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1. Introduction

Let (K, [ · , · ]) be a Krein space, let G be a Krein subspace of K with finite
codimension codim G and let P = PG be the projection in K onto G. Let T
be a linear relation in K. Then the finite-codimensional compression of T to
G is the linear relation T0 in G defined by

T0 := PT |G = PT |G∩ dom T = {{f ;Pg} : {f ; g} ∈ T, f ∈ G}.
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The index 0 attached to a linear relation will always denote a finite-codimen-
sional compression of this relation, the spaces K and G involved being clear
from the context. We assume that the reader is familiar with Krein and Pon-
tryagin spaces and operators and linear relations (or multi-valued operators)
on these spaces such as (maximal) dissipative, (maximal) symmetric and self-
adjoint linear relations as treated in for example [5,8,11,12,25]. In this paper
by a subspace we mean a closed linear subset. The symbol +̇ stands for “di-
rect sum” and the symbol ⊕ for “orthogonal direct sum”. Alternatively, we

use
[ L
M

]
to denote the direct sum L+̇M of linear spaces L and M.

Lemma 1.1. Let K be a Krein space and let G be a Krein subspace of fi-
nite codimension. If T is a closed linear relation (operator) in K, then its
compression T0 to G is a closed linear relation (operator) in G.
Proof. We first prove the statement: If L is a subspace of a Krein space
H and Q is a projection in H onto a Krein subspace of finite codimension,
then QL is a subspace of H. Indeed, since L ∩ QH is a subspace, there is
a subspace N such that L = (L ∩ QH)+̇N , direct sum. For example, take
N equal to the orthogonal complement of L ∩ QH in L with respect to
the Hilbert space inner product induced by a fundamental symmetry on H.
Assume dim N > dim(QH)⊥. Then there is a nonzero element x ∈ N ⊂ L
such that x ⊥ (QH)⊥, that is,

0 �= x ∈ (L ∩ QH) ∩ N = {0}.

This contradiction implies that dim N ≤ dim(QH)⊥. We have QL = (L ∩
QH) + QN and hence, being the sum of two subspaces one of which is finite
dimensional, QL is a subspace (see [16, Theorem I.4.12]). This proves the
statement. Take L equal to T considered as a subspace of H = K ⊕ K and
Q = diag{I;PG}. Then the statement implies that PGT is a closed linear
relation in K and hence its restriction T0 to G is a closed linear relation
in G. �

For the next result see [15, Lemma 2.1].

Lemma 1.2. (Gohberg-Krein (1959)) Let a Banach space B be decomposed
into the direct sum of a subspace R and a finite dimensional subspace N :
B = R+̇N . If D is a dense linear subset of B, then:

(i) D ∩ R is dense in R, and
(ii) there is subspace N ′ ⊂ D with dim N ′ = dim N such that B = R+̇N ′.

Corollary 1.3. Let K be a Krein space and let G be a Krein subspace of K of
finite codimension.

(i) If T is a densely defined linear relation (operator) in K, then its com-
pression T0 to G is a densely defined linear relation (operator) in G.

(ii) Let T be a closed densely defined operator in a Krein space K. Then T
is bounded in K if and only if T0 is bounded in G.

Proof. By Lemma 1.2(i) with B = K, R = G and D = dom T , we have
dom T0 = D ∩ G is dense is G. This proves (i).
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The “only if” part of (ii) is straightforward. For the “if” part assume
that T is a closed densely defined operator in K and that T0 is bounded in
G. By Lemma 1.2 there exists a finite dimensional subspace F ⊂ dom T such
that K = G+̇F . With respect to this direct sum T has the following block
operator matrix representation

T =
[
T0 U
V W

]
:
[G
F

]
→

[G
F

]
,

where U : F → G, V : (dom T )∩G → F and W : F → F . As linear operators
defined on F , U and W are bounded. Since T is closed and T0 is bounded,
V is closed. As V is of finite rank it must be bounded. Thus all four blocks
in the block operator representation of T are bounded, yielding that T is
bounded as well. �

Recall the following definitions for a linear relation T in a Krein space
(K, [ · , · ]). T is dissipative if Im[g, f ] ≥ 0 for all {f ; g} ∈ T , and it is maximal
dissipative if it is dissipative and not properly contained in another dissipative
linear relation in K. T is symmetric if Im[g, f ] = 0 for all {f ; g} ∈ T , or,
equivalently, T ⊂ T ∗ and it is maximal symmetric if it is symmetric and not
properly contained in another symmetric linear relation in K. Finally, T is
self-adjoint if T = T ∗. These metric notions are related in the following way
(see [5, Statement 2.3.7]).

Lemma 1.4. In the above notation:
(i) T is symmetric ⇔ T and −T are dissipative.
(ii) T is maximal symmetric ⇔ T is symmetric and T or −T is maximal

dissipative.
(iii) T is self-adjoint ⇔ T and −T are maximal dissipative.

Finally, we recall that a maximal dissipative linear relation T is closed
and that it is densely defined if and only if T is an operator, that is, T (0) =
{0}, where T (0) := {g : {0; g} ∈ T} is the multi-valued part of T .

The following theorems concern the metric properties that are shared
by T and its finite-codimensional compression T0. They are taken from [28,
Lemma 1], [26, Theorem 2.2], [3, Theorems 3.3 and 3.4], and [4, Theorems 3.1
and 4.1].

Theorem 1.5. (Stenger (1968)) If T is a self-adjoint operator in a Hilbert
space H, then T0 is a self-adjoint operator in G.
Theorem 1.6. (Nudelman (2011)) If T is a maximal dissipative operator in a
Hilbert space H, then T0 is a maximal dissipative operator in G.
Theorem 1.7. (Azizov-Dijksma (2012)) Let T be a closed densely defined
dissipative (symmetric) operator in a Hilbert space H. Then T is maximal
dissipative (maximal symmetric, self-adjoint) if and only if T0 is maximal
dissipative (maximal symmetric, self-adjoint) in G.
Theorem 1.8. (Azizov-Dijksma-Wanjala (2013)) Let T be a closed dissipative
(symmetric) linear relation in a Krein space K. Then T is maximal dissipative
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(maximal symmetric, self-adjoint) if and only if T (0) = T ∗(0) and T0 is
maximal dissipative (maximal symmetric, self-adjoint) in G.

Strictly speaking the maximal symmetric cases in the preceding two
theorems are not considered in the papers [3] and [4], but they follow from
the dissipative cases in these theorems. By Lemma 1.4, Theorem 1.8 ⇒ The-
orem 1.7 ⇒ Theorem 1.6 ⇒ Theorem 1.5.

Lemma 1.1, Corollary 1.3 and Theorems 1.5, 1.6, 1.7, 1.8 are answers to
easily formulated questions such as: Is the finite-codimensional compression
of a closed linear relation again closed?, etc. In the same vein in [4] the
following two questions were raised and answered:

(a) Is the finite-codimensional compression of the soft (hard) extension of
a nonnegative relation S in a Hilbert space the soft (hard) extension
of the finite-codimensional compression S0 of S?

(b) Is the finite-codimensional compression of the minimal self-adjoint di-
lation of a maximal dissipative relation T equal to the minimal self-
adjoint dilation of the finite-codimensional compression T0 of T?

In this note our results are centered around the following five questions:

(1) If a self-adjoint operator in a Krein space has an invariant maximal
nonnegative subspace, does its finite-codimensional compression, which
by Theorem 1.8 is self-adjoint, have one? (See Sect. 2.)

(2) Is the finite-codimensional compression of a definitizable operator in a
Krein space definitizable? (See Sect. 3.)

(3) If a self-adjoint operator in a Krein space is similar to a Hilbert space
self-adjoint operator, does its finite-codimensional compression have
the same property? (See Sect. 4.)

(4) If both are definitizable and if the point ∞ is a singular critical point for
one of them, is ∞ a singular critical point for the other? (See Sect. 4.)

(5) What is the connection between the defect index of a closed symmetric
linear relation in a Hilbert space and the defect index of its finite-
codimensional compression? (See Sect. 5.)

