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Abstract
In a coupling theorem from 2001 we described a special class of canonical self-
adjoint extensions of the direct sum of symmetric linear relations S1 and S2 in Krein
spaces H1 and H2 and assigned a unique parameter to each of these extensions. In
this paper we assume that dimH2 ∈ N and that S2 is an operator without eigenvalues
and construct a model for (H2, S2) based on an essentially unique polynomial matrix
P(z). The families of Shtraus subspaces associated with the self-adjoint extensions
are characterized as restrictions of S∗

1 by polynomial boundary conditions involving
P(z) and the parameters. We establish necessary and sufficient conditions on the
parameters under which the extensions are similar and the corresponding families of
Shtraus subspaces coincide. Related to our results is the equationW(z)P(z) = P(z)V
in which the unimodular matrix polynomial W(z) and the invertible matrix V are the
unknowns. Explicit examples are given.
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1 Introduction

The starting point of this paper is the Coupling Theorem [12, Theorem 5.1] which we
recall as Theorem 3.1 in Section 3. It describes the canonical self-adjoint extensions
˜A of the direct sum of two closed symmetric linear relations S1 in the Krein space H1
and S2 in the Krein spaceH2 such that ˜A∩H2

1 = S1 and ˜A∩H2
2 = S2. We assume that

the symmetric linear relations have the same equal defect numbers d ∈ N. If we fix
boundarymappingsb1 for S1 andb2 for S2, then all such extensions ˜A are parametrized
by invertible 2d × 2d matrices � satisfying (3.3). To indicate this connection we
sometimes write ˜A� for ˜A.

For such an ˜A we consider the family of Shtraus subspaces T
˜A(z), z ∈ C ∪ {∞},

in H1, see Subsection 3.2. Each member T
˜A(z) of the family is a kind of compression

of ˜A to H1 and satisfies S1 ⊂ T
˜A(z) ⊂ S∗

1 .
We assume that dimH2 ∈ N and that S2 is an operator in H2 without eigenvalues.

Then the Model Theorem 4.2 assigns an essentially unique d × 2d matrix polynomial
P(z) to the pair (H2, S2) with properties described in Theorem 2.4. We show that,
as a consequence, T

˜A�
(z) can be characterized as the restriction of S∗

1 determined by
the polynomial boundary condition P(z)�−1b1({ f1, g1}) = 0, { f1, g1} ∈ S∗

1 . This is
formulated in Theorem 4.4, our first main theorem.

The bijective correspondence between the class of self-adjoint extensions ˜A� and
the class of invertible 2d × 2d matrices � satisfying (3.3) asserted in the Coupling
Theorem cannot be carried over to a bijective correspondence between the Shtraus
families T

˜A�
(z) and the parameters �. In this paper we study the correspondence in

detail. This is summarized in Theorem 4.5, the second main theorem of the paper. We
give necessary and sufficient conditions on � and � for which the identity T

˜A�
(z) =

T
˜A�

(z) holds for all z ∈ C ∪ {∞}. We also show that this identity holds if and only if
the relations ˜A� and ˜A� are similar under an isomorphism which leaves H1 invariant.
A key role in our results is played by the equation W(z)P(z) = P(z)V, z ∈ C. Here
W(z), a unimodular d×d matrix polynomial, and V, an invertible 2d×2d matrix, are
the unknowns. We provide explicit examples, obtained using Wolfram Mathematica,
to illustrate that equations may have more than the trivial solution W(z) = aId and
V = aI2d with a ∈ C\{0}.

In a sequel to this paper we drop the assumption that S1 = ˜A ∩ H2
1 in the Cou-

pling Theorem, but still assume that dimH2 ∈ N and S2 = ˜A ∩ H2
2 is an operator

without eigenvalues. We show that the family of Shtraus subspaces T
˜A(z) for ˜A can

be described as the restriction of S∗
1 determined by a polynomial boundary condition

of the form P(z)b1({ f1, g1}) = 0, { f1, g1} ∈ S∗
1 , where P(z) satisfies all the assump-

tions of Theorem 2.4 except assumption (d), that is, P(z) may have constant rows. We
investigate the relation between the resolvent set, the point spectrum, the Jordan chains
and the continuous spectrum of ˜A and the same notions for the boundary eigenvalue
problem

BEP
(

S1,b1,P(z)
)

: For all λ ∈ C and all h1 ∈ H1 determine the existence and the
uniqueness of a solution { f1, g1} ∈ H2

1 of the system

{ f1, g1} ∈ S∗
1 , g1 − λ f1 = h1 and P(λ)b1({ f1, g1}) = 0.
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For λ = ∞ and all h1 ∈ H1 determine the existence and uniqueness of a solution
{h1, f1} ∈ H2

1 of the system

{h1, f1} ∈ S∗
1 and P∞b1({h1, f1}) = 0.

