
A PROOF OF THE MAIN THEOREM ON BEZOUTIANS

BRANKO ĆURGUS AND AAD DIJKSMA

Abstract. We give a self-contained proof that the nullity of the Bezoutian matrix associ-
ated with a pair of polynomials f and g equals the number of their common zeros counting
multiplicities.

With two polynomials f and g and n = max{deg f,deg g} we associate an n× n matrix B,
called the Bezoutian, and a 2n × 2n matrix R, called the resultant. Their defining relations
are given by (6) and (5) below, respectively. In terms of the coefficients of f and g they are
given by (8) and (4). In this note we give a simple and self-contained proof of the equalities

(1) dimkerB = dimkerR = deg gcd(f, g),

where gcd stands for greatest common divisor. H. Wimmer in [8] attributes this result to
Jacobi who in 1836 showed that the singularity of what we call the Bezoutian implies the
existence of a common factor of f and g. More contemporary proofs of (1) can be found in the
recent books [3, Theorems 21.10 and 21.11] by H. Dym and [5, Theorem 8.30] by P. Fuhrmann.
In the Introduction to [3, Chapter 21] it is shown that dimkerB ≥ deg gcd(f, g) by using the
defining formula for B, differentiation and chains of vectors. That equality prevails is then
proved by using these chains and the so-called Barnett identity: B = Hfg(Cf ), where Hf is
the Hankel matrix for f defined below and Cf is the companion matrix of f . In [5] the matrix
B is expressed in terms of a matrix representation of g(Sf ), where Sf is the shift operator in
the space Xf of polynomials modulo f , relative to two suitably chosen bases in Xf . In view
of [5, Corollary 8.29] this formula is closely related to the Barnett identity. In this note we
do not resort to this identity. Our approach, we think, is more direct. Of course some of the
formulas derived below also appear in [3, Chapter 21] and [5, Chapter 8]. Our proofs of these
formulas are different. For a survey of results related to Bezoutians see [1, Fact 4.8.6] in the
encyclopedic book by D.S. Bernstein and for applications of Bezoutians in numerical linear
algebra and system theory, see for example [4] and [6], respectively.

1. Notation and basic notions. The vector space of all polynomials with coefficients in C

and in the variable z is denoted by C[z]. Its Cartesian square is denoted by C
2[z]. For n ∈ N,

C[z]<n denotes the subspace of C[z] of all polynomials of degree strictly less than n. This space
has dimension n. Similarly, C2[z]<n denotes the Cartesian square of C[z]<n.

We use I to denote the identity matrix, Z the reverse identity and N the nilpotent Jordan
block:

Z :=







0 · · · 1
... . .

. ...

1 · · · 0






, N :=









0 1 · · · 0
...
. . .

. . .
...

0
. . . 1

0 0 · · · 0









.

For a polynomial

f(z) = f0 + f1z + · · · fnz
n

Date: August 11, 2012.

1
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in C[z] we define two n×n matrices, one Hankel and one Toeplitz, associated with f as follows:

Hf :=







f1 · · · fn
... . .

. ...

fn · · · 0






, Tf :=







f0 · · · fn−1

...
. . .

...

0 · · · f0






.

Since the left-multiplication by Z reverses the rows, it turns a Hankel matrix into a Toeplitz
and vice versa:

ZHf :=







fn · · · 0
...

. . .
...

f1 · · · fn






, ZTf :=







0 · · · f0
... . .

. ...

f0 · · · fn−1






.

As each Hankel matrix is symmetric, we have ZTf =
(

ZTf

)⊤
= T⊤

f Z, where the superscript
⊤ is used to denote a matrix transpose. Consequently,

(2) T⊤

f = ZTfZ.

The vector space of upper (lower) triangular Toeplitz matrices is spanned by the identity
I and the powers of N (N⊤, respectively). Therefore, the upper (lower) triangular Toeplitz
matrices form a commutative algebra. In particular for polynomials f as above and g(z) =
g0 + g1z + · · · gnz

n we have

(3) TfTg = TgTf , HfZHg = HgZHf ,

where the last equality follows from (ZHf )(ZHg) = (ZHg)(ZHf ).
For n ∈ N and z ∈ C we denote by Vn(z) the n× 1 column vector

Vn(z) =
[

1 z · · · zn−1
]⊤

.