We do not claim that we answer these questions in full, but each section
in this note contains new results which lead to at least a partial answer to
these questions.

Some of the results mentioned in this paper have been presented at the
one-day workshop held at Stockholm University on September 28, 2015, in
honor of Heinz Langer.

2. Invariant Maximal Nonnegative Subspaces

Let A be a self-adjoint operator in a Krein space K and let A0 be the com-
pression of A to a Krein subspace G of K with finite codimG. We consider
the following question:

Question 2.1. If A has an invariant maximal nonnegative subspace in K, does
A0 have an invariant maximal nonnegative subspace in G?
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The question is not relevant if K is a Pontryagin space. This follows
from Pontryagin’s theorem which states that every self-adjoint operator in
a Pontryagin space has an invariant maximal nonnegative subspace (see [27]
and, for a different proof, [25, Theorem 12.1′]).

In the rest of this section we assume that K is a Krein space with
a fundamental decomposition K = K+ ⊕ K− in which dim K+ = ∞ and
dim K− = ∞; this then holds for every fundamental decomposition of K. In
this case we do not know the answer to Question 2.1. But we can answer
a related question about a sufficient condition that ensures the existence of
an invariant maximal nonnegative subspace. This condition is due to Langer
[21, Satz II.2 and Bemerkung p. 80] and [22]. By S∞(L,M) we denote the
class of compact operators from the Hilbert space L to the Hilbert space
M. We also use the following notation: if (K, [ · , · ]) is a Krein space with
fundamental decomposition K = K+ ⊕ K−, then |K−| stands for the linear
space K− equipped with the inner product −[ · , · ]. Hence K+ and |K−| are
Hilbert spaces.

Theorem 2.2. (Langer (1962)) Let A be a self-adjoint operator in K. If there
exists a fundamental decomposition K = K+ ⊕K− with projections P± : K →
K± such that

(∗) K+ ⊂ dom A and (C) P+AP− ∈ S∞(|K−|,K+),

then A has an invariant maximal nonnegative subspace.

In particular, (∗) holds if A is bounded and for this case the next theorem
provides the answer to the question:

Question 2.3. If A satisfies (C), does A0 satisfy (C)?

Theorem 2.4. If A is a bounded self-adjoint operator in K, then A has property
(C) in K if and only if A0 has property (C) in G.

The theorem implies that if either A or A0 has an invariant maximal
nonnegative subspace thanks to having property (C), then the other one also
has an invariant maximal nonnegative subspace. To prove the theorem we
apply the following lemma.

Lemma 2.5. Let A be a bounded self-adjoint operator in K. Decompose A
as a block operator matrix according to the fundamental decomposition K =
K+ ⊕ K− of K :

A =
[
A11 A12

A21 A22

]
:
[K+

K−

]
→

[K+

K−

]
. (2.1)

Then the following statements are equivalent :
(1) There exists a fundamental decomposition of K for which A satisfies

(C).
(2) There is a uniform contraction K : K+ → |K−| (that is, ‖K‖ < 1), such

that

S(A;K) := KA11 + KA12K + A∗
12 − A22K ∈ S∞(K+, |K−|). (2.2)
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The operator A∗
12 in formula (2.2) and in the proof below is the adjoint

of A12 considered as a mapping from |K−| to K+ and then A21 = −A∗
12.

Proof of Lemma 2.5. By [5, Theorem 1.8.17] there exists a one-to-one cor-
respondence between the fundamental decompositions K = K+

1 ⊕ K−
1 of K

with corresponding projections P±
1 : K → K±

1 and the uniform contractions
K : K+ → |K−| given by the block operator matrix representation:

P+
1 =

[
(I − K∗K)−1 −K∗(I − KK∗)−1

K(I − K∗K)−1 −KK∗(I − KK∗)−1

]
:
[ K+

|K−|
]

→
[ K+

|K−|
]

,

P−
1 = I − P+

1 =
[−K∗K(I − K∗K)−1 K∗(I − KK∗)−1

−K(I − K∗K)−1 (I − KK∗)−1

]
.

It follows that P+
1 AP−

1 = G−1BG−1, where G is the invertible operator

G =
[
I − K∗K 0

0 I − KK∗

]

and

B =
[

I −K∗

K −KK∗

] [
A11 A12

−A∗
12 A22

] [−K∗K K∗

−K I

]
=

[ −B12K B12

−KB12K KB12

]

with

B12 := A11K
∗ + K∗A∗

12K
∗ + A12 − K∗A22 = S(A;K)∗.

Since the class of compact operators is closed under multiplication from the
left and from the right by bounded operators and under taking adjoints, we
conclude that P+

1 AP−
1 ∈ S∞(|K−|,K+) if and only if there is a uniform

contraction K : K+ → |K−| such that S(A;K) ∈ S∞(K+, |K−|). Hence the
statements in the lemma are equivalent. �

Proof of Theorem 2.4. Choose fundamental decompositions: G = G+ ⊕ G−

and G⊥ = F+ ⊕F− and set K+ = F+ ⊕G+, K− = G− ⊕F−. Then relative
to the fundamental decomposition

K = F+ ⊕ G+ ⊕ G− ⊕ F−

A has the block operator matrix representation

A =

⎡
⎢⎢⎣

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

⎤
⎥⎥⎦ :

⎡
⎢⎢⎣

F+

G+

G−

F−

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣

F+

G+

G−

F−

⎤
⎥⎥⎦ .

Thus, if A is decomposed as in (2.1), then the Aij ’s have the block operator
matrix representation

A11 =
[
B11 B12

B21 B22

]
, A12 =

[
B13 B14

B23 B24

]
, A21 =

[
B31 B32

B41 B42

]
,

A22 =
[
B33 B34

B43 B44

]
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and the compression A0 has the block operator matrix representation

A0 =
[
B22 B23

B32 B33

]
:
[G+

G−

]
→

[G+

G−

]
.

If K : K+ → |K−| is any bounded operator with block operator matrix
representation

K =
[
K31 K32

K41 K42

]
:
[F+

G+

]
→

[|G−|
|F−|

]
,

then after some calculations we find that the block operator matrix represen-
tation of S(A;K) in (2.2) takes the form

S(A;K) =
[∗ S(A0;K32) + ∗
∗ ∗

]
(2.3)

in which the nonspecified operators indicated by a ∗ are finite dimensional
and hence compact. Now we apply Lemma 2.5 four times:

If A satisfies (C), then there exists a uniform contraction K such that
S(A;K) is compact. It follows that ‖K32‖ ≤ ‖K‖ < 1, that is, K32 is a
uniform contraction, and that, on account of (2.3), S(A0;K32) is compact.
Hence A0 satisfies (C).

Conversely, if A0 satisfies (C), then there is a uniform contraction K32 :
G+ → |G−| such that S(A0;K32) is compact. Define K : K+ → |K−| by

K =
[
0 K32

0 0

]
:
[ F+

M+

]
→

[|M−|
|F−|

]
.

Then ‖K‖ = ‖K32‖ < 1 and, by (2.3), S(A;K) is compact, that is, A has
property (C). �

3. Definitizable Operators

The following definition is due to Langer [23,24]: An operator A in a Krein
space (K, [ · , · ]) is called definitizable if it is self-adjoint, its resolvent set
ρ(A) �= ∅ and there exists a real polynomial p of degree n, say, such that
[p(A)x, x] ≥ 0, x ∈ dom(An). A polynomial with this property is called a
definitizing polynomial for A. It is shown in [17,23] that for a definitizable
operator A the spectrum σ(A) of A is symmetric with respect to the real axis
and the set σ(A)\R is either empty or finite.

Let A be a self-adjoint operator in a Krein space K and let A0 be the
compression of A to a Krein subspace G of K with finite codimG. In this
section we consider the following question:

Question 3.1. If A is definitizable in K, is A0 also definitizable in G?