The latter system corresponds to a canonical self-adjoint extension of S1 described
in Theorem 2.3.

References to earlier results related to the results in this paper are given in the rele-
vant sections.We assume that the reader is familiar with indefinitemetric spaces, linear
relations defined on them such as symmetric and self-adjoint ones, and reproducing
kernel spaces.

1.1 Notation and Preliminaries

By N, R and C we denote the sets of positive integers, real numbers and complex
numbers, and C = C ∪ {∞} is the one point compactification of C. For z ∈ C,
z∗ ∈ C denotes the complex conjugate of z; we have ∞∗ = ∞. The asterisk as a
superscript is also used to denote the adjoint of a matrix, operator or linear relation.
Form, n ∈ Nwe denote by In the n×n identity matrix, while 0m×n denotes them×n
zero matrix and 0 stands for the zero matrix whose size is implied by the context. For
constant matrices we use the sans-serif font, except for matrices� and�which we use
exclusively in boundary conditions. For matrix polynomials we use the calligraphic
font accompanied with the variable. #S means the number of elements in a finite set
S.

In a vector space H we often identify an operator in H with its graph in

H2 = {{u, v} : u, v ∈ H
}

and then we denote them by the same symbol. Here the notation {u, v} stands for the
ordered pair; although we use curly brackets also to denote sets, the meaning will
be clear from the context. For example, the scaled identity operator α I on H, with
α ∈ C, is identified with α I = {{u, αu} : u ∈ H

}

. A linear relation S inH is a vector
subspace S of H2. It is the graph of an operator S if and only if {0, v} ∈ S implies
v = 0, and then we write v = Su for {u, v} ∈ S. For a linear relation S in H we
define the domain dom S, the range ran S, the null space nul S, and the multivalued
part mul S of S as follows

dom S = {u ∈ H : {u, v} ∈ S with v ∈ H
}

, nul S = {u ∈ H : {u, 0} ∈ S
}

,

ran S = {v ∈ H : {u, v} ∈ S with u ∈ H
}

, mul S = {v ∈ H : {0, v} ∈ S
}

.

The sum S + T , the difference S − T , and the product T S of two linear relations
S and T in H are defined by

S ± T = {{u, v ± w} : {u, v} ∈ S, {u, w} ∈ T
}

,
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and

T S = {{u, w} : {u, v} ∈ S, {v,w} ∈ T with v ∈ H
}

.

For example, αS = (α I )S = {{u, αv} : {u, v} ∈ S
}

. Since S − α = S − α I =
{{u, v−αu} : {u, v} ∈ S

}

,we have nul(S−α) = dom(S∩α I ). The product of linear
relations is associative. For a linear relation S in H its nonnegative powers are defined
inductively, with S0 = I and S1 = S. A linear relation S is said to be nilpotent if there
exists an m ∈ N such that Sm = 0. If Sm−1 �= 0 and Sm = 0, then m is the nilpotency
index of S. Here the symbol 0 may denote either the zero relation

{{0, 0}} ⊂ H2, or
the zero operator on H, that is, the relation

{{u, 0} : u ∈ H
}

.

Form, n ∈ Nwe denote byCm×n[z] the space of all matrix polynomials with coef-
ficients in Cm×n . The degree of such a polynomial is −∞ if it is the zero polynomial,
otherwise it is the highest power of z for which the corresponding matrix coefficient
is nonzero. A square matrix polynomial is called unimodular if its determinant is a
nonzero scalar. We write Cm[z] for Cm×1[z]. For vector functions a(z) and b(z), the
identity a(z) ≡ b(z) stands for the proposition a(z) = b(z) for all z ∈ C.

Let S(z) ∈ C
m×n[z] be a nonzero matrix polynomial of degree s; thus s ∈ {0} ∪N.

If

S(z) = S0 + S1z + · · · + Ss zs, S j ∈ C
m×n, j ∈ {0, . . . , s} with Ss �= 0

is the expansion of S(z) in powers of z and CS stands for its (s + 1)m × n coefficient
matrix:

CS =

⎡

⎢

⎢

⎢

⎣

S0
S1
...

