THE FUNDAMENTAL THEOREM OF ARITHMETIC
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ABSTRACT. We show that the Fundamental Theorem of Arithmetic admits a
natural formulation rooted in linear algebra in which the prime numbers serve
as a basis for the Z-module of positive rational numbers and factorizations
become coordinate representations. This perspective yields a Z-module iso-
morphism between the positive rationals and the space of integer sequences
with finitely many nonzero entries, and reveals that semimodule and lattice
structures are preserved. As a direct corollary, we derive a bijection between
the positive rational numbers and the positive integers that requires only the
concept of the radical of an integer.

1. STUDENT’S QUESTION ABOUT THE FUNDAMENTAL THEOREM OF ARITHMETIC

While recently teaching an introductory course in number theory, the first author
was asked by a student whether the Fundamental Theorem of Arithmetic is “some
sort of mapping between vector spaces.” This note originated in making sense of
this apparently nonsensical question.

The main protagonists in the Fundamental Theorem of Arithmetic are the pos-
itive integers greater than 1,

N\{1} = {2,3,4,5,6,7,8,9,10,11,12,13,. ..}
and the primes
P ={2,3,57,11,13,17,19,23,29,31,...}.
Both of these sets are ordered, and for the primes it is convenient to introduce the
sequence notation
pr=2,p2=3,p3 =95, pa=7, ps =11, ps =13, pr =17, ps =19, ...

The Fundamental Theorem of Arithmetic states that for every n € N\{1} there
exists a unique 7 € N and a unique j-tuple (kh ceey kj) of integers in Ng = {0} UN
such that k; > 0 and

J
n:p11~--pj-7 :le .
=1

Thus, the Fundamental Theorem of Arithmetic establishes a bijection between
N\{1} and the set of nonzero tuples of nonnegative integers.
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To highlight the essence of the Fundamental Theorem of Arithmetic, we restate
it as:
There is a special subset of positive integers, called primes, such
that every positive integer can be uniquely represented as a product
of powers of those primes.

Students familiar with linear algebra will recognize a parallel concept in vector
spaces:

There is a special subset of vectors, called a basis, such that every
vector in the space can be uniquely represented as a sum of scalar
multiples of those basis vectors.

For those new to linear algebra, this analogy serves as a bridge to the core concept of
a basis, with primes playing the role of a basis for the positive integers. A theorem
below makes this correspondence precise.

2. ARE THERE VECTOR SPACES IN THE FUNDAMENTAL THEOREM OF
ARITHMETIC?

The representation of exponents in the Fundamental Theorem of Arithmetic as
tuples of varying lengths suggests a natural vector space interpretation. This sug-
gestion leads us to the space of real sequences with each having only finitely many
nonzero entries, which we will denote by ¢,,(R). This vector space, equipped with
standard componentwise operations, is a canonical example in linear algebra; see,
for example, [8, Section 1.2, Example 5] or [11, Section 4.1, Example 8]. The tuples
of nonnegative integer exponents from the Fundamental Theorem of Arithmetic are
embedded in this space by padding each tuple with countably many zeros. This
embedding identifies them with the subset ¢,,(Ng) C ¢ ,(R).

Since any vector a = (kq, ko, ...) € ¢,,(No) has only finitely many nonzero entries,
the infinite product

P .= H Pl

ieN
is a well-defined positive integer. For the zero vector 0 € ¢, (Ny), whose entries
are all zero, we have an infinite product of ones, so, P® = 1. In this setting,
the Fundamental Theorem of Arithmetic is equivalent to the statement that the
function

®:N—= ¢, (Ng) defined by &(n):=a ifandonlyif n=P2

is a bijection. That is, for every n € N there exists a unique sequence of exponents
a € ¢,,(Np) such that n = P2, and conversely for every a € ¢,,(Np) we have P2 € N.

The above formulation situates the range of the bijection ® : N — ¢, (Ny) within
the framework of a familiar vector space. To do the same for the domain, we must
find a vector space that reflects the multiplicative structure of N. This requires a
vector space where vector addition corresponds to ordinary multiplication. Surpris-
ingly, such a vector space exists and is sometimes called an “exotic” vector space,
as in [5]. We define this vector space on the set of positive real numbers, R, , with
scalars from the field R. For any vectors x,y € Ry and any scalar o € R, vector
addition ¢ and scalar multiplication < are defined as

9y =2y, adx =z
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It is an exercise in linear algebra to verify that (R, 4, ) satisfies all the axioms
of a real vector space. In this space, the number 1 € R, serves as the zero vector,
and for a vector x € R, its additive inverse is 1/x € Ry.