When K is a Pontryagin space the question is not relevant, because
every self-adjoint operator in a Pontryagin space is definitizable, see [25,
Theorem 6.1, Note 2] and [24, pp. 11, 12]. In what follows we shall assume
that for some and then for every fundamental decomposition K = K+ ⊕ K−

of the Krein space K both subspaces K+ and K− are infinite dimensional.
In this case there exist examples which show that a self-adjoint operator on
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(K, [ · , · ]) may have an empty resolvent set, see, for instance, the example on
[13, p. 6]. Now an answer to Question 3.1 almost immediately follows from
[2, Theorem 2.2] or [1, Theorem 3.1] which we repeat below.

As in [2], for a closed symmetric relation S in a Krein space K which
possesses a self-adjoint extension A in K we define its defect def S by def S =
dim(A/S). Notice that the number def S is either infinite or a nonnega-
tive integer and it is independent of the choice of the self-adjoint extension
A of S.

Theorem 3.2. (Azizov-Behrndt-Trunk (2008)) Let A and A1 be self-adjoint
operators in a Krein space and assume that the symmetric operator

S = A ∩ A1 =
{{x;Ax} : x ∈ dom A ∩ dom A1, Ax = A1x

}
has a finite defect. Then A is definitizable if and only if A1 is definitizable.

For a self-adjoint operator A and its compression A0 we set

A1 :=
[
A0 0
0 0

]
:
[ G
G⊥

]
→

[ G
G⊥

]
. (3.1)

Then ρ(A1) = ρ(A0)\{0}, hence ρ(A1) �= ∅ if and only if ρ(A0) �= ∅. Also, A1

is definitizable if and only if A0 is definitizable. It follows that Theorem 3.2
implies part (i) of the following theorem, which is an answer to Question 3.1.

Theorem 3.3. Let A be a self-adjoint operator in a Krein space K and let
A0 be the compression of A to a Krein subspace G of K with finite codim G.
Define A1 by (3.1) and set S = A ∩ A1.

(i) If S has finite defect, then A is definitizable in K if and only if A0 is
definitizable in G.

(ii) In particular, if ρ(A) �= ∅ and ρ(A0) �= ∅, then A is definitizable in K if
and only if A0 is definitizable in G.
The proof of part (ii) will be given below.
Theorem 3.2 is a generalization of [20, Theorem 1]:

Theorem 3.4. (Jonas-Langer (1979)) Assume A and A1 are self-adjoint op-
erators in a Krein space K with ρ(A) ∩ ρ(A1) �= ∅. If A is definitizable and
the resolvent operators RA(λ) = (A − λ)−1 and RA1(λ) of A and A1 satisfy

dim ran
(
RA(λ) − RA1(λ)

)
= m < ∞

for some (and then for all) λ ∈ ρ(A) ∩ ρ(A1), then A1 is definitizable.

The crux in the proof of Theorem 3.2 is the proof of the implication

A definitizable and def S < ∞ ⇒ ρ(A1) �= ∅.

For the rest of the proof of Theorem 3.2 one applies Theorem 3.4 after ob-
serving that, by the above implication, ρ(A)∩ρ(A1) �= ∅, that the direct sum
decomposition in K2

A+̇(S∗ ∩ λI) = S∗

holds for all λ ∈ ρ(A) and that the equality

ker(S∗ − λ) = ran
(
RA(λ) − RA1(λ)

)
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and the equalities

dim(A/S) = dim(S∗/A)

= dim(S∗ ∩ λI)

= dim ker(S∗ − λ)

= dim ran
(
RA(λ) − RA1(λ)

)
(3.2)

(in the sense that if one of these numbers is finite then all numbers are finite
and equal) hold for all λ ∈ ρ(A) ∩ ρ(A1).

The chain of equalities (3.2) is also used in the following proof.

Proof of part (ii) of Theorem 3.3. Assume that ρ(A) �= ∅, ρ(A0) �= ∅ and that
A (A0, respecitvely) is definitizable in K (G, respectively). Since the interior
of the spectrum of a definitizable operator is empty, these assumptions imply
that ρ(A) ∩ ρ(A0) �= ∅. Consequently, ρ(A) ∩ ρ(A1) �= ∅. We claim that for
all λ ∈ ρ(A) ∩ ρ(A1) we have

dim ran (RA(λ) − RA1(λ)) ≤ 2 codim G. (3.3)

This claim and the chain of equalities (3.2) imply that def S = dim(A/S) <
∞ and hence part (ii) of the theorem follows from part (i).

It remains to prove the claim. Let g ∈ G and h ∈ G⊥. Then

(A1 − λ)−1(g + h) = (A0 − λ)−1g − 1
λ

h

and hence with k =
(
(A − λ)−1 + 1

λ

)
h(

(A − λ)−1 − (A1 − λ)−1
)
(g + h)

= (A − λ)−1g − (A0 − λ)−1g + k

= (A − λ)−1
(
(A0 − λ) − (A − λ)

)
(A0 − λ)−1g + k

= −(A − λ)−1(I − PG)A(A0 − λ)−1g + k.

The inequality (3.3) follows from the equality dim ran(I − PG) = codim G
and from the fact that with h ∈ G⊥ also k varies over a subspace of K of
dimension ≤ codim G. �

Since a bounded operator has a nonempty resolvent set, Theorem 3.3
and Corollary 1.3(ii) yield the following corollary.

Corollary 3.5. Let A be a closed densely defined operator in a Krein space
K. Then A is a bounded definitizable operator in K if and only if A0 is a
bounded definitizable operator in G.

In case A is unbounded the following theorem provides a sufficient con-
dition for A0 to be definitizable.

Theorem 3.6. If A is a definitizable operator in K with definitizing polynomial
p(z) of degree n ≥ 1 and G⊥ ⊂ dom An−1, then A0 is a definitizable operator
in G.

In the proof of the theorem we use the following result, see [3, Theo-
rem 2.2].
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Lemma 3.7. Let T be a linear operator on a Banach space B. Let P be a
projection in B such that codim ranP is finite and let T0 be the compression
of T to ran P , that is, T0 = PT |ran P∩ dom T . Then

ρ(T )\σp(T0) ⊂ ρ(T0).

Proof of Theorem 3.6. Assume that A is a definitizable operator in K with
definitizing polynomial p(z) of degree n ≥ 1 and that G⊥ ⊂ dom An−1.

If n = 1, then we may assume without loss of generality that A ≥ 0.
Then also A0 ≥ 0 and, by [5, Corollary 2.3.25], σp(A0) ⊂ R. Since A is
definitizable ρ(A)\R �= ∅, so Lemma 3.7 implies that ρ(A0) �= ∅. Hence A0 is
definitizable.

From now on we assume n ≥ 2. Set m = dimG⊥ and consider the
subspace

M := span
{
AkG⊥ : k ∈ {0, . . . , n − 1}}.

Then M is finite dimensional and dimM ≤ mn.
By Theorem 3.3 we only have to show that ρ(A0) �= ∅. We proceed by

contradiction and assume ρ(A0) = ∅. Now Lemma 3.7 yields that ρ(A) ⊂
σp(A0) and, since A is definitizable, σp(A0) contains the set C\R except for
at most finitely many points.

Let r be an integer ≥ mn+1. Let λij , i, j ∈ {1, 2, . . . , r}, be r2 mutually
distinct numbers from σp(A0)∩C

+ such that p(λij) �= 0. Let xij �= 0 be corre-
sponding eigenvectors of A0: A0xij = λijxij , i, j ∈ {1, 2, . . . , r}. As eigenvec-
tors corresponding to distinct eigenvalues the vectors xij , i, j ∈ {1, 2, . . . , r},
are linearly independent.

Denote by X the linear span of the xij ’s. Then X , being a subspace of

span
{
ker(A0 − λij) : i, j ∈ {1, . . . , r}},

is a neutral subspace of K with dimX = r2. Since X is spanned by eigenvec-
tors of A0 we have X ⊂ dom A0 and X is invariant under A0. Consequently
p(A0) is defined on X , X is invariant under p(A0) and p(A0)|X = p

(
A0|X

)
.

Hence, the eigenvalues of p(A0)|X are p(λij) �= 0, i, j ∈ {1, 2, . . . , r}. Conse-
quently, p(A0)|X is a bijection on X .