Ss

⎤

⎥

⎥

⎥

⎦

,

then

⋂

z∈C
nulS(z) = nul CS. (1.1)

Here nul denotes the null space of a matrix.
Assume that the rows of S(z) are nonzero and for k ∈ {1, . . . ,m} denote the degree

of the k-th row of S(z) by σk . Then σk ∈ {0} ∪ N. We define the m × n matrix S∞ to
be the matrix consisting of the leading coefficients of the rows of S(z). Specifically,

S∞ = lim
z→∞ diag

(

z−σ1 , . . . , z−σm
)

S(z). (1.2)

When convenient, we will extend S(z) to C by defining S(∞) = S∞.
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A Krein space is an ordered pair
(

H, [ ·,·]H
)

consisting of a complex vector space
H and a Hermitian form [ ·,·]H defined on H × H, provided that there exists a linear
involution (or self-inverse function) J : H → H such that [J ·, ·]H is a Hilbert space
inner product onH. Such an involution J is in fact a self-adjoint operator on thisHilbert
space and it is called a fundamental symmetry on

(

H, [ ·,·]H
)

. Its spectral subspaces
H− (corresponding to the eigenvalue −1) and H+ (corresponding to the eigenvalue
1) form an orthogonal decomposition of H both as a Hilbert space and as a Krein
space. Moreover, the spaces

(

H±,±[·,·]H
)

are Hilbert spaces. Such a decomposition
is called a fundamental decomposition of a Krein space. The dimensions of H− and
H+ are called the negative and positive indices of H, respectively. The antispace of
a Krein space

(

H, [ ·,·]H
)

is the Krein space
(

H,−[·,·]H
)

. A Krein space is called a
Pontryagin space if either its positive or negative index is finite. A detailed study of
Krein spaces and operators in them can be found in [4, 6, 27].

Let
(

G, [ ·,·]G
)

and
(

H, [ ·,·]H
)

beKrein spaces. By T : G → H is an isomorphism
wemean that T is a linear bijection and isometry between the Krein spaces, that is, for
all u, v ∈ G we have [Tu, T v]H = [u, v]G. In this case T ∗T = IG and T ∗ = T−1.

2 The PolynomialP(z) and Canonical Subspaces

2.1 Boundary Mapping and GramMatrix

We collect basic facts about defect numbers of symmetric linear relations in Krein
spaces, boundary mappings and Gram matrices.

Let
(

H, [ ·,·]H
)

be a Krein space and let J be a fundamental symmetry on it. Then
H, equipped with the inner product 〈 ·,·〉H = [J ·,· ]H, is a Hilbert space.

The Cartesian product H2 endowed with the indefinite inner product

〈〈{ f , g}, {h, k}〉〉 = i
(〈 f , k〉H − 〈g, h〉H

)

for all { f , g}, {h, k} ∈ H2

is a Krein space. For example, the direct sum H2 = (−i IH) ⊕ (i IH) of the graphs
of the operators −i IH and i IH is a fundamental decomposition of the Krein space
(

H2, 〈〈 ·,· 〉〉).
Furthermore, H2 equipped with the inner product

�{ f , g}, {h, k}� = i
([ f , k]H − [g, h]H

)

for all { f , g}, {h, k} ∈ H2 (2.1)

is a Krein space as well, since it is straightforward to verify that the mapping
{ f , g} �→ { f , Jg} is an isomorphism between the inner product spaces

(

H2, � ·,·�)
and

(

H2, 〈〈 ·,· 〉〉).
The idea of using the Krein spaces

(

H2, � ·,·�) and (H2, 〈〈 ·,· 〉〉) to study self-adjoint
extensions of symmetric relations in

(

H, [ ·,·]H
)

and
(

H, 〈 ·,·〉H
)

dates back at least
to [36, § 4]. We briefly review the essential facts needed for this paper.

Let S be a closed symmetric linear relation in aKrein space
(

H, [ ·,·]H
)

with adjoint
S∗. We assume that the defect of S is finite; that is δ = dim(S∗/S) ∈ N. Then J S is
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a closed symmetric linear relation with adjoint (J S)〈∗〉 = J S∗ in the Hilbert space
(

H, 〈 ·,·〉H
)

. The equality dim
(

(J S∗)/(J S)
) = dim(S∗/S) = δ establishes a tight

connection between the definite and indefinite settings.
It follows from the definition of 〈〈 ·,· 〉〉 that J S being symmetric in