The answer to the question posed in this section’s title is a definite yes. The
central protagonist in the Fundamental Theorem of Arithmetic, the set of positive
integers N, is embedded in the “exotic” vector space (R, 4, ), where multiplica-
tion acts as vector addition. On the other side, the exponent tuples, represented
as the set ¢,,(Np), are a natural subset of the standard vector space (c,,(R),+,-).
The Fundamental Theorem of Arithmetic, through the bijection ®, connects these
two algebraic worlds.

In the next section, we will tighten this connection by extending the bijection ®
to a larger domain and range. This extension will naturally lead to narrowing the
vector spaces in play to more general algebraic structures known as Z-modules.

3. ® EXTENDED TO Z-MODULES

A weakness of the current setting, as an answer to our student’s question, is
that the domain and range of the bijection ® : N — ¢ ,(Np) are embedded in vector
spaces, and are not vector spaces themselves. To narrow the embedding gap, we
extend the bijection @ to the domain Q, the set of positive rational numbers, thus
extending the range to ¢,(Z). For arbitrary m,n € N we define

O, (m/n) = d(m) — d(n).
That the function ., : Q4 — ¢,(Z) is well-defined is a part of the next theorem.

One key significance of the natural extension ., is that it draws our attention
to two new algebraic structures: (Q4, 4, ®) and (cyo(Z),+,-). These structures
are much closer to being vector spaces than the original domain (N,<I>,<>) and
range (cOO(NO),—l-, ) The reader can verify that these new structures satisfy all
the axioms for a vector space, with the crucial exception that the scalars must be
restricted to the ring of integers Z instead of the field of real numbers R. Such an
algebraic structure is called a module over the ring Z, or simply a Z-module. The
stage is now set for our first theorem.

Theorem 1. The function ®.,: Q1 — ¢,,(Z) is a Z-module isomorphism. That is,
., is a bijection, and for all z € Z and all r,s € Q4 we have

D (rds) =D (rs) = B (r) + D.(s) (1)
and
D (z 1) =D (r®) = 2D (r). (2)

Proof. Since the restriction of ®,, to N is ®, we reason about ® first. Given m,n € N,
let ®(m) = a and ®(n) = b with a,b € ¢,,(Ng). That is, m = P2 and n = PP.
Then, mn = P2*P or, in terms of ®,

(m & n) = &(mn) = &(m) + &(n). 3)
Note also that for z € N, m* = P*?, that is
B(z & m) = B(m*) = 2 a(m). (4)

Now, given r € Q, let m,n,m’,n’ € N be such that r = m/n = m’/n/.

mn’ =m’'n and (3) we obtain

d(m) + d(n') = o(m') + ®(n) = B(m) — d(n) = d(m’) — &(n').

From
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This shows that ®., is a well-defined function.
Next, given r,s € Q4, let us write r = m/n and s = p/q with m,n,p,q € N.
Then, using again (3), we obtain

D (rds) =D (rs)

)
= ®cx(r) + ¢cx(s)'
Hence, ., is additive, that is (1) holds.
Since ®,,(1) = 0, it follows that ®,,(0&r) = ¢,.(1) =0 = 02,,(r). Let z € Z\{0}.
If z > 0, using (4) we get
Doz 0 7) = B(m*) — B(n) = 2 Bm) — 2 B{n) = 2 B (1),
while for z < 0 we have
0. (2 071) = ®(n77) = (M%) = (=2) (= Pulr)) = 2 Dulr).

Hence, ®., is homogeneous, that is (2) holds.
We prove next that @, is an injective function. Assuming that ®..(r) = @..(s),
we get

d(m) — ®(n) = &(p) — d(q) <=  (mq) = d(np)
< mg=np
<= r=m/n=p/lq=-s;

in the second equivalence, we used the injectivity of ®.