Since dimM < r, for each j ∈ {1, 2, . . . , r} there exists an element
xj �= 0 in the r-dimensional span{x1j , x2j , . . . , xrj} which is orthogonal to
M. Note that

x1, x2, . . . , xr are linearly independent. (3.4)

We shall derive a contradiction with this property of the xj ’s.
First we prove that

∀ j ∈ {1, 2, . . . , r} ∃ yj ∈ M : p(A)xj = p(A0)xj + yj . (3.5)

For this we use induction and with the help of the block operator matrix
decomposition
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A =
[

A0 A11

A21 A22

]
:
[ G
G⊥

]
→

[ G
G⊥

]

we show that for all s ∈ {0, 1, . . . , n}
Asxj = As

0xj + zs−1 + Azs−2 + · · · As−1z0, zs−1, . . . , z0 ∈ G⊥. (3.6)

For s = 0 we have xj = xj and for s = 1 we have Axj = A0xj + z0 with
z0 = A21xj ∈ G⊥. Assume (3.6) is true for some s ∈ {1, . . . , n − 1}. Then
with zs = A21A

s
0xj

As+1xj = AAs
0xj + Azs−1 + A2zs−2 + · · · Asz0

= As+1
0 xj + zs + Azs−1 + A2zs−2 + · · · Asz0.

This proves (3.6) for s + 1. Taking linear combinations of both sides of the
equalities in (3.6) we obtain formula (3.5) in which yj is a linear combination
of the elements Aszt, s + t ≤ n − 1, from M.

Next we observe that xj , p(A0)xj ∈ X , that X is neutral, that xj ∈ M⊥

and yj ∈ M and apply (3.5) to obtain

[p(A)xj , xj ] = [p(A0)xj , xj ] + [yj , xj ] = 0, j = 1, 2, . . . , r.

Since p(A) ≥ 0 the inner product [p(A) ·, · ] is nonnegative on K. Therefore
the Cauchy-Bunyakovsky-Schwarz inequality (see [5, 1.1.16]) yields that for
all y ∈ K and all j ∈ {1, . . . , r} we have

|[p(A)xj , y]|2 ≤ [p(A)xj , xj ][p(A)y, y] = 0.

This implies that p(A)xj = 0 and hence, by (3.5),

p(A0)xj + yj = 0, j = 1, 2, . . . , r. (3.7)

Since dimM < r, the the vectors y1, . . . , yr ∈ M are linear dependent.
Now (3.7) yields that the vectors p(A0)xj , j ∈ {1, . . . , r}, are also linearly
dependent. As x1, . . . , xr ∈ X and p(A0)|X is a bijection on X , we deduce
that x1, . . . , xr are linearly dependent. This contradicts (3.4). �

Remark 3.8. The definition of definitizability also makes sense for self-adjoint
linear relations in a Krein space. For the definition of definitizability, for a
proof that the spectrum σ(A) of a definitizable relation A is symmetric with
respect to the real axis and that the set σ(A)\R is either empty or finite and
for a proof that a self-adjoint relation with a non-empty resolvent set in a
Pontgryagin space is definitizable, see [12, Sections 4 and 5]. By [2, Remark
2.3], Theorem 3.2 and its corollary Theorem 3.3(i) do not hold for linear
relations. Theorem 3.4 has been generalized by Behrndt [6, Theorem 2.2] not
only to self-adjoint linear relations but also to the more general notion of local
definitizability on certain domains Ω of C. Jonas [19, Theorem 4.7] showed
that if Ω = C, then this generalized notion coincides with definitizability as
defined here. Finally, the proof of Theorem 3.3(ii) can easily be adapted to
the case of linear relations. Indeed, using the same notation, we have that if
(A0 − λ)−1g = f , say, then {f ;λf + g} ∈ A0 = PGA|G and hence there is an
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x ∈ G⊥ such that {f ;λf + g + x} ∈ A, that is, (A − λ)−1g = f − (A − λ)−1x.
It follows that(

(A − λ)−1 − (A1 − λ )−1
)
(g + h) = (A − λ)−1g − (A0 − λ)−1g + k

= −(A − λ)−1x + k.

This implies (3.3).

4. Similarity and Critical Points

We begin with the question:

Question 4.1. If a self-adjoint operator in a Krein space is similar to a self-
adjoint operator in a Hilbert space, does its finite-codimensional compressions
have the same property?

The answer to this question is negative as the following simple example
shows.

Example 4.2. Let C
4 be equipped with the Euclidean inner product 〈 · , · 〉

and let {e1, e2, e3, e4} be the standard orthonormal basis of C
4. Let H1 =

span{e1, e2} and H2 = span{e3, e4} and let J be the self-adjoint involution
on (C4, 〈 · , · 〉) whose matrix representation with respect to the decomposition

C
4 = H1⊕H2 is J =

[
0 I
I 0

]
. Then [ · , · ] = 〈J ·, · 〉 is an indefinite inner product

on C
4 and (C4, [ · , · ]) is a Krein space.
Let A be the operator on C

4 whose matrix representation with respect
to the decomposition C

4 = H1 ⊕ H2 is as follows:

A =
[

0 A12

A21 0

]
with A12 =

[−1 2
2 0

]
and A21 =

[
1 2
2 2

]
.

Then, since A12 and A21 are symmetric matrices, A is selfadjoint in the
Krein space (C4, [ · , · ]). The spectrum of A coincides with the spectrum of
the quadratic pencil

L(λ) = λ2 − D with D = A21A12 =
[
3 2
2 4

]

(obtained by considering the Schur complement of A−λ). The latter consists
of 4 different real numbers, hence A is similar to a self-adjoint operator in
(C4, 〈 · , · 〉).

The subspace H3 = span{e1, e3} is a regular subspace of (C4, [ · , · ]) and
its orthogonal complement in (C4, [ · , · ]) is H4 = span{e2, e4}. The compres-
sion of A to H3 is

A0 =
[
0 −1
1 0

]

which is not similar to a self-adjoint operator on a Hilbert space.

Similarity of a Krein space self-adjoint operator to a Hilbert space self-
adjoint operator is characterized by the following theorem. It will be applied
in giving a partial answer to Question 4.5 below.
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Theorem 4.3. Let (K, [ · , · ]) be a Krein space and let J be a fundamental
symmetry on (K, [ · , · ]). Let S be a self-adjoint operator in (K, [ · , · ]). Then
S is similar to a self-adjoint operator in the Hilbert space (K, [J · , · ]) if and
only if there exists a fundamental symmetry on (K, [ · , · ]) which commutes
with S.

That the self-adjoint operator A in the Krein space (C4, [ · , · ]) in Ex-
ample 4.2 is similar to a self-adjoint operator in the Hilbert space (C4, 〈 · , · 〉)
now also follows from the just stated theorem. To see this we observe that A
commutes with the matrix

J1 =
1√

5 + 2
√

2

⎡
⎢⎢⎣

0 0 3 +
√

2 −2
0 0 −2 2 +

√
2

1 +
√

2
√

2 0 0√
2 1 + 3√

2
0 0

⎤
⎥⎥⎦

and that J1 is a fundamental symmetry in the Krein space (C4, [ · , · ]) because
it is idempotent and JJ1 is a positive self-adjoint matrix. The matrix J1 was
obtained using Mathematica but its asserted properties can easily be verified
by direct calculations. Note that A is a self-adjoint operator in the positive
definite inner product 〈JJ1·, · 〉, that is JJ1A = A∗JJ1.