(

H, 〈 ·,·〉H
)

is
equivalent to J S ⊂ H2 being a neutral subspace of

(

H2, 〈〈 ·,· 〉〉). Moreover, its adjoint
(J S)〈∗〉 = J S∗ in

(

H, 〈 ·,·〉H
)

is the orthogonal complement of J S in
(

H2, 〈〈 ·,· 〉〉) and
J S is the isotropic part of J S∗. Therefore, the factor space

(

(J S∗)/(J S), 〈〈 ·,· 〉〉) is a
finite-dimensional Pontryagin space. The von Neumann equality

J S∗ = (J S)〈∗〉 = J S ⊕ ((J S)〈∗〉 ∩ (−i IH)
)⊕ ((J S)〈∗〉 ∩ (i IH)

)

is a fundamental decomposition of the degenerate inner product space
(

J S∗, 〈〈 ·,· 〉〉).
The space

(

(J S)〈∗〉 ∩ (±i IH),±〈〈·,· 〉〉) is a Hilbert space. The von Neumann equality
implies that the Pontryagin spaces

(

(J S∗)/(J S), 〈〈 ·,· 〉〉
)

and
(

(

(J S)〈∗〉 ∩ (−i IH)
)⊕ ((J S)〈∗〉 ∩ (i IH)

)

, 〈〈 ·,· 〉〉
)

are isomorphic. Consequently, these spaces have negative index d− and positive index
d+, where dim

(

(J S)〈∗〉 ∩ (±i IH)
) = dim nul

(

(J S)〈∗〉 ∓ (i IH)
) = d±. Clearly,

δ = d− + d+. The numbers d− and d+ are called the defect numbers of J S.
Returning to S, we observe that the definition of � ·,·� implies that S being sym-

metric in
(

H, [ ·,·]H
)

is equivalent to S ⊂ H2 being a neutral subspace of
(

H2, � ·,·�).
Moreover, its adjoint S∗ in

(

H, [ ·,·]H
)

coincides with the orthogonal complement of
S in

(

H2, � ·,·�), and S is the isotropic part of S∗.
It is straightforward to verify that the mapping { f , g} �→ { f , Jg} defines an iso-

morphism between the degenerate inner product spaces
(

S∗, � ·,·�) and (J S∗, 〈〈 ·,· 〉〉).
Consequently, the quotient spaces

(

S∗/S, � ·,·�) and ((J S∗)/(J S), 〈〈 ·,· 〉〉) are iso-
morphic, implying that

(

S∗/S, � ·,·�) is a Pontryagin space with negative index d−,
positive index d+, and δ = d− + d+. The numbers d− and d+ are called the defect
numbers of S.

Amapping b : S∗ → C
δ is called a boundary mapping for S if it is linear, surjective

and nul b = S. The next lemma concerns the abstract Green’s or Lagrange identity
for the indefinite inner product � ·,·�:

i
([ f , k]H − [g, h]H

) = b({h, k})∗Qb({ f , g}) for all { f , g}, {h, k} ∈ S∗, (2.2)

in which b is a boundary mapping for S andQ is a δ×δ matrix called theGrammatrix
associated with b.

The definition of a boundarymapping and its connection with the Lagrange identity
goes back to [7, Definition 1.1].

Lemma 2.1 Let S be a closed symmetric linear relation in a Krein space
(

H, [ ·,·]H
)

with defect numbers d± and δ = d− + d+ ∈ N.

(i) For each boundary mapping b of S there exists a unique δ × δ matrix Q such
that (2.2) holds. It is invertible and self-adjoint and it has d− negative and d+
positive eigenvalues.
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(ii) Letbbeaboundarymapping for S withGrammatrixQ. A functionb1 : S∗ → C
δ

is a boundary mapping for S if and only if there exists an invertible δ × δ matrix
V such that b1 = V−1b. Moreover, V is unique. If b1 = V−1b, then its Gram
matrix is V∗QV. In particular, two boundary mappings b and b1 = V−1b have
the same Gram matrix if and only if V∗QV = Q.

(iii) For each invertible, self-adjoint δ×δmatrixQ1 with d− negative and d+ positive
eigenvalues there exists a boundary mapping b1 for S such that Q1 is a Gram
matrix for b1.

In what follows, Q-unitary matrices V, as at the end of part (ii) of the lemma, will
play an important role; see, for example, Theorem 2.9 and (4.11), where V = �−1�.

Proof of Lemma 2.1 (i) Let b : S∗ → C
δ be a boundary mapping for S. The mapping

induced by b on the quotient space S∗/S is a linear bijection between the finite-
dimensional vector spaces S∗/S and C

δ; it will also be denoted by b : S∗/S → C
δ .