Finally, we prove the surjectivity of ®.,.. Given an arbitrary ¢ € ¢, (Z), let
a,b € ¢,,(Np) be such that ¢ = a — b. Since ® is surjective, there exist m,n € N
such that a = ®(m) and b = &(n). It follows that there exists m/n € Q4 such that

c=®(m)— d(n) = b, (m/n). O

Before restating the Fundamental Theorem of Arithmetic in the language of
the Z-module (Q4, ¢, ®), we need a definition, see [7, page 354], whose structure
should be familiar from the discussion in the second part of Section 1.

Definition 2. Let (M, +,-) be a Z-module. A subset B C M is a basis for M
if for every nonzero element v € M there exist a unique j € N, unique nonzero
elements aq,...,a; € Z, and unique distinct by, ...,b; € B such that

v:a1b1+~--+ajbj.
If B is a basis for M, then M is said to be free on B.

Not every Z-module has a basis. In fact, as Artin emphasizes in [2, page 416],
“Most modules have no basis.” For completeness, we include a simple classical
example. Consider M = {0,1} with addition defined by 0 +0=1+1 = 0 and
0+1 =140 =1, and scalar multiplication is defined for all z € Z by z-0 =0, and
z-1=0if zis even, and z-1 = 1 if z is odd. It is straightforward to verify that
({0,1},+,-) is a Z-module and B = {0} is not a basis; neither is B = {1} since
1=1-1=3-1, which violates the uniqueness requirement.
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The fact that the Z-module (Q4, 4, ®) is a free module on P is a part of math-
ematical folklore, see, for example, [13, Exercise 34, page 147] or [15, Section:
Definition and examples]. We show here how it follows from the existence of the
module isomorphism &.,.

Theorem 3. The set P of prime numbers is a basis for the Z-module (Q+7 &, <>),

Proof. Recall our notation: P = {pi 11 € N}. By the definition of &, and ®, for
every i € N we have @, (p;) = ®(p;) = €;, where e; € ¢,,(Z) has all entries 0 except
the ¢-th, which is 1.

Let r € Q4 and a = (o, a9,...,@;,0,0,...) € ¢,(Z) be arbitrary. Since by
Theorem 1, ®.,.: Q4 — ¢,,(Z) is a Z-module isomorphism we have ®.(1) = a if and
only if a =0, and

r=(a19p1)d - (a;0p;) < Pu(r)=are+ +aje; < O (r)=a (5)
Let r € Q4+\{1} be arbitrary and set a = ®,(r) € ¢,,(Z). Then a # 0; set j € N to

be the cardinality of the set of the nonzero entries in a and let a;,, ..., a;, be the
nonzero entries of a. By the equivalence (5) we have the unique representation:
7‘:(ai1<>pi1)<]>-~-4>(aij<>pij). 0

At the beginning of this section, we gave a “definition” of a module over the
ring Z just by pointing out its seemingly minor difference from the definition of
a vector space over R. Having established Theorem 3, we can now illustrate a
major distinction between these algebraic structures. By Theorem 3, the Z-module
(Q+, &, <>) is infinite-dimensional, as its basis, the set IP of primes, is infinite. At the
same time, (Q+, d, <>) is embedded in the one-dimensional vector space (R+, &, <>)
over R.

That the last vector space has dimension one follows from the change of base
formula for logarithms. For any vector z € R, and any potential basis vector
b e Ry\{1}, for the scalar a = (logz)/(logb) € R we have

r=0"=a®b.

This shows that any single (nonzero) vector b € R;\{1} forms a basis for (R, ¢, ®)
over R.

4. A THEOREM ABOUT ®

We now return to the original function ® : N — ¢, (Ny). Viewing N as a subset
of Q4 and ¢, (Ng) as a subset of ¢,,(Z), and restricting scalars from the ring Z
to the semiring Ny, we no longer have modules but rather semimodules. The Ny-
semimodules N and ¢,,(Ng), with the operations inherited from the modules in
Theorem 1, are interesting since each carries an additional lattice structure, and
® preserves that structure as well. Before proving this in the next theorem, we
introduce the lattice orders on ¢, ,(No) and N. See [6, Chapter 2] for a detailed
introduction to lattices.

