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The medians are special

A median of a triangle is a line segment that connects a vertex of the triangle to the
midpoint of the opposite side. The three medians of a triangle interact nicely with each
other to yield the following properties:

(a) The medians intersect in a point interior to the triangle, called the centroid, which
divides each of the medians in the ratio 2 : 1.

(b) The medians form a new triangle, called the median triangle.
(c) The area of the median triangle is 3/4 of the area of the given triangle in which the

medians were constructed.
(d) The median triangle of the median triangle is similar to the given triangle with the

ratio of similarity 3/4.

When we say, as in (b), that “three line segments form a triangle” we mean that
there exists a triangle whose sides have the same lengths as the line segments.

A

B A1/2 C

C1/2 B1/2

Figure 1 A “proof” of Properties (b) and (c)

Proving Property (a) is a common exercise. We provide “proofs without words” of
Properties (b), (c), and (d) in FIGURES 1 and 2. Different proofs can be found in [9]
and at [17]. Note that Property (b) fails for other equally important triples of cevians
of a triangle; for example, as shown in [2], we cannot always speak about a triangle
formed by bisectors or altitudes.
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B A1/2 C

C1/2 B1/2

Figure 2 A “proof” of Property (d)

History Before introducing outer analogues of the medians and the median tri-
angle, we reflect on the history of the above properties. Property (a) was proved by
Archimedes of Syracuse, as Proposition 14 in Equilibrium of Planes, Book I; see
[8], [1, Subsection 10.7.2], or [16, p. 86]. By the 19th century, Property (a) was a
common proposition accompanying Euclid’s Elements [4, 14]. Interestingly, in [14]
and in several other books of this period, the term “median triangle” of ABC means,
in our notation, the triangle A1/2 B1/2C1/2. Nowadays, this triangle is called the medial
triangle of ABC.

The first usage of the current meaning of the median triangle that we found is in
[11, Ch. XVI, §473]. However, in his 1887 paper [13], Mackay proves Property (b) in
his §6 without explicitly stating it. He attributes his §6 to [15], but we could not find it
there.

Furthermore, Property (c) appears as [13, §8(c)] and Property (d) as [13, §8(a)].
Mackay points out that [13, §8(a)] is proved in [10] as a solution to a problem proposed
in [12]. Finally, Mackay believed that his [13, §8(c)] was new.

The medians are not alone

A median of a triangle is just a special cevian; a cevian is a line segment joining a
vertex of a triangle to a point on the opposite side. Are there other triples of cevians
from distinct vertices of a triangle that share the essential features of Properties (a),
(b), (c), and (d)?

Some natural candidates for such cevians are suggested by the “median grid” al-
ready encountered in FIGURES 1 and 2. In FIGURES 3 and 4, we show more of this
grid with the cevians that in some sense most resemble the medians. The labeling of
the points on the line BC in FIGURE 4 originates from BC being considered as a num-
ber line with 0 at B and 1 at C . More precisely, for ρ ∈ R, the point Aρ is the point on

the line BC that satisfies
−→
BAρ = ρ

−→
BC. The points on the lines AB and BC are labeled

similarly.
As indicated in FIGURE 3, the cevians in the triple(

BB−1/2,AA1/2,CC3/2

)
(1)

are concurrent, with the understanding that three line segments are concurrent if the
lines determined by them are concurrent. In addition to the triple of cevians in (1)
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C3/2 B–1/2

Figure 3 The “median grid”; the median from A, and one outer median from each B
and C

we will consider two more triples of concurrent cevians that are symmetrically placed
with respect to the other sides:(

CC−1/2,BB1/2,AA3/2

)
,

(
AA−1/2,CC1/2,BB3/2

)
. (2)

All three triples are shown in FIGURE 4.
That the triples in (1) and (2) are really concurrent follows from Ceva’s theorem,

which in our notation reads as:

CEVA’S THEOREM [5, p. 220]. With ρ,σ ,τ ∈ R, the cevians AAρ , CCσ , BBτ are
concurrent if and only if

ρστ − (1− ρ)(1− σ)(1− τ) = 0. (3)

Equation (3) defines a surface in ρστ -space; see FIGURE 10, below. We call it the
Ceva surface. It will appear prominently in what follows.

A

B

A1/2

C

C1/2 B1/2

B3/2 C–1/2

Ga

GbGc

A–1/2 A3/2

C3/2 B–1/2

Figure 4 The “median grid”; three medians and six outer medians
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188 MATHEMATICS MAGAZINE

Since the cevians AA−1/2, AA3/2, BB−1/2, BB3/2, CC−1/2, CC3/2 play the leading
roles in this note and because of their proximity to the medians on the “median grid,”
we call them outer medians. Thus, for example, associated to vertex A we have one
median, AA1/2, and two outer medians, AA−1/2 and AA3/2. See FIGURE 4.