Proof of Theorem 4.3. In this proof the superscript ∗ denotes the adjoint of an
operator in the Hilbert space (K, 〈 · , · 〉), where 〈 · , · 〉 = [J · , · ]. First assume
that J1 is a fundamental symmetry on (K, [ · , · ]) which commutes with S,
that is, J1 dom S = dom S and J1Sx = SJ1x for all x ∈ dom S. As S is
self-adjoint in (K, [ · , · ]), this assumption implies that S is self-adjoint in the
inner product 〈 · , · 〉1 = [J1· , · ]. Since 〈JJ1· , · 〉 = 〈 · , · 〉1, the operator JJ1 is
self-adjoint and uniformly positive, and with T =

√
JJ1 the operator TST−1

is self-adjoint in (K, 〈 · , · 〉).
Now assume that S is self-adjoint in (K, [ · , · ]) and similar to a self-

adjoint operator in (K, 〈 · , · 〉). Then there exists a bounded and boundedly
invertible operator T on K such that S is self-adjoint in the inner product
(x, y) = 〈Tx, Ty〉, x, y ∈ K. Consequently, TST−1 is self-adjoint in (K, 〈 · , · 〉).
Let U = (S − i)(S + i)−1 be the Cayley transform of S. Since S is self-adjoint
in both (K, ( · , · )) and (K, [ · , · ]), the operator U is unitary in both (K, ( · , · ))
and (K, [ · , · ]). Also, V = TUT−1 is unitary in (K, 〈 · , · 〉), that is, V −∗ = V .
Since U is unitary in (K, [ · , · ]) we have

J = U∗JU = T ∗V ∗T−∗JT−1V T.

Set G = T−∗JT−1. Then the preceding identity yields G = V ∗GV and con-
sequently V G = GV . The operator G is self-adjoint, bounded and boundedly
invertible in (K, 〈 · , · 〉). Since G commutes with V , the operator sgnG also
commutes with V . Therefore, the involution J1 = T−1(sgn G)T commutes
with U . Next we show that J1 is a fundamental symmetry on (K, [ · , · ]). Let
x ∈ K be arbitrary and calculate
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[J1x, x] =
〈
(sgn G)Tx, T−∗Jx

〉
=

〈
(sgn G)Tx,GTx

〉
=

〈
T ∗|G|Tx, x

〉
.

Since the operator T ∗|G|T is self-adjoint, bounded and boundedly invertible
in (K, 〈 · , · 〉), the inner product [J1·, ·] is a Hilbert space inner product on K.
Hence J1 is a fundamental symmetry on (K, [ · , · ]) which commutes with U .
Consequently J1 commutes with S, as well. �

The definitions of what is a regular or singular critical point for a de-
finitizable operator are due to Langer in [23], see also [24]. They are given
in terms of the spectral function of the definitizable operator. In the cited
publications equivalent formulations can be found. We give another charac-
terization and show in the “Appendix” that it is equivalent to the one in [24].
We only consider the point ∞.

Let A be a definitizable operator in a Krein space (K, [ · , · ]). Then A
admits a diagonal form (D) by which we mean that A can be represented as a
diagonal operator A = diag{Ab;A∞} relative to an orthogonal decomposition
K = Kb⊕K∞ into Krein subspaces Kb and K∞ of K which are invariant under
A and such that

Kb ⊂ dom A and 0 ∈ ρ(A∞).

The requirements imply that Ab = A|Kb
is a bounded definitizable operator:

dom Ab = Kb → Kb and that A∞ = A|K∞ is a densely defined boundedly
invertible definitizable operator: domA∞ = K∞ ∩ dom A → K∞. The point
∞ is not a critical point of A if (K∞, [ · , · ]) can be chosen such that it is a
Hilbert space or an anti-Hilbert space; otherwise it is called a critical point
of A. If ∞ is a critical point of A, then it is called a regular critical point
if (K∞, [ · , · ]) can be chosen so that it has a fundamental symmetry which
commutes with A∞ and A∞ is uniformly definite on K∞; otherwise it is called
a singular critical point.

Reference [10, Theorem 3.2] contains three equivalent formulations of
the statement that ∞ is a not a singular critical point, that is, ∞ is a regular
critical point or not a critical point at all. A fourth characterization in the
same spirit is given by the next theorem.

Theorem 4.4. Let (K, [ · , · ]) be a Krein space and let J be a fundamental
symmetry on (K, [ · , · ]). Let A be a definitizable operator in (K, [ · , · ]). Then
∞ is not a singular critical point of A if and only if there exists an operator
S which is self-adjoint in (K, [ · , · ]), similar to a self-adjoint operator in the
Hilbert space (K, [J · , · ]) and such that dom S = dom A.

Proof. First assume that A is a definitizable operator and that ∞ is not a
singular critical point of A. Then, by Theorem 6.5 in the “Appendix”, A has
a diagonalization (D) such that A∞ is similar to a self-adjoint operator in the
Hilbert space (K∞, [J1· , · ]), where J1 is any fundamental symmetry on K∞.
Define S = diag{Jb;A∞}, where Jb is a fundamental symmetry on Kb. Then
S is self-adjoint in (K, [ · , · ]), Ĵ := diag{Jb;J1} is a fundamental symmetry on
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K and S is a similar to a self-adjoint operator in the Hilbert space (K, [Ĵ · , · ]).
It follows that USU−1 is self-adjoint in the Hilbert space (K, [J · , · ]), where U

is the unitary operator on (K, [ · , · ]) such that J = UĴU−1. Finally, domS =
Kb ⊕ dom A∞ = dom A.

Next assume that A is a definitizable operator in (K, [ · , · ]) and there
exists an operator S which is self-adjoint in (K, [ · , · ]), similar to a self-adjoint
operator in (K, [J · , · ]) and such that domS = dom A. By Theorem 4.3 there
exists a fundamental symmetry J1 which commutes with S. In particular
J1 dom S = dom S and thus J1 dom A = dom A. By [10, Theorem 3.2], ∞ is
not a singular critical point of A. �

Question 4.5. Let A be a self-adjoint operator in a Krein space K and let
A0 be the compression of A to a Krein subspace G of K with finite codim G.
Assume A and A0 are definitizable. If ∞ is a singular critical point for one,
is it also a singular critical point for the other?

The formulation of this question is very general and we have no complete
answer to it. A partial answer is provided by Theorem 4.4.

Corollary 4.6. Assume A and A0 are definitizable operators and G⊥ ⊂ dom A.
If ∞ is a singular critical point for A, then it is also a singular critical point
for A0.

Proof. We prove the contra positive version of the statement in the corollary.
Let J0 and J1 be fundamental symmetries for G and G⊥, then J = J0 + J1 is
a fundamental symmetry for K. We denote the Hilbert space inner products
on G and K corresponding to J0 and J by 〈 · , · 〉0 and 〈 · , · 〉. If ∞ is not a
singular critical point for A0, then, by Theorem 4.4, there exists an operator
S0 which is self-adjoint in (G, [ · , · ]), similar to a self-adjoint operator in
(G, 〈 · , · 〉0) and such that domS0 = dom A0. Since G⊥ ∈ dom A, we have
dom A = dom A0+̇G⊥ and hence

S =
[
S0 0
0 0

]
:
[ G
G⊥

]
→

[ G
G⊥

]

is a self-adjoint operator in (K, [ · , · ]) which is similar to a self-adjoint oper-
ator in (K, 〈 · , · 〉) and domS = dom A. It follows that ∞ is not a singular
critical point for A. �

Remark 4.7. Let K be a Krein space, G a Krein subspace of K and A a
(densely defined) self-adjoint operator on K with ρ(A) �= ∅. Assume that G is
invariant under A, so that the restriction of A to G is a self-adjoint operator
in G. Then (A − λ)−1G⊥ ⊂ G⊥, λ ∈ ρ(A). If, moreover, dimG⊥ < ∞, then
G⊥ ⊂ dom A, hence A is a diagonal operator in K = G ⊕ G⊥. (Indeed, the
assumption implies that (A − λ)−1G ⊂ G and by taking inner products we
obtain (A − λ)−1G⊥ ⊂ G⊥. If dim G⊥ < ∞, then equality prevails and hence
G⊥ ⊂ dom A.) In particular, the inclusion G⊥ ⊂ dom A in the assumptions of
Theorem 3.6 (with n ≥ 2) and Corollary 4.6 holds if the finite-codimensional
compression A0 to G coincides with the restriction of A to G.



T. Azizov, B. Ćurgus and A. Dijksma

Remark 4.8. There are closely connected results to Corollary 4.6 by Jonas
[18, Theorems 3.6 and 3.10] and by Behrndt and Jonas [7, Theorem 3.4] on
the regularity and singularity of the critical point ∞. It is not clear if these
results imply Corollary 4.6, because the present situation differs slightly from
the ones in the mentioned results: Since G⊥ ⊂ dom A, the operators A and

A1 :=
[
A0 0
0 0

]
:
[ G
G⊥

]
→

[ G
G⊥

]

differ by a finite dimensional operator and by a finite dimensional pertubation
in resolvent sense, whereas in the results of Jonas and Behrndt-Jonas the
perturbation is not finite rank but the form domains remain the same.