We equip ¢,,(Np) with the componentwise partial order: for a = (aq, as,...) and
b = (81, 52,...) in ¢,,(No) we set

a=<b if and only if a; < B; forall ieN.
With this partial order, ¢,,(No) is a lattice where the meet of a and b is

ailb= (min{al,ﬂl},min{ag, B2}, .. )
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and the join is
aYb= (max{al,ﬁl},max{ag,ﬁg}, .. )

Thus ¢,,(Np) is a semimodule over Ny and a lattice under componentwise order.
The meet and join are characterized as follows: for all ¢ € ¢,,(Np),

c=<a and c2b <= c=<XaAb, (6)
respectively
a<c and b<c <« aYb=ec (7)

The set N is also a semimodule over Ny and a lattice under the partial order
introduced by divisibility. For m,n € N, their meet is gcd(m,n) and their join is
lem(m,n).

Theorem 4. The function ® : N — ¢, (Ng) is an isomorphism of No-semimodules
and lattices. That is, ® is a bijection and it has the following properties: For all
m,n € N and all z € Ny we have:

(a) ®(m & n) = d(mn) = &(m) + &(n),
(b) ®(z ®n)=d(n*) =zd(n),

(c) m|n if and only if ®(m) X d(n),
(d) ®(ged(m,n)) = d(m) A &(n),

(e) @(lem(m,n)) = &(m) Y &(n).

Proof. Properties (a) and (b) follow from Theorem 1.

For the proof of (c), it is useful to observe that by the definition of the partial
order < in ¢, (Np), for arbitrary a,b € ¢,,(Ny) we have a < b if and only if
b —a € ¢, (Ny). The next equivalences are straightforward

mln << ZenN
m

n
= <I»ex<%> € ¢,,(Nop)
< ®(n) — d(m) € ¢, (No)
—  Pd(m) < d(n).
To prove (d) we use (c¢), the fact that ® is a surjection, the characterization in

(6), and the following characterization of gcd(m,n): for all k& € N the following
equivalence holds

kElm and k|n <= k|gcd(m,n).
Let ¢ € ¢,,(Np) be arbitrary and let & € N be such that ¢ = ®(k). Then, we have
c = ®(ged(m,n)) ®(k) < ®(ged(m,n))
k| ged(m,n)
E|lm and k|n
O(k) < ®d(m) and &(k) < d(n)
c X ®(m) A d(n).

1reey

This proves (d).
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The proof of (e) is similar. It uses (c), ® is a surjection, the characterization
in (7), and the following characterization of lem(m,n): for all k£ € N the following
equivalence holds

m|k and n|k <= lem(m,n)|Ek. O

5. BONUS: A BIJECTION BETWEEN N AND Q.
Since we introduced the two bijections
D, :Qp = co(Z) and P :N — ¢ (Np),

we do not want to miss the opportunity to use them to create a bijection between
N and Q4 which seems to be missing from the literature. Let

1 :Ng — Z such that (0) =0

be a bijection. For example, for all n € Ny and all z € Z define

1 1
P(n) = (-1)" [g—‘ and ¥ '(2) = 2‘2 + Z‘ -5
Then define the bijection
v CDO(NO) - coo(Z)
by applying v : Ng — Z componentwise. The resulting compositions
(®.) 'oWod:N—Qy and (@) towtod, QL =N (8)

are bijections that are mutual inverses. The first 256 positive rational numbers in
the sequence given by the bijection N — Q4 in (8) are shown in Table 1.