This notation is convenient as it provides a compact way of writing polynomials. For example,
a polynomial a(z, w) in two variables z and w can be written as:

a(z, w) =

n−1
∑

j,k=0

ajkz
jwk = Vn(z)

⊤AVn(w),

where A is the n× n coefficient matrix
[

ajk
]n−1

j,k=0
of a(z, w).

The resultant R of the polynomials f and g is the 2n × 2n matrix given as a 2 × 2 block
matrix:

(4) R =

[

Tf ZHf

Tg ZHg

]

.

Notice that the action of R on V2n(z) is particularly simple:

(5) RV2n(z) =
[

f(z)Vn(z) g(z)Vn(z)
]⊤

.

Next we define the Bezoutian B of f and g. First consider the polynomial f(z)g(w) −
f(w)g(z) in two variables. Since this polynomial vanishes for all w = z ∈ C, there exists a
polynomial b(z, w) in two variables such that

f(z)g(w) − f(w)g(z) = (z − w)b(z, w) for all z, w ∈ C.

The Bezoutian B of f and g is the n× n coefficient matrix of b(z, w):

(6) b(z, w) = Vn(z)
⊤BVn(w), z, w ∈ C.
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The null space or kernel of a matrix (or a linear transformation) A is denoted by kerA. Its
dimension is called the nullity of A.

2. A connection between R and B. To establish a connection between R and B we consider
the polynomial (zn − wn)b(z, w) and we find two ways of representing its coefficient matrix.
To find the first representation we use the standard identity

zn − wn = (z − w)
n−1
∑

j=0

zn−1−jwj = (z − w)Vn(z)
⊤ZVn(w), z, w ∈ C,

matrix algebra and (5):

(zn − wn)b(z, w) = (z − w)b(z, w)Vn(z)
⊤ZVn(w)

=
(

f(z)g(w) − g(z)f(w)
)

Vn(z)
⊤ZVn(w)

=

[

f(z)Vn(z)

g(z)Vn(z)

]⊤ [

g(w)ZVn(w)

−f(w)ZVn(w)

]

=

[

f(z)Vn(z)

g(z)Vn(z)

]⊤ [

0 Z

−Z 0

][

f(w)Vn(w)

g(w)Vn(w)

]

= V2n(z)
⊤R⊤

[

0 Z

−Z 0

]

RV2n(w).

The second representation involves the Bezoutian:

(zn − wn)b(z, w) = (zn − wn)Vn(z)
⊤BVn(w)

=
(

znVn(z)
)⊤
BVn(w)−Vn(z)

⊤B
(

wnVn(w)
)

= V2n(z)
⊤

[

0 0

B 0

]

V2n(w) + V2n(z)
⊤

[

0 −B

0 0

]

V2n(w)

= V2n(z)
⊤

[

0 −B

B 0

]

V2n(w).

These two representations of the coefficient matrix of (zn − wn)b(z, w) provide a connection
between R and B:

(7) R⊤

[

0 Z

−Z 0

]

R =

[

0 −B

B 0

]

.

On the other hand, using the definition of R, (2) and (3) we obtain

R⊤

[

0 Z

−Z 0

]

R =

[

ZTfZ ZTgZ

HfZ HgZ

][

ZTg Hg

−ZTf −Hf

]

=

[

ZTfTg − ZTgTf ZTfZHg − ZTgZHf

HfTg −HgTf HfZHg −HgZHf

]

=





0 −
(

HfTg −HgTf

)⊤

HfTg −HgTf 0



 .
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Together with (7), the last equality yields




0 −
(

HfTg −HgTf

)⊤

HfTg −HgTf 0



 =

[

0 −B

B 0

]

,

and thus

(8) B = HfTg −HgTf = B⊤.