5. Defect indices

We recall that if S is a closed symmetric linear relation in a Hilbert space
H, then the numbers d± = d±(S) := dim ker(S∗ − z) = dim(S∗ ∩ zI) are
independent of z ∈ C

± and called the defect numbers of S. The pair {d+; d−}
is called the defect index of S. Furthermore, S has self-adjoint extensions in
H if and only if there is a unitary map from ker(S∗ − z) onto ker(S∗ − z∗)
for some (and then for all) z ∈ C\R, that is, d+ = d−(≤ ∞), and in this case
we have def S = d+ = d−. In the proof of the following theorem we use that

d±(S) = 0 ⇔ C
∓ ⊂ ρ(S).

Theorem 5.1. Let S be a closed densely defined symmetric operator in a
Hilbert space H. Then S0 is a closed densely defined symmetric operator in
G and S and S0 have the same defect index.

Proof. S0 is closed and densely defined by Lemma 1.1 and Corollary 1.3(i).
S0 is symmetric in G, because for x ∈ dom S0

Im[S0x, x] = Im[PGSx, x] = Im[Sx, x] = 0.

Let {m;n} and {p; q} be the defect indices of S and S0. The proof consists of
two parts: we first show that p = ∞ (q = ∞) if and only if m = ∞ (n = ∞)
and then we consider the case where the defect indices are all finite.

(I) We set k = codim G. We only prove p = ∞ ⇔ m = ∞. Assume p =
∞ and let λ ∈ C

+. Then there exist countably infinite linearly independent
elements in S∗

0 ∩ λI. Denote them by {uj ;λuj}. Since S∗
0 = PGS∗|G , there

are hj ∈ G⊥ such that the elements {uj ;λuj +hj} belong to S∗. Group these
elements successively in infinitely many disjoint sets of size k + 1. Then in
the linear span of these sets there is a nonzero element of the form {v;λv} ∈
S∗ ∩ λI. We choose one such element in each linear span. They are linearly
independent and hence m = ∞.

Now we assume p < ∞ and show that m < (2k2 + 1)(p + 1). This
implies that m = ∞ ⇒ p = ∞. We apply Lemma 1.2 with H decomposed
as H = G ⊕ G⊥ and D = dom S∗. There is a subspace F ⊂ dom S∗ with
dim F = k such that H = G+̇F , direct sum. Taking the intersection of both
sides with dom S∗ we find

dom S∗ = dom S∗
0 +̇F , direct sum in H.
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If {x; y} ∈ S∗, then x = x0 + f with x0 ∈ dom S∗
0 and f ∈ F and

{x; y}={x0;S∗
0x0}+{0; (I−PG)S∗x0}+{f ;S∗f} ∈ S∗

0 +
(F × (G⊥ + S∗F)

)
.

We denote the linear set on the right hand side by T . Then S∗ ⊂ T and hence
m ≤ dim(T ∩ λI), λ ∈ C

+. We claim that

dim(T ∩ λI) < (2k2 + 1)(p + 1).

which implies the asserted inequality for m. We prove the claim by assuming
it is not true and deriving a contradiction. Assume

dim(T ∩ λI) ≥ (2k2 + 1)(p + 1).

Then T ∩λI contains (2k2 +1)(p+1) linearly independent elements {uj ; vj},
j = 1, 2, . . . , (2k2 + 1)(p + 1). We group these elements successively in p + 1
disjoint sets of size 2k2 + 1. Since

dim
(F × (G⊥ + S∗F)

) ≤ 2k2,

the linear span of each of these sets contains a nonzero element from S∗
0 ∩

(T ∩ λI) ⊂ S∗
0 ∩ λI. We choose one such element in each linear span. Since

these p + 1 elements are linearly independent, we arrive at the contradiction
that p = dim(S∗

0 ∩ λI) ≥ p + 1. The proof of the claim is complete.
(II) We now assume that the defect indices are finite and show that

p = m and q = n in four steps:
Step 1. m = n ⇒ p = q. This follows from Theorem 1.5 and the fact

that S (S0) has equal defect numbers if and only if S (S0) has a self-adjoint
extension in H (G).

Step 2. m = n ⇒ m = n = p = q. Let A be a self-adjoint extension of S
in H. Then A0 is a self-adjoint extension of S0 in G. We apply Lemma 1.2 with
D = dom S: There is a subspace F ⊂ dom S ⊂ dom A such that dim F =
dim G⊥ and

H = G+̇F .

We take the intersection of the spaces on the left and right with domS and
dom A and obtain

dom S = dom S0+̇F , dom A = dom A0+̇F .

From dom S ⊂ dom A and dom S0 ⊂ dom A0 it follows that

m = dim(dom A/dom S) = dim(domA0/dom S0) = p.

Step 3. m + n = p + q, in other words:

dim(dom S∗/dom S) = dim(dom S∗
0/dom S0).

The closed densely defined symmetric operator S ⊕ (−S) in H⊕H has defect
index {m + n;m + n} and its finite-codimensional compression to G ⊕ G is
the closed densely defined symmetric operator S0 ⊕ (−S0) which has defect
index {p + q; p + q}. Then, by (2), m + n = p + q.

Step 4. n − m = q − p. We assume n ≥ m, otherwise we should consider
−S. Then S has a maximal symmetric extension T with defect index {0;n −
m}. This implies that C− ⊂ ρ(T ). By Theorem 1.7, T0 is maximal symmetric.
By Lemma 3.7 and σp(T0) ∩ C− = ∅, C− ⊂ ρ(T0). Hence the defect index of
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T0 is of the form {0; t} for some nonzero integer t. From S0 ⊂ T0 it follows
that q ≥ p and t = q − p. By (3), n − m = q − p.

That p = m and q = n now follows from (3) and (4). �

Corollary 5.2. Let S be a closed densely defined symmetric operator in a
Krein space K and let S0 be its compression to a finite-codimensional Krein
subspace G of K. Then def S = def S0 in the sense that if S in K or S0 in G
has a self-adjoint extension then so does the other and their defects coincide.

Proof. We shall use that if J is a fundamental symmetry in a Krein space
(R, [· , · ]), then a linear relation T is symmetric or self-adjoint in this space
if and only if JT is symmetric or self-adjoint in the Hilbert space (R, [J · , · ])

Let J0 and J1 be fundamental symmetries of G and G⊥. Then J =
J0 + J1 is a fundamental symmetry in K, J0 = PGJ |G and (JS)0 = J0S0. By
Theorem 5.1, d±(JS) = d±(J0S0). If S has a self-adjoint extension A in K,
then A0 is a self-adjoint extension of S0 in G and

def S = dim(A/S) = dim(JA/JS) = d+(JS)

= d+(J0S0) = dim(J0A0/J0S0) = dim(A0/S0) = def S0.

Conversely, if S0 has a self-adjoint extension in the space G, then the defect
numbers of J0S0 are equal and coincide with those of JS, which are therefore
also equal. Hence S has a self-adjoint extension in the space K and as before
we have def S = def S0. �

To extend Theorem 5.1 to a symmetric linear relation we use the fol-
lowing lemma. The first part of this lemma coincides with [9, Theorem 3.1].
We repeat the proof for completeness.

Lemma 5.3. Let T be a closed symmetric linear relation in H with finite defect
numbers. Let B be a finite dimensional subspace of H ⊕ H.

(i) Then T ∩B∗ is a closed symmetric relation in H and if T ∗ ∩B = {0; 0},
then its defect numbers are d±(T ∩ B∗) = d±(T ) + dim B.

(ii) If T + B ⊂ (T + B)∗ = T ∗ ∩ B∗ and T ∩ B = {0; 0}, then dim B ≤
min{d+(T ), d−(T )} and T +B is a closed symmetric relation with defect
numbers d±(T + B) = d±(T ) − dim B.

