not greater than the sum of the negative squares of
Adnf .9 ] (f .g €DP) and of the boundary form b(f .g) (f .g €D(A%)

2.2. Here we suppose that the conditions of Theorem 1 are satisfied and 4 is an
arbitrary selfadjoint extension of A2;, in the Krein space L2 By k; we denote
the number of negative squares of the inner product [Af.g] (f .g€D(4)). The
following spectral properties of A4 are immediate consequences of the
‘definitizability of A (see Langer [1982]). :

(1) The operator A has at least «, eigenvalues A (counted according to their
algebraic multiplicities) in the closed upper half-plane with the following pro-
perty: If A>0 (A <O0) there exists an eigenelement J of A corresponding to A

such that [f . f]1<s0(f.f1=0)
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(2) The nonreal spectrum of A consists of pairs of isolated eigenvalues A\ X;
the linear span of the root spaces corresponding to these eigenvalues A in the
upper half-plane is neutral and hence of dimension < k4.

We mention that for any selfadjoint operator 4 in a Krein space the root
spaces, corresponding to two eigenvalues A u are orthogonal with respect to the
indefinite inner product if A # &, and skewly linked if 4 = A and A,u are isolated
points of g(A4).

(3) The operator A has positive and negative spectrum, both of infinite multi-
plicity. If, in particular, o(A) is discrete, it contains infinitely many positive
eigenvalues s;5 and infinitely many negative eigenvalues s;7, j = 1.2,..., and the
root spaces, corresponding to the real eigenvalues of A are nondegenerated with
respect to the indefinite inner product.

We denote the signature of the root space corresponding to the real eigen-
value A of 4 by (k_(A), £+(X)); for an arbitrary eigenvalue A of 4, its algebraic
multiplicity is denoted by v(A).

(4) If o(A) is discrete, we have
Yesy) + (s + 1 v(A) k4,
J J AEKS;!

where the sign = holds if 0 is not an eigenvalue of A

We mention that these statements imply some results of Mingarelli [1983a
and 1983b).

The spectral theory of definitizable operators in Krein spaces yields the
existence of a spectral function with critical points (see Langer [1982]) for 4. It
can also be shown that there exists a scalar or matrix spectral measure that
has, possibly, certain singularities; in a special situation this spectral measure
was considered by Daho and Langer [1977]. Moreover, expansions of arbitrary
elements of L? with respect to eigenelements or generalized eigenelements of A
hold. However, they becomme more complicated than in the case of a positive
weight function as the integrals need a regularization at the singular critical
points of A (see Daho and Langer [1977] for the case of second-order operators).
In Section 3 we shall show that these expansions are "nice" if the spectrum of A
is discrete, 7 has only finitely many turning points, and at these turning points
some condition —going back to Beals [1984] —is satisfled. Recall that the points
of AyNA_ are called the turning points of r.

2.3. The following result can also be proved by means of Glazman's decomposi-
tion method, using Theorem 1 of Jonas and Langer [1979].

PROPOSITION 3. Suppose that the condition (A1) is satisfied and that r has only a
Jinite number of turning points. If the set A_ has a positive distance from all
the singular boundary points a or b, then g(A)N(—=,0) is discrete with the only
accumulation point —oo,

For a special differential operator, this structure of g(4) was established in"
Mikulina [1971]. '

Finally, we mention that in the special case x4 = 0 (that is, [Af.f]=0 for
J €D{4)) and 0£o(4) the eigenvalues sf,j = 1,2,..., can be characterized by
means of minimax principles (see Phillips [1970] and Textorius [1974]).
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3. Regularity of the Critical Point Infinity
3.1. The turning point zo of the weight function 7 is said to be n-simple if there
exists an interval /g around z4 such that for z €/ {zo} representation
T(z) = sgn(z ~z0) - |z—z0|%(z) (3.1)
holds with some a >—% and a function p: -
p(z): = pu(@). = > =0,

p(z): = p(z), z <z

where p, is defined and of class C* on [gn[zg.=) ([on(—=,zg], resp.).
0 # sgnp, :z:o = sgnp_(zo) and for the one-sided derivatives at z, we have

pi(zo) = pilzo) = .= pfN(zo) =0 ifn > 1.

THEOREM 2. Suppose that the following conditions are satisfied:

1. The prablem (1.1) is regular.

2. The weight function r has only a finite number of turning points that
are all n-simple.

3. There exists a § > 0 such that for each turning point zy of r we have
0< mf po( z)< sup‘dpo:z:)<m

Izac(u ) zI:(u b)
Then mﬁndy is not a singular crilical point for every selfadjoint exten-
sion Aof AS;, in L2
We shall only sketch the proof. Propositions 1 and 2 and Theorem 1 imply
that A is definitizable. We show that for A there exists an operator ¥ with the
properties given by Curgus [1984: Remark 3.8], and an application of a proposi-
tion given in that paper Curgus 1984: Proposition 3.5] yields the desired resuit.

To simplify the construction of W, we suppose a <0 < b and that zg =0 is
the only turning point of 7. Let 6 > 0 be such that ( -6,6)c (a,b) and [, in (3.1)
can be chosen to be (—6,6).

We choose 2n mutually distinct points £, ...,%5,€(1,2) and define the
functions
(z): = 2 LE) _
hj(z): = = p(—4;7) (zg[- 2 ] z # 0).