Let i, j ∈ {1, . . . , δ}, let e j be the j-th column of Iδ and let Q be the δ × δ matrix
whose entry in the i-th row and j-th column is �b−1(e j ),b−1(ei )�, where � ·,·� is
defined in (2.1). Then (2.2) holds. Since � ·,·� is a non-degenerate Hermitian form on
S∗/S, the matrixQ is invertible and self-adjoint. By defining the weighted dot product
y∗Qx onCδ ×C

δ , we endowC
δ with the structure of a Pontryagin space. Furthermore,

b : S∗/S → C
δ becomes an isomorphism between Pontryagin spaces. Consequently,

Q has d− negative and d+ positive eigenvalues.
(ii) The “only if” part: Let b1 : S∗ → C

δ be a boundary mapping for S. Then both
b and b1 can be considered as linear bijections from S∗/S toCδ . Then bb−1

1 is a linear
bijection onCδ . Let V be the matrix of bb−1

1 relative to the standard basis ofCδ . Then
the asserted formulas follow. All remaining claims are straightforward.

(iii) Let Q1 be an arbitrary invertible self-adjoint matrix with d− negative and
d+ positive eigenvalues. By the complex version of Sylvester’s law of inertia [34,
Theorem 6.11] Q1 is conjunctive to Q. That is, there exists an invertible δ × δ matrix
V such that Q = V∗Q1V. By (ii) the mapping b1 = Vb is a boundary mapping for S
whose Gram matrix is Q1. ��

Remark 2.2 Let S be as in Lemma 2.1 and assume d = d− = d+. Let �0 and �1 be
linear operators from S∗ to C

d . The triple
(

C
d , �0, �1

)

is called a boundary value
space of S∗ or, in more recent publications, a boundary triplet of S∗ if

b =
[

�0
�1

]

: S∗ → C
d

⊕
C
d

and Q =
[

0 −iId
iId 0

]

(2.3)

are a boundary mapping for S with corresponding Gram matrix, see [13, 14], [21,
Ch. 8] and [5, Ch. 2], where further references can be found. Boundary triplets give a
direct access to γ -fields and Weyl functions associated with S, see [20]. Throughout
this paper we could choose and fix b and Q to be of the form (2.3) or of the form
where Q = diag

(

Id ,−Id
)

. A definite choice would not simplify the presentation and
therefore we follow the general formulation as in, for example, [24], [12] and [2].
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The following theorem describes the canonical self-adjoint extensions of a sym-
metric linear relation in a Krein space. These are extensions that act in the same space
as the symmetric linear relation. The Hilbert space version is well known and goes
back at least to [26, Theorem XII.4.30]. We have not been able to find more recent
references.

Theorem 2.3 Assume S is a closed symmetric linear relation in a Krein space
(H, [ ·,·]H) with adjoint S∗ and defect numbers d−, d+ ∈ {0} ∪ N.

(i) S has a canonical self-adjoint extension if and only if d− = d+, and S is self-
adjoint if and only if d− = d+ = 0.

(ii) Assume d = d− = d+ ∈ N and let b : S∗ → C
2d be a boundary mapping with

Gram matrix Q. The formula

A = {{ f , g} ∈ S∗ : Pb({ f , g}) = 0
}

gives a bijective correspondence between the canonical self-adjoint extensions
A of S and the constant d × 2d matrices P (up to multiplication on the left by
invertible d × d matrices) satisfying

PQ−1P∗ = 0 and rank P = d.

Proof We use the notation introduced above. Recall that
(

S∗/S, � ·,·�) is a δ-
dimensional Pontryagin space with negative index d−, positive index d+, and δ =
d− + d+. Let A be a closed linear relation in H such that S ⊆ A ⊆ S∗. By definition
of the inner product � ·,·�, A is self-adjoint if and only if A/S equals its orthogo-
nal complement in

(

S∗/S, � ·,·�). Since a subspace of a Pontryagin space equals its
orthogonal complement if and only if the negative and positive indices of the Pontrya-
gin space are equal, (i) is proved.

Since b : S∗/S → C
δ is an isomorphism between

(

S∗/S, � ·,·�) and the Pontryagin
spaceCδ with the weighted dot product y∗Qx , the relation A is self-adjoint if and only
if b(A) equals its orthogonal complement in C

δ . Furthermore, the subspace b(A) of
C

δ equals its orthogonal complement if and only if b(A) = ranM, whereM is a 2d×d
matrix of rank d satisfying M∗QM = 0 and ranM is its range.