Proof. (i)Since T ∩ B∗ ⊂ T and T is closed and symmetric, T ∩ B∗ is closed
and symmetric. Its adjoint is given by T ∗+B, which is a closed linear relation
as it is the sum of a closed subspace T ∗ and a finite dimensional subspace B
in H⊕H (see [16, Theorem I.4.12]). Now assume T ∗∩B = {0; 0}, then T ∗+B
is a direct sum. For μ ∈ C\R we define the mapping b : (T ∗ + B) ∩ μI → B
by: if {h;μh} ∈ (T ∗ +B)∩μI and {h;μh} = {f ; g}+{σ; τ} with {f ; g} ∈ T ∗

and {σ; τ} ∈ B, then b({h;μh}) = {σ; τ}. Since the sum T ∗ +B is a direct, b
is well defined. Moreover, kerb = T ∗ ∩μI. We now show that b is surjective.
Let {σ; τ} ∈ B, then since ran(T ∗ − μ) = H, there is an element {f ; g} ∈ T ∗

such that g − μf = μσ − τ . Then

{f ; g} + {σ; τ} = {f + σ;μ(f + σ)} ∈ (T ∗ + B) ∩ μI
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and b({f +σ;μ(f +σ)}) = {σ; τ}. The properties of b just established imply
that for μ ∈ C

±

d±(T ∩ B∗) = dim ker
(
(T ∗ + B) ∩ μI

)
= d±(T ) + dim B.

(ii) As T is closed and B is finite dimensional, T + B is a closed linear
relation. Since T ∩ B = {0; 0}, dim(T + B)/T = dim B. Hence there is a
subspace C of H⊕H with dim C = dimB such that T = (T +B)∩C∗. From
(i) it follows that

d±(T + B) + dim B = d±(T + B) + dimC = d±(T ),

hence dim B ≤ min{d+(T ), d−(T )} and d±(T + B) = d±(T ) − dim B. �

Theorem 5.4. Let S be a closed symmetric linear relation in a Hilbert space H
with defect index {m;n}. Let G1 be a subspace of dom S of finite codimension
in domS, let G2 be a subspace of S(0) and set G = G1 ⊕ G2. Then PGS|G
is a closed linear relation in G with multivalued part G2 and defect index
{m − r;n − r} with r = dim(S∗(0) � S(0)).

Proof. From domS = S∗(0)⊥ ⊂ S(0)⊥ we see that G1 ⊥ G2 and PG =
PG1 +PG2 Consider Ŝ := S ⊕({0}× (S∗(0)�S(0))

)
. Then, by Lemma 5.3(ii),

Ŝ is a symmetric linear relation in H with defect index {m − r;n − r} and
Ŝ(0) = S∗(0). Now Ŝ can be decomposed as the orthogonal sum

Ŝ = Ŝs ⊕ Ŝ∞,

in which Ŝ∞ := {0}×S∗(0) is a self-adjoint relation in S∗(0) and Ŝs = Ŝ�Ŝ∞
is a closed densely defined symmetric operator in S∗(0)⊥. The latter has
defect index {m−r;n−r}. We find that PGS|G = PGŜ|G = (Ŝs)0⊕({0}×G2),
where (Ŝs)0 = PG1 Ŝs|G1 is a closed symmetric operator in G1 and {0} × G2 is
a self-adjoint relation in G2. Hence PGS|G is a closed linear relation in G with
multi-valued part G2 and with defect index = the defect index of (Ŝs)0 = the
defect index of Ŝs (by Theorem 5.1) = {m − r;n − r}. �

6. Appendix

In this appendix A is a definitizable operator on a Krein space (K, [ · , · ]).
The notions “∞ is a critical point”, “∞ is a regular critical point” and “∞
is a singular critical point” of A are due to Langer [23,24]. To recall these
definitions we denote by E the spectral function for A as in [24, Theorem 3.1]
(see also [5, Chapter 4, §1]). It is defined on the semiring RA generated by the
bounded intervals whose endpoints are not in c(A) and their complements in
R; its values E(Δ), Δ ∈ RA, are orthogonal projections in (K, [ · , · ]). Here
c(A) stands for the set of (finite) critical points of A defined by

c(A)=
{
λ ∈ σ(A) ∩ R : p(λ)=0 for all definitizing polynomials p of A

}
.
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Definition 6.1. (Langer (1965)) ∞ is a critical point for A if for all unbounded
Δ ∈ RA the space E(Δ)K is indefinite. It is a regular critical point for A if
the limits

lim
λ↓−∞

E[λ, λ0] and lim
λ↑+∞

E[λ1, λ],

with λ0, λ1 ∈ R, exist in the strong operator topology. If ∞ is a critical but
not a regular critical point, then it is called a singular critical point.

We show that the definitions in Sect. 4 are equivalent to the ones given
in Definition 6.1. For this we use the following notion: We say that A admits
a diagonal form (D) if A can be represented as a diagonal operator A =
diag{Ab;A∞} relative to an orthogonal decomposition K = Kb ⊕ K∞ into
Krein subspaces Kb and K∞ of K which are invariant under A and such that

Kb ⊂ dom A and 0 ∈ ρ(A∞).

The requirements imply that Ab = A|Kb
is a bounded definitzable opera-

tor defined on domAb = Kb with the values in Kb and that A∞ = A|K∞
is a densely defined boundedly invertible definitizable operator defined on
dom A∞ = K∞ ∩ dom A with the values in K∞. If p is a definitizing polyno-
mial for A, then it is also a definitizing polynomial for Ab and for A∞.

Theorem 6.2. For a definitizable operator A on a Krein space (K, [ · , · ]) the
following statements are equivalent:

(i) ∞ is not a critical point for A.
(ii) A has a diagonalization (D) in which (K∞, [ · , · ]) is a Hilbert or an anti-

Hilbert space.

Proof. Assume (i) and let Δ be an unbounded set in RA such that the Krein
subspace E(Δ)K is definite. Choose a closed unbounded set Δ∞ ∈ RA such
that Δ∞ ⊂ Δ and 0 belongs to the open bounded set Δb = R\Δ∞ ∈ RA.
Denote by E0 the Riesz-Dunford projection on the nonreal spectrum σ0(A)
of A. Define Kb := E(Δb)K ⊕ E0K and K∞ := E(Δ∞)K. These subspaces
are Krein subspaces of K which are invariant under A and K = Kb ⊕ K∞.
Moreover, Kb ⊂ dom A and K∞ ⊂ E(Δ)K, hence K∞ is a definite sub-
space of K. Finally, 0 ∈ ρ(A∞) because σ(A∞) ⊂ Δ∞ and 0 ∈ R\Δ∞. This
implies (ii).

Now assume (ii). Choose a bounded open interval Δb ∈ RA such that

{0} ∪ c(A) ∪ (σ(Ab) ∩ R) ⊂ Δb.

Set Δ∞ = R\Δb. Then Δ∞ is an unbounded set in RA. Denote by E0 and
E0b the Riesz-Dunford projections on the nonreal spectra σ0(A) and σ0(Ab)
of A and Ab. Then E0bKb = E0K and Kb � E0bKb ⊂ E(Δb)K. This follows
from the defining formulas for E0, E0b, and E(Δb) as integrals over contours
around σ0(A) = σ0(Ab) and around Δb of (A − z)−1, the diagonal form of
A and the fact that A∞ is self-adjoint in a Hilbert space and thus has no
nonreal spectrum. The orthogonal decomposition

K = E(Δ∞)K ⊕ E(Δb)K ⊕ E0K
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and the inclusion Kb ⊂ E(Δb)K ⊕ E0bKb imply E(Δ∞)K ⊂ K⊥
b = K∞. As a

subspace of the definite subspace K∞, E(Δ∞)K is a definite subspace. This
yields (i). �

For the proof of Theorem 6.4 below we use the following lemma, see
also [24, Proposition II 4.2].

Lemma 6.3. Let (K, [ · , · ]) be a Krein space and let A be a self-adjoint operator
on K. Assume A ≥ 0, ker A = {0} and σ(A) ⊆ [0,+∞). Then (K, [ · , · ]) is a
Hilbert space.