3. R and B have the same nullity. Equation (7) indicates that there is a connection
between kerR and kerB. An even more direct connection between kerR and kerB is obtained
from (4), (8) and (3) (listed in the order in which they are used) as follows:

[

I 0
Tf ZHf

]

R =

[

Tf ZHf

T 2
f + ZHfTg TfZHf + ZHfZHg

]

=

[

Tf ZHf

ZB +
(

Tf + ZHg

)

Tf

(

Tf + ZHg

)

ZHf

]

=

[

0 I

ZB Tf + ZHg

] [

I 0
Tf ZHf

]

=

[

0 I

Z Tf + ZHg

] [

B 0
0 I

] [

I 0
Tf ZHf

]

.

(9)

If we assume that n = deg f , then Hf is invertible, yielding that the first (as well as the last)
block matrix in (9) is invertible. Since the block matrix in (9) whose antidiagonal entries are
I and Z is also invertible, (9) implies that R and B have the same nullities:

(10) dimkerR = dimkerB.

4. The nullity of B in terms of f and g. Consider the multiplication operator

M : C2[z]<n → C[z]<2n

defined by

M

[

u

v

]

= fu+ gv, u, v ∈ C[z]<n.

For a characterization of the null space kerM of M in terms of f and g we need the greatest

common divisor h of f and g, its degree k = deg h and factorizations f = f̂h, g = ĝh. Then

(11) kerM =

{[

u

v

]

∈ C
2[z] : u = −ĝq, v = f̂ q, q ∈ C[z]<k

}

.

The inclusion ⊇ in (11) is clear. To prove ⊆, let u, v ∈ C[z]<n and
[

u v
]⊤

∈ kerM . Then

fu+ gv = 0, implies f̂u = −ĝv. Since f̂ and ĝ have no common zeros, the last identity yields
that there exist polynomials p and q such that u = ĝp and v = f̂ q. Substituting back to

f̂u = −ĝv, we get f̂ ĝp = −ĝf̂ q. Hence p = −q. Since deg v < n and deg f̂ = n − k, v = f̂ q

implies deg q < k. This proves (11).
The standard basis for C2[z]<n is

[

1

0

]

, . . . ,

[

zn−1

0

]

,

[

0

1

]

, . . . ,

[

0

zn−1

]

,

while the standard basis for C[z]<2n is

1, z, . . . , zn−1, zn, . . . , z2n−1.
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The matrix representation for M with respect to these standard bases is R⊤, see (5). Therefore
the nullity of R⊤ is dimkerM . Since (11) yields dimkerM = k and the nullity of R⊤ equals
the nullity of R, we have proved that the nullity of R is k and, by (10),

dimkerB = dimkerR = k = degh.

5. Final remarks. It was remarked in [6, p. 318] that the Bezoutian of a pair of polynomials is
defined whenever n ≥ max{deg f,deg g}. We add to this that the same is true for the resultant
and that if n ≥ m := max{deg f,deg g}, then formula (1) has to be replaced by the formula

(12) dimkerBn = dimkerR2n = n−m+ deg gcd(f, g),

where, for example, the index n in Bn indicates that Bn has size n × n. Indeed, (12) follows
from (1) and from the equalities

dimkerBn = n−m+ dimkerBm and dimkerR2n = n−m+ dimkerR2m.

The first of these two equalities holds because of (6), which implies Bn =

[

Bm 0
0 0

]

, and the

second follows from the reasoning in Section 4 with k in (11) replaced by n−m+ k.
Finally we note that (12) can be expressed as

dimkerBn = dimkerRn = deg gcd(f̄ , ḡ),

where

f̄(y, z) = f0y
n + f1y

n−1z + · · ·+ fnz
n and ḡ(y, z) = g0y

n + g1y
n−1z + · · · + gnz

n

are homogenizations (in the sense of [7, page 6-7]) of f and g, respectively. If n > m =
max{deg f,deg g}, then y = 0 is a common zero of f̄ and ḡ of multiplicity n −m. Since the
zero y = 0 of the homogenization is commonly viewed as a “zero at infinity” of the original
polynomial (see for example [2, 4.4.3]) we can rephrase our abstract to cover the “generalized”
Bezoutian Bn: The nullity of the Bezoutian matrix Bn associated with a pair of polynomials f
and g equals the number of their common zeros including the “zero at infinity” and counting
multiplicities.
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