Setting P = M∗Q, we have d = rank P, and the condition M∗QM = 0 implies
ranM = nul P and PQ−1P∗ = 0. Since the correspondence between A and M is
bijective (modulo multiplication on the right by invertible d × d matrices), (ii) is
proved. ��

2.2 The PolynomialP(z)

For d ∈ N and a d-tuple μ = (μ1, . . . , μd) ∈ N
d with μ1 ≥ · · · ≥ μd ≥ 1 we define,

as in [9], the canonical subspace Cμof Cd [z] by

Cμ =
{

[

p1(z) · · · pd(z)
]� ∈ C

d [z] : deg p j (z) < μ j , j ∈ {1, . . . , d}
}
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and denote its elements by fμ, gμ, 0μ, etc. By Sμ we denote the operator in Cμ of
multiplication by z. Its graph is given by

Sμ =
{

{

fμ, gμ

} ∈ C2
μ : z fμ(z) − gμ(z) ≡ 0

}

.

The facts that Cμ is finite-dimensional and Sμ is an operator without eigenvalues play
a key role in this paper, see Subsection 4.1.

Below we recall [11, Theorem 2.1]. It shows that a canonical subspace Cμ arises as
the reproducing kernel space related to a certain matrix polynomial and, together with
Sμ, serves as a model for any finite-dimensional Pontryagin space with a symmetric
operator that has no eigenvalues, see Theorem 4.2. Furthermore, this kind of matrix
polynomials appears in the characterization of the Shtraus family of extensions of a
symmetric linear relation in a Krein space, see Theorem 4.4.

Theorem 2.4 Let d ∈ N. Let Q be a self-adjoint 2d × 2d matrix with d positive and d
negative eigenvalues. LetP(z) be a d×2d matrix polynomial, and for j ∈ {1, . . . , d},
let μ j denote the degree of the j-th row of P(z). Assume that the pair

(

Q,P(z)
)

has
the following properties:

(a) P(z)Q−1P(z∗)∗ = 0 for all z ∈ C.
(b) rankP(z) = d for all z ∈ C.
(c) rank P∞ = d.
(d) μ1 ≥ · · · ≥ μd ≥ 1.

Then

(i) The reproducing kernel Pontryagin space KQ,P with reproducing kernel defined
for z, w ∈ C by

KQ,P(z, w) =

⎧

⎪

⎨

⎪

⎩

i

z − w∗P(z)Q−1P(w)∗ for w �= z∗,

iP′(z)Q−1P(z∗)∗ for w = z∗,
(2.4)

is the canonical subspace Cμ of Cd [z].
(ii) The operator Sμ is symmetric in the Pontryagin space KQ,P, its defect numbers

are equal to d and its adjoint is given by

S∗
μ =

{

{ fμ, gμ} ∈ C2
μ : z fμ(z) − gμ(z) ≡ P(z)c for some c ∈ C

2d
}

.

(iii) The linear relation

{

{{ fμ, gμ}, c} ∈ C2
μ × C

2d : z fμ(z) − gμ(z) ≡ P(z)c
}

is (the graph of) an operator bμ,P : S∗
μ → C

2d which is a boundary mapping
for Sμ with Gram matrix −Q.
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With our extension of P(z) to C by setting P(∞) = P∞, conditions (b) and (c)
of Theorem 2.4 can be combined into the single requirement rankP(z) = d for all
z ∈ C.

The inner product on Cμ, with respect to which Sμ is symmetric, is determined by
the kernel (2.4). Therefore, we will often denote the reproducing kernel spaceKQ,P by
the pair

(

Cμ, KQ,P
)

. The antispace of
(

Cμ, KQ,P
)

is
(

Cμ, K−Q,P
)

; it will often appear
in the theorems below. In the antispace the definitions of Sμ, S∗

μ, and bμ,P remain the
same as in the space itself. In the space (Cμ, K−Q,P), the Gram matrix of bμ,P is Q.

Note that in [11, Theorem 2.1(iii)] there is a mistake: the Gram matrix Q there
should be replaced by −Q, as in Theorem 2.4(iii).

Remark 2.5 Let fμ, gμ ∈ Cμ and c ∈ C
2d . The following two equivalences follow

from Theorem 2.4(ii)(iii):

(z − λ) fμ(z) ≡ P(z)c ⇔ fμ ∈ nul
(

S∗
μ − λ

)

and c = bμ,P({ fμ, λ fμ}),
−gμ(z) ≡ P(z)c ⇔ gμ ∈ mul

(

S∗
μ

)

and c = bμ,P({0μ, gμ}).