TABLE 1. The first 256 rationals in the enumeration N — Q4 in (8)
1

1 1 1 1 1 1 1 2 1 1
1 5 35 2 5 5§ 7 1 3 1% 1w 3 13 u 15 4
103 1 2 1 1 1 1 g 1 1 2 1 1 1 1
17 2 19 5 21 22 23 12 26 9 7 29 30 31 8
11 1 g 1 1 1 1 1 1 1 2 3 1 1 4
33 34 35 37 38 39 20 41 42 43 11 5 46 47 3
v 5 1 2 1 1 1 1 1 1 1 2 1 1 3 g
2 51 13 53 18 55 28 57 58 59 15 61 62 7
1 01 1 2 1 1 1 3 1 1 5 2 1 1 1 4
65 66 67 17 69 70 71 4 73 T4 3 19 7 78 79 5
9 L 1 2 1 1 1 1 1 3 1 2 1 1 1 1
82 83 21 85 86 87 44 89 10 91 23 93 94 95 24
17 3 49 L 1 1 1 1 1 1 2 1 1 1 4
97 2 11 101 102 103 52 105 106 107 9 109 110 111 7
11 1 2 3 1 1 1 11 2 1 3 1 1
113 114 115 29 13 118 119 60 122 123 31 25 14 127 16
1112 111 1 1 1 12 1 1 1 qg
129 130 131 33 133 134 45 68 137 138 139 35 141 142 143
1 1 7 2 1 5 1 1 3 1 1 2 1 1 1 1
145 146 3 37 149 6 151 76 17 154 155 39 157 158 159 40
19 12 1 1 1 1 48 1 3 2 1 1 5 4
161 2 163 41 165 166 167 84 170 19 43 173 174 7 11
1 1 1 6 1 1 1 1 1 1 1 2 1 1 1 8
177 178 179 5 181 182 183 92 185 186 187 47 63 190 191 3
11 1 44 1 3 1 5 1 1 1 2 1 1 3 4
193 194 195 197 22 199 4 201 202 203 51 205 206 23 13
11 1 2 1 1 1 1 1 1 1 2 1 1 1 1
209 210 211 53 213 214 215 36 217 218 219 55 221 222 223 56
15 L L 2 1 1 1 1 1 3 1 2 1 1 1 4
226 227 57 229 230 231 116 233 26 235 59 237 238 239 15
1 1 1 2 7 1 1 1 1 1 1 6 1 1 1 16
241 2 27 61 5 246 247 124 249 50 251 7 253 254 255
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The second bijection in the last displayed formula, mapping Q1 to N, has a

particularly simple form:
2.2

P, P

q rad(q)
where p and ¢ are relatively prime positive integers and rad(q) is the radical of ¢,
defined to be the product of the distinct prime divisors of ¢ if ¢ > 1, and rad(1) = 1.
One can use this formula to determine the position of each rational number in the
above table. For example, 2/55 is at the position 2255%/(5 - 11) = 220.

What is the value of this bijection? In [4], Calkin and Wilf state: “It is well
known (indeed, as Paul Erdés might have said, every child knows) that the ratio-
nals are countable. However, the standard presentations of this fact do not give
an explicit enumeration; rather they show how to construct an enumeration.” The
authors of [4] then proceed with a beautiful recursion which leads to their bijection
between N and Q. As with most recursions, they are well suited for implementa-
tion on a computer, but hard to do on a simple calculator, or even less so by hand;
see also [1, 9, 12], and [10, Section 4.5 Relative primality]. In fact, Calkin and Wilf
cite Stan Wagon [14], who asked for the numerator of the fraction in the 90,316th
position of their enumeration. Equivalently, Wagon’s question concerns the num-
ber of hyperbinary representations of the integer 90316, an elegant connection that
highlights the beauty of the Calkin-Wilf enumeration.

In our bijection, to find the fraction at the 90,316th position requires the prime
factorization 90316 = 22.67-337; then we calculate that it is 2/(67-337) = 2/22579.
In fact, given the list of all 168 primes which are smaller than 1000 and a lazy Sunday
afternoon, a student could calculate the first 1000 fractions in our bijection with a
little help from an old-fashioned calculator.

Even more interestingly, none of the enumerations we have encountered in the
literature explores the inverses of the bijections they introduce. And that is where
our bijection excels. It turns out that the fraction at the 90,316th position in the
Calkin-Wilf enumeration is 843/494; see the playful numbering of the problem in
[14]! At which position is 843/494 in our bijection? We just need to verify that
494 = 2-13 - 19 is squarefree to calculate that this fraction is at the 8432 - 494 =
351,060,606th position. Furthermore, in our enumeration, with n € N, the positive
rational n/1 is at the n?-th position (shown in boldface in Table 1), while if n is
squarefree, the unit fraction 1/n can be found at the n-th position.

Although verifying that a large positive integer is squarefree is computationally
demanding (see [3]), our bijection is more accessible for “human-sized” integers.
While it is less efficient for extremely large inputs, it can serve as an intuitive first
step toward understanding the countability of the positive rationals for beginning
students of number theory.

A question, in the spirit of [4]: Is there a bijection between N and Q4 which,
together with its inverse, can be given by a closed-form expression?
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