Proof. If A is bounded, the lemma is proved in [14, Theorem 6.7]. Assume
A is unbounded and let E be the spectral function for A. Set Δ1 = (−1, 1)
and Δ2 = R\Δ1. Then A has the diagonal representation A = diag{A1;A2}
relative to the orthogonal decomposition K = E(Δ1)K ⊕ E(Δ2)K: Aj =
A|E(Δj)K, j = 1, 2. The operators A1 and A−1

2 are self-adjoint on E(Δ1)K
and E(Δ2)K, have the same properties as A in the lemma and are bounded.
It follows that (E(Δ1)K, [ · , · ]) and (E(Δ2)K, [ · , · ]) are Hilbert spaces. Hence
(K, [ · , · ]) is a Hilbert space. �

Theorem 6.4. For a definitizable operator A on a Krein space (K, [ · , · ]) the
following statements are equivalent:

(i) ∞ is a regular critical point for A.
(ii) ∞ is a critical point for A and A has a diagonalization (D) in which

(K∞, [ · , · ]) is an indefinite Krein space and A∞ commutes with a fun-
damental symmetry on K∞.

The diagonalization (D) in (ii) can be chosen so that A∞ is even uniformly
definite on K∞.

Proof. Choose −∞ < λ0 < 0 < λ1 < +∞ such that the interval Δb =
(λ0, λ1) belongs to RA, c(A)∪(σ(A0) ∩ R) ⊂ Δ0 and some definitizing polyno-
mial p for A does not vanish on Δ∞ = R\Δb. Denote by E0 the Riesz-Dunford
projection on the nonreal spectrum σ0(A) of A. Set Kb = E0K ⊕ E(Δb)K
and K∞ = K⊥

b = E(Δ∞)K. Then A admits a diagonalization (D) relative to
the fundamental decomposition K = Kb ⊕ K∞. (i) holds if and only if ∞ is
a regular critical point for A∞, because the spectral function for A∞ in the
Krein space (K∞, [ · , · ]) coincides with the spectral function E for A on all
intervals and their complements from RA which are contained in Δ∞.

Assume (i). Then ∞ is a regular critical point for A∞ and hence, by [24,
Theorem II 5.7], there exist orthogonal and mutually orthogonal projections
E+ and E− on (K∞, [ · , · ]) such that

(a) E+ and E− belong to the double commutant of (A∞ − z)−1,
(b) IK∞ = E+ + E−, where IK∞ is the identity operator on (K∞, [ · , · ]),
(c) σ(A∞|E±K∞) = {λ ∈ Δ∞ : p(λ) ≷ 0}.

By (a), E± commute with A, hence the Krein subspaces K±
∞ = E±K∞

are invariant under A∞. On account of (c) and the spectral mapping theorem,

σ
(±p(A∞)|K±∞

)
= ±p

(
σ(A∞)|K±∞

) ⊆ [0,∞). (6.1)
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We claim ker p(A∞) = {0}. Indeed, assume the kernel is not trivial, then
0 ∈ σ(p(A∞) = p(σ(A∞)) and this means that p has a zero in σ(A∞) ⊆ Δ∞
contradicting the fact that p does not vanish on Δ∞. This proves the claim.
The inequality p(A∞) ≥ 0 on K∞, the claim and the inclusion (6.1) imply,
by Lemma 6.3, that the subspaces (K±

∞,±[ · , · ]) are Hilbert spaces. Thus, by
(b), K∞ = K+

∞ ⊕K−
∞ is a fundamental decomposition of K∞, J∞ := E+−E−

is the corresponding fundamental symmetry and J∞ commutes with A. The
proof of (ii) is complete. To prove the last part of the theorem, let m =
min{|p(λ0)|, |p(λ1)|}. Then m > 0 and, by (c),

σ(A∞|K±∞) ⊆ [m,∞), σ(A∞|K∓∞) ⊆ (−∞,−m] if lim
λ→+∞

p(λ) = ±∞.

Hence

±[A∞x, x] ≥ m[J∞x, x], x ∈ K∞,

depending on limλ→+∞ p(λ) = ±∞. This implies that A∞ is uniformly defi-
nite on (K∞, [ · , · ]).

We now prove (ii) ⇒ (i). Assume (ii). Then ∞ is a critical point for
A∞. For if it is not a critical point for A∞, then, by Theorem 6.2, A∞
admits a diagonalization of the form (D) in which the space on which the
unbounded operator acts is a Hilbert or an anti-Hilbert space. By combining
the diagonalizations of A and A∞ we obtain a new diagonalization of the
form (D) for A in which K∞ is a Hilbert or anti-Hilbert space. This cannot
be, because ∞ is a critical point for A. This contradiction implies that ∞ is a
critical point for A∞. We now apply [10, Theorem 3.2] which states that ∞ is
not a singular critical point of A∞ if and only if there is a positive, bounded
and boundedly invertible operator W on the Krein space (K∞, [ · , · ]) such
that dom A∞ ⊆ dom W and W dom A∞ ⊆ dom A∞. We use the if part
of this theorem and choose for W the fundamental symmetry J∞, say, on
(K∞, [ · , · ]) which commutes with A∞. It follows that ∞ is not a singular
critical point for A∞. Since ∞ is a critical point, hence it is a regular critical
point for A∞. It remains to show that this implies that ∞ is a critical point for
A. This too follows from the if part of [10, Theorem 3.2] mentioned above, by
chosing W = diag{IKb

;J∞}, where IKb
is the identity operator on Kb. This

proves (i). �

Theorem 6.5. For a definitizable operator A on a Krein space (K, [ · , · ]) the
following statements are equivalent:

(i) ∞ is not a singular critical point for A.
(ii) A has a diagonalization (D) in which A∞ is similar to a self-adjoint

operator in the Hilbert space (K∞, [J · , · ]) for some (and then for every)
fundamental symmetry J on (K∞, [ · , · ]).

Proof. Assume (i). If ∞ is not a critical point, then in the diagonalization as
in Theorem 6.2(ii) A∞ is self-adjoint in the Hilbert space holds (K∞, [J · , · ])
with J = ±IK∞ , where IK∞ is the identity operator on K∞. If ∞ is a regular
critical point, then in the diagonalization as in Theorem 6.4(ii) A∞ is self-
adjoint in the Hilbert space (K∞, [J∞· , · ]) where J∞ is the fundamental
symmetry that commutes with A∞. Let J be any fundamental symmetry
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on (K∞, [ · , · ]). Then there is a unitary operator U on (K∞, [ · , · ]) such that
J = UJ∞U−1. It is the similarity operator we looked for: UAU−1 is self-
adjoint in the Hilbert space (K∞, [J · , · ]).

Now assume (ii). If ∞ is not a critical point for A, then (i) holds. So
assume ∞ is a critical point for A. We prove that it is a regular critical
point for A. Let U∞ = (A∞ − μ∗)(A∞ − μ)−1 be the Cayley transform of
A∞ relative to a nonreal point μ ∈ ρ(A∞); it is unitary in the Krein space
(K∞, [ · , · ]). Let T be the similarity operator on K such that TA∞T−1 is self-
adjoint in the Hilbert space (K∞, [J · , · ]). Then TU∞T−1 is unitary in the
same Hilbert space. By [8, Theorem VIII 1.4] this implies that U∞ is funda-
mentally reducible which means that there exists a fundamental decomposi-
tion of (K∞, [ · , · ]) which reduces U∞. According to [8, VIII Lemma 1.1], the
corresponding fundamental symmetry commutes with U∞ and hence with
A∞ = (μU∞ − μ∗)(U∞ − 1)−1. We apply Theorem 6.4 and conclude that ∞
is a regular critical point for A. �
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[10] Ćurgus, B.: On the regularity of the critical point infinity of definitizable op-
erators. Int. Equ. Oper. Theory 8, 462–488 (1985)

[11] Dijksma, A., de Snoo, H.S.V.: Symmetric and selfadjoint relations in Krein
spaces I. Oper. Theory Adv. Appl. Birkhäuser, Basel. 24, 145–166 (1987)
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