In system theory, a matrix polynomial satisfying property (b) in Theorem 2.4 is
called irreducible, while one satisfying property (c) is termed row-reduced; see, for
example, [29, p. 378, Section 6.3.2] and [40, Section 2.7], where irreducible column-
reduced polynomials play a prominent role. In coding theory, different terminology is
used: basic for (b), reduced for (c), and canonical when both properties hold; see [35,
Subsection 13.4.3], and also [28, p. 56], where the term minimal-basic is used when
both properties are satisfied. An analogous concept to (b) appears in control theory
under the term hyper-regular; see [30, Section 6.5.3].

By [11, Theorem 3.2] the polynomial P(z) in Theorem 2.4 also has the trivial
common null space property:

⋂

z∈C
nulP(z) = {0}. (2.5)

Equivalently, the columns of P(z) as vector polynomials over C are linearly indepen-
dent.

The following lemma concerns statements about nulP(z) for each z ∈ C separately.

Lemma 2.6 Let P(z), μ, Cμ, Sμ, S∗
μ, and bμ,P be as in Theorem 2.4, let c ∈ C

2d and
λ ∈ C. The following equivalences hold.

(i) P(λ)c = 0 ⇔ P(z)c ≡ (z − λ) fμ(z) for some fμ ∈ Cμ.
(ii) P∞c = 0 ⇔ P(z)c ∈ Cμ.

Moreover,

nulP(λ) = bμ,P
(

S∗
μ ∩ λICμ

)

for all λ ∈ C,

where ∞ICμ
= {0μ} × Cμ.
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Proof (i) The implication ⇐ is straightforward. To prove the converse, assume
P(λ)c = 0 and define

fμ(z) =
⎧

⎨

⎩

1

z − λ

(

P(z) − P(λ)
)

c, z ∈ C\{λ},
P′(λ)c, z = λ.

Then fμ ∈ Cμ and P(z)c ≡ (z − λ) fμ(z).
(ii) SetP∞(z) = diag

(

zμ1 , . . . , zμd
)

P∞ andR(z) = P(z)−P∞(z). Then for every
j ∈ {1, . . . , d} we have that the degree of the j-th row of R(z) is < μ j . Therefore,
R(z)c ∈ Cμ. It follows that P(z)c ∈ Cμ if and only if

P(z)c − R(z)c = P∞(z)c = diag
(

zμ1, . . . , zμd
)

P∞c ∈ Cμ.

Since diag
(

zμ1 , . . . , zμd
)

P∞c ∈ Cμ if and only if P∞c = 0, the equivalence in (ii) is
proved.

The last statement follows from (i), (ii) and Remark 2.5. ��

2.3 The EquationW(z)P(z) ≡ P(z)V

It appears as one of the equivalent statements in Theorem 4.5. We study it and give
examples.

In the next lemma we characterize matrix polynomials whose null spaces coincide
for all z ∈ C.

Lemma 2.7 Let d ∈ N and let P(z) and Q(z) be d × 2d matrix polynomials of rank
d for all z ∈ C. Then

nulP(z) = nulQ(z) for all z ∈ C.

if and only if there exists a unimodular d × d matrix polynomial W(z) such that

W(z)P(z) ≡ Q(z).

Proof The proof of the “if” part is trivial. We continue with the proof of the “only if”
part. Since P(z) has full rank for all z ∈ C, by the polynomial Smith Normal Form
Theorem [29, Section 6.3.3] there exist a unimodular d × d matrix polynomial U(z)
and a unimodular 2d × 2d matrix polynomial V(z) such that

P(z) ≡ U(z)
[

Id 0
]

V(z) ≡ [U(z) 0
]

V(z). (2.6)

The factorization in (2.6) yields that the null space of P(z) is the range of the 2d × d

matrix V(z)−1
[

0 Id
]�. Since nulP(z) = nulQ(z), it follows that

Q(z)V(z)−1
[

0
Id

]

= 0. (2.7)
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Using (2.7) we show that the d × d matrix polynomial W(z) defined by

W(z) ≡ Q(z)V(z)−1

[

U(z)−1

0

]

has the asserted property:

W(z)P(z) ≡ Q(z)V(z)−1

[

U(z)−1

0

]

[

U(z) 0
]

V(z)

≡ Q(z)V(z)−1

[

Id 0

0 0

]

V(z)

≡ Q(z)V(z)−1

[

Id 0

0 Id

]

V(z)

≡ Q(z).