We find it quite remarkable that all four properties of the medians listed in the
opening of this note hold for the three triples displayed in (1) and (2), each of which
consists of a median and two outer medians originating from distinct vertices.

(A) The median and two outer medians in each of the triples in (1) and (2) are con-
current.

(B) The median and two outer medians in the triples in (1) and (2) form three triangles.
We refer to these three triangles as outer median triangles of ABC; see FIGURE 5.

(C) The area of each outer median triangle of ABC is 5/4 of the area of ABC.
(D) For each outer median triangle, one of its outer median triangles is similar to the

original triangle ABC with the ratio of similarity 5/4.

A

B

A1/2

C

C1/2 B1/2

B3/2 C–1/2

A–1/2 A3/2

C3/2

B–1/2

Figure 5 Three outer median triangles of ABC

As we have already mentioned, Property (A) follows from Ceva’s theorem. FIG-
URES 6 and 7 offer “proofs without words” of Properties (B), (C), and (D).

We point out that the concurrency points Ga , Gb, Gc (see FIGURE 4) divide the
corresponding outer medians in the ratio 2 : 3, that is, for example,

BGa : Ga B−1/2 = CGa : GaC3/2 = 2 : 3.

A

B A1/2 C

C3/2 B–1/2

Figure 6 A “proof” of Properties (B) and (C)
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A = Q

B A1/2 = R C

C3/2 B–1/2

R3/2

X

PP1/2

Q–1/2

Figure 7 A “proof” of Property (D)

Similarly, it can be shown that the concurrency points divide the corresponding medi-
ans in the ratio 6 : 1, for example, AGa : A1/2Ga = 6 : 1. Computing these ratios is an
exercise in vector algebra.

Are the medians and the outer medians alone?

We motivated our study of outer medians by their special position on the “median
grid.” However, the above four properties could very well hold for other triples of
cevians. Is it then the case that the median triangle and the three outer median triangles
are truly special?

The concurrency of three cevians is characterized by equation (3), which was used
to justify the claim in Property (A). Next, akin to Property (B) and with no requirement,
for the moment, that the cevians be concurrent, we look for a sufficient condition under
which three cevians form a triangle.

Property (B) We first answer the following question: For which ρ,σ ,τ ∈ R does
there exist a triangle with sides that are congruent and parallel to the cevians AAρ,BBσ
and CCτ , independent of the triangle ABC in which they are constructed?

With a = −→BC, b = −→CA and c = −→AB, we have

−→
AAρ = c+ ρ a,

−→
BBσ = a+ σ b and

−→
CCτ = b+ τ c.

Then, a necessary and sufficient condition for the existence of a triangle with sides that
are congruent and parallel to the line segments AAρ , BBσ , and CCτ is that one of the
following four vector equations is satisfied:

−→
AAρ ±̂

−→
BBσ ±

−→
CCτ = 0. (4)

We put a special sign ˆ above the first ± to be able to trace this sign in the calculations
that follow. Substituting c = −a− b in (4), we get(

−1 ±̂ 1+ ρ ∓ τ
)
a+

(
−1 ±̂ σ ± 1∓ τ

)
b = 0. (5)

Using the linear independence of a and b and choosing both + signs in (4), it follows
from (5) that ρ = σ = τ . Choosing the first sign in (4) to be + and the second to
be −, we get that ρ = −τ, σ = 2− τ . Choosing the first sign in (4) to be − and the
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second to be +, we get ρ = 2 − σ , τ = −σ ; and choosing both − signs in (4), we
get σ = −ρ, τ = 2− ρ. Thus, we have identified four sets of parameters (ρ,σ ,τ ) for
which, independent of ABC, there exists a triangle, possibly degenerate, with sides that
are congruent and parallel to the cevians AAρ , BBσ , and CCτ :

(ξ, ξ, ξ), (2− ξ, ξ,−ξ), (−ξ, 2− ξ, ξ), (ξ,−ξ, 2− ξ), ξ ∈ R. (6)

The only concern here is that the cevians AAρ,BBσ , and CCτ might be parallel.
However, the condition for the cevians to be parallel is easily established as follows.
Since the vector

−→
CCτ is nonzero, we look for λ,µ ∈ R such that

c+ ρ a = λ(b+ τ c) and a+ σ b = µ(b+ τ c). (7)

Substituting c = −a− b in (7) and using the linear independence of a and b, we get
from the first equation λ = 1/(τ − 1), ρ = 1/(1− τ) and from the second equation
µ = −1/τ , σ = 1− 1/τ . Hence, the line segments AAρ , BBσ , and CCτ are parallel if
and only if