By D we denote the set of all functions f €L? whlch have an absolutely continu-
ous (n —1)-st derivative and for which

fpolf("’lzlrldz < w,
[

Further, we choose ¢€C™(a,b), which is constant in a neighborhood of zero,
#(0) = 1, and suppec[-5-. 5]
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Now we define linear operators X;, Y, in L? as follows:
(X,u)(z): =u(z), z€(0,b]

(Xsu)(z): = ;o(z)fa,t,-u(—t,-z). z€la,0),
j=1
(Yyu)(z): =0, z€[a,0),

u(z).+ %a,-(;ohju)(—tij-), z€(0,b],
Jj=1

where @, . . . , Qg are reals to be chosen below. It is not hard to see that X+ Y,
are bounded in L°. Moreover, the numbers «;, . . . , az, can be chosen such that
X,, Y, map D into itself. In order to see this with w€D, we form the first n
derivatives of X,u on [2,0) and on (0,b]. Then X,u will have n—1 absolutely
continuous derivatives on [a,b] if and only if for the first n—1 derivatives the
limits from the left and from the right at zero coincide, which is equivalent to
the equations

%ajt,’-‘” = (-1 (k=0.1,..,n-1). (3.2)
ij=1
A similar reasoning for Y, yields the equations
p+(0)
tE® = (1) = (k =0,1,...n-1). 3.3
j?laj 4 (-1 p-(0) ( ) (3.3)

The system (3.2), (3.3) determines the numbers a4, j = 1,2.....2n uniquely. It is
easy to check that the operators X,, Y, satisty tile relation X, = Y,/ where *
denotes the adjoint in Lf,). '

In the same way, exchanging the roles of [a,0) and (0,b], operators X_, Y_
with similar properties are defined. Finally, put

W:.=Y, X, +Y X_.

As in Curgus [1984: Remark 3.6], it follows that W is positive, bounded, and
boundedly invertible in the Krein space L2 Moreover,

(Pu)(z) = u(z) if ze[a.b] (-g-.-g-).

We mention that X,, Y, here do not necessarily have the property (a) given in
Curgus [1984: Remark 3.6].

The set D[JA] (see Krein [1947] and Curgus [1984]) consists of those func-
tions of D that satisfy the essential boundary conditions. As the function Wu
coincides near a and b with «, it satisfies the same boundary conditions as «;
hence WD[JA] ¢ D[JA]. Thus ¥ has all the desired properties.

The construction of the operators X,, Y, follows [Beals, 1984: Lemma 1].

3.2. Under the conditions of Theorem 2 we denote by F; , the orthogonal projec-
tion in the Krein space L? onto the root space of A corresponding to
sf. 7 = 1.2,.., and by P, the orthogonal projection onto the (finite dimensional)
span of the root spaces corresponding to the (possible) eigenvalue zero and to
the nonreal eigenvalues of A.

COROLLARY. Under the conditions of Theorem 2we have for arbitrary f €L?
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f=Pof + SRS+ D PS
=1 Jj=1

where both sums converge in the norm of Lf.

We mention that for all the points s;* with the property «.(s;*) = fc,,(si-') =0
there can be chosen an orthogonal basis of eigenvectors ef; in
Pj L% k =1..v§ j =12.., suchthat

g [-.efel

£n [efx. efe]

The corollary contains, for example, the full-range expansions of the "regular”
examples in Kaper, Kwong, Lekkerkerker, and Zettl [1984]. We mention that the

above construction of # and hence the statement of Theorem 2 can also be
extended to some singular operators. This extension will be considered else-

where.

Pj.tz

3.3. Suppose now for a moment that (under the conditions of Theorem 2) we
have k4 = 0 and 0£0,(A4). Then o(A) consists of the two sequences (s;*); (s;7).
and we have £_(s;") = x4(s;7) = 0, j = 1.2,.... Moreover, the subspace

cls (P LR j=12.]

is a maximal nonnegative subspace of the Krein space L? (see Bognar [1974] and
Langer [1982]). If we denote by K, the subspace

Ko.={feLz f(z)=0 ifzeA}

and by P, the orthogonal projection onto K, in L?, it follows that for arbitrary
J +€K, we have .

fo= j‘;P,,P,-,,, 1 : (3.4)

where the series converges again in the norm of Lf.|. This is an abstract form of
the half-range expansion considered, for example, in Beals [1984] and Kaper,
Kwong, Lekkerkerker, and Zettl [1984].

If k4 = 0 we consider for arbitrary f ,.€K, the sum

Y PiPj.fs.
j'.::_(s,“‘):O .

It converges in the norm of L% ; however, it equals f, only for f,€K,, where K,
is a subspace of K, such that dimK,/K,' < =. To expand arbitrary elements of
K,, we have to add to the elements of P, P; ,L?, k_(s;*) = 0, finitely many ele-
ments A, that are the projections onto X, of root vectors h; of A corresponding
to the possible eigenvalue zero, the eigenvalues s;* with £_(s;*) > 0, x.(s;7) >0
and to nonreal eigenvalues. A minimal set of such elements h,;e which have to be
added can easily be found from the condition that the linear span of these root
vectors and of c.l.s. {P; L% k_(s/*) = 0,j =1.2,...} is a maximal nonnegative sub-
space of the Krein space LZ2.
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