ρ = 1

1− ξ , σ = 1− 1

ξ
, τ = ξ, ξ ∈ R \ {0, 1}. (8)

Thus, to avoid degeneracy of triangles with cevian sides corresponding to triples in
(6) such as, for example, (−ξ, 2− ξ, ξ), we must exclude the values of the parameter
ξ that solve −ξ = 1/(1− ξ). This, in turn, shows that the triples (ρ,σ ,τ ) for which
there exists a non-degenerate triangle with sides that are congruent and parallel to the
cevians AAρ , BBσ , and CCτ must belong to one of the following four sets:

D =
{
(ξ, ξ, ξ) : ξ ∈ R

}
,

E =
{
(2− ξ, ξ,−ξ) : ξ ∈ R\{−φ−1, φ}

}
,

F =
{
(−ξ, 2− ξ, ξ) : ξ ∈ R\{−φ−1, φ}

}
,

G =
{
(ξ,−ξ, 2− ξ) : ξ ∈ R\{−φ−1, φ}

}
,

where φ = (1+
√

5)/2 denotes the golden ratio.
The diagonal of the ρστ -space provides a geometric representation of the set D.

The other three sets are represented by straight lines with two points removed. All four
lines are shown in FIGURE 10, together with the Ceva surface.

Generalized median and outer median triangles As we have just seen, the cevians
associated with the triples in the sets D, E, F, and G are guaranteed to form triangles;
that is, they satisfy a property analogous to Property (B). The most prominent repre-
sentatives of triangles originating from the sets D, E, F, and G are the median and outer
median triangles, which all correspond to the value ξ = 1/2. Therefore, for a fixed ξ ,
the triangle associated with the triple (ξ, ξ, ξ) in D we call ξ -median triangle, and
the triangles associated with the corresponding triples in E, F, and G we call ξ -outer
median triangles. In FIGURES 8 and 9, we illustrate these triangles with ξ = 1/φ, the
reciprocal of the golden ratio.

Next, we explore whether the ξ -median and ξ -outer median triangles have proper-
ties analogous to (C) and (D).
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A

B Aξ C

Cξ

Bξ

Figure 8 The ξ -median triangle with ξ = φ−1

A

B Aξ C

C2–ξ B–ξ

A–ξ

Cξ Bξ

B2–ξ

C–ξ

A2–ξ

Figure 9 Three ξ -outer median triangles with ξ = φ−1

Property (C) First, we recall two classical formulas, which seem to be custom made
for our task.

Heron’s formula [5, 1.53], gives the square of the area of a triangle, 12, in terms of
its sides a, b, c:

12 = s(s − a)(s − b)(s − c), where s = 1

2
(a + b + c).

Substituting s and simplifying yields

12 = 1

16

(
2
(
a2b2 + b2c2 + c2a2

)
−
(
a4 + b4 + c4

))
.

Stewart’s theorem [6, Section 1.2, Exercise 4], gives the square of the length of a
cevian in terms of the squares of the sides of ABC:

(AAρ)
2 = ρ(ρ − 1)a2 + ρb2 + (1− ρ)c2.

Similar formulas hold for
(
BBσ

)2
and

(
CCτ

)2
. In matrix form, these three equations
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are: 
(
CCτ

)2(
BBσ

)2(
AAρ

)2

 =
 τ 1− τ τ(τ − 1)

1− σ σ(σ − 1) σ

ρ(ρ − 1) ρ 1− ρ


 a2

b2

c2

 . (9)

We denote the 3× 3 matrix in (9) by M(ρ, σ, τ ). The idea of using this matrix is due
to Griffiths [7]. It was further explored in [3, Section 3].

Now it is clear how to proceed to verify the property analogous to (C): use triples
from the sets D, E, F, and G to get expressions for the squares of the corresponding
cevians, substitute these expressions in Heron’s formula, and simplify. However, this
involves simplifying an expression with 36 additive terms, quite a laborious task for
a human but a perfect challenge for a computer algebra system like Mathematica. We
first define Heron’s formula as a Mathematica function (we call it HeronS) operating
on the triples of squares of the sides of a triangle and producing the square of the area:

In[1]:= HeronS[ {x , y , z }] := 1
16

(2 (x*y + y*z + z*x) - (x2+y2+z2))

Next, we define in Mathematica the matrix function M as in (9):

In[2]:= M[{ρ , σ , τ }] := { { τ, 1− τ, −(1− τ) ∗ τ },
{ 1− σ, −(1− σ) ∗ σ, σ },
{ −(1− ρ) ∗ ρ, ρ, 1− ρ } }

To verify the property analogous to (C) for ξ -median triangles, we put the newly
defined functions in action by calculating the ratio between the squares of the area of
the ξ -median triangle and the original triangle. Mathematica’s answer is instantaneous:

In[3]:= Simplify[HeronS[M[{ξ,ξ,ξ}] . {x,y,z}]/HeronS[{x,y,z}]]
Out[3]= (1-ξ+ξ2)2

This “proves” that the ratio of the areas depends only on ξ , and that the ratio is exactly
1− ξ + ξ 2. Further, for one of the ξ -outer median triangles, we have

In[4]:= Simplify[HeronS[M[{2-ξ,ξ,−ξ}] . {x,y,z}]/HeronS[{x,y,z}]]
Out[4]= (1+ξ-ξ2)2

“proving” that the area of the triangle formed by the cevians AA2−ξ , BBξ , CC−ξ is
|1 + ξ − ξ 2| of the area of the original triangle ABC. The other two ξ -outer median
triangles yield the same ratio. In summary, Mathematica has confirmed that the ξ -
median and the three ξ -outer median triangles all have the property analogous to (C).

Property (D) The verification of the property analogous to (D) is simpler. For a
ξ -median triangle, following [7], we just need to calculate the square of the matrix
M(ξ, ξ, ξ), which turns out to be

(
1 − ξ + ξ 2

)2
I . This confirms that the ξ -median

triangle of the ξ -median triangle is similar to the original triangle with the ratio of
similarity 1− ξ + ξ 2.

Similarly, for a ξ -outer median triangle corresponding to a triple in E, we calculate
the square of the matrix M(2− ξ, ξ,−ξ), which turns out to be

(
1+ ξ − ξ 2

)2
I ; this

confirms that one of the ξ -outer median triangles of this ξ -outer median triangle is
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similar to the original triangle with the ratio of similarity |1+ ξ − ξ 2|. In contrast, for
a ξ -outer median triangle corresponding to a triple in F, to get a triangle similar to the
original triangle we need to calculate its ξ -outer median triangle corresponding to a
triple in G. This amounts to multiplying the matrices

M(ξ,−ξ, 2− ξ)M(−ξ, 2− ξ, ξ) =
(
1+ ξ − ξ 2

)2
I.

Likewise, for a ξ -outer median triangle corresponding to a triple in G, we calculate its
ξ -outer median triangle corresponding to a triple in F and obtain the same result.

Concurrency comes to the rescue All these calculations indicate that, after all, the
median and outer median triangles are facing stiff competition from their ξ -triangles
generalizations. However, property (A) comes to the rescue of the median and outer
median triangles at this point. We want the triples of cevians corresponding to the
triples in D, E, F, and G to be concurrent as well. So which of these triples satisfy
Ceva’s condition (3)? Or, geometrically, what is the intersection of the lines and the
Ceva surface in FIGURE 10? First, we substitute ρ = σ = τ = ξ in (3), which yields
ξ 3 − (1 − ξ)3 = 0, whose only real solution is ξ = 1/2. The corresponding cevians
are the medians. To intersect E with the Ceva surface, we substitute (2 − ξ, ξ,−ξ)
in (3), obtaining −ξ 2(2 − ξ) − (1 + ξ)(ξ − 1)(1 − ξ) = 0, which is equivalent to
(ξ − φ)(ξ + φ−1)(2ξ − 1) = 0. Since ξ 6∈ {φ,−φ−1}, the only solution is ξ = 1/2,

– 2

– 1

0

1

2

3

– 2

– 1

0

1

2

3

– 2

1

0

1

2

3

–

Figure 10 The sets D, E, F and G and the Ceva surface
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yielding the “outer median triple” (3/2, 1/2,−1/2). Intersecting F with the Ceva
surface gives (−1/2, 3/2, 1/2) and intersecting G with the Ceva surface results in
(1/2,−1/2, 3/2). Consequently, the only triples in D, E, F, and G which correspond
to concurrent cevians are the “median triple” and the three “outer median triples.”

There is only a slight weakness in our argument above. In identifying the sets D,
E, F, and G, we assumed that the triangles formed by the corresponding cevians have
sides that are parallel to the cevians themselves. In [3], we proved that the only cevians
AAρ,BBσ ,CCτ that form triangles and with (ρ,σ ,τ ) not included in the sets D, E, F,
and G are parallel cevians, that is the cevians AAρ , BBσ , and CCτ , where ρ, σ , τ satisfy
(8) with the additional restriction

ξ ∈
(
−φ,−φ−1

)
∪
(
φ−2, φ−1

)
∪
(
φ, φ2

)
.

As it turns out, the properties analogous to (C) and (D) do not hold for triangles formed
by such cevians. In conclusion, indeed, along with the medians and the median tri-
angle, the outer medians and their outer median triangles are unique in satisfying all
four properties analogous to those from the beginning of our note.
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Árpád Bényi).
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