Since Q(z) has full rank for all z ∈ C, so does the d × d matrix polynomial W(z).
It follows that the determinant of W(z) is a polynomial without zeros, yielding that
W(z) is unimodular. ��
Lemma 2.8 LetP(z) be a d×2d matrix polynomial satisfying (b)–(d) of Theorem 2.4.
Let W(z) be a d × d matrix function and let V be an invertible 2d × 2d matrix such
that

W(z)P(z) ≡ P(z)V. (2.8)

Setting T(z) ≡ W(z)P(z) we have:

(i) T∞ = P∞V, rank T∞ = d, and for j ∈ {1, . . . , d} the degree of the j-th row of
T(z) is μ j .

(ii) The matrix function W(z) is a unimodular d × d matrix polynomial and the
degree of the scalar polynomial w jk(z) in the j-th row and the k-th column of
W(z) satisfies the inequality

deg
(

w jk(z)
) ≤ μ j − μk for all j, k ∈ {1, . . . , d}. (2.9)

(iii) There exists an invertible d × d matrixW such that WP∞ = T∞.

Proof (i) The statements follow from rank(P∞V) = d and the existence of the limit

lim
z→∞ diag

(

z−μ1 , . . . , z−μd
)

T(z) = P∞V,

see (1.2).
(ii) Since V is invertible, for every z ∈ C the matrixW(z)P(z) in (2.8) has rank d.

Therefore, for every z ∈ C the matrixW(z) is invertible. The identity in (2.8) implies
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nulP(z) = nul
(

P(z)V
)

for all z ∈ C. By Lemma 2.7 there exists a unimodular matrix
polynomialW1(z) such thatW1(z)P(z) ≡ P(z)V. Now (2.8) and the fact thatP(z) has
full rank for all z ∈ C imply that W(z) ≡ W1(z) is a unimodular matrix polynomial.

Since P(z) has properties (b) and (c) of Theorem 2.4, by [31, Theorem A.2] it has
the predictable degree property: For every u(z) = [

u1(z) · · · ud(z)
] ∈ C

1×d [z] we
have

deg
(

u(z)P(z)
) = max

{

μk + deg
(

uk(z)
) : k ∈ {1, . . . , d}}.

Applying this property to each row of T(z), for every j ∈ {1, . . . , d} we obtain

deg
(

T(z)| j
) = max

{

μk + deg
(

w jk(z)
) : k ∈ {1, . . . , d}},

where T(z)| j denotes the j-th row of T(z). Since by (i) this maximum equals μ j , (2.9)
follows.

(iii) Consider in C
d the linear relation W = {{P∞x, T∞x} : x ∈ C

2d
}

. Since
rank P∞ = d, the domW = C

d . From the equivalence between the equalities in the
chain of equivalences

P∞x = 0 ⇔ P(z)x ∈ Cμ by Lemma 2.6

⇔ W(z)P(z)x ∈ Cμ by item (ii))

⇔ T(z)x ∈ Cμ by definition of T(z)

⇔ T∞x = 0 by Lemma 2.6

it follows that W is the graph of a bijection on Cd , hence T∞ = WP∞. ��
The next theorem is an addendum to [10, Theorem 6.2]. There we considered a

linear bijection on Cμ that intertwines Sμ and now we assume that it also intertwines
S∗
μ.

Theorem 2.9 Let Q, P(z), μ, Cμ, Sμ, KQ,P, and S∗
μ be as in Theorem 2.4.

(i) Let W : Cμ → Cμ be a linear bijection. Then

W Sμ = SμW and WS∗
μ = S∗

μW (2.10)

if and only if there exists a unimodular d × d matrix polynomial W(z) and an
invertible 2d × 2d matrix V satisfying

W(z)P(z) ≡ P(z)V (2.11)

such that

(W fμ)(z) ≡ W(z) fμ(z) for all fμ ∈ Cμ. (2.12)
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(ii) Assume (2.11) and (2.12). Then

W : (Cμ, KQ,P) → (Cμ, KQ,P)

is an isomorphism if and only if Q = V∗QV.

Proof (i) Assume (2.10). By [10, Theorem 6.2] and the first equality in (2.10) there
exists a unimodular d×d matrix polynomialW(z) such that (2.12) holds. The algebra
of linear relations yields that the equalities in (2.10) are equivalent to: For all fμ, gμ ∈
Cμ we have the equivalences

{ fμ, gμ} ∈ Sμ ⇔ {W fμ,Wgμ} ∈ Sμ

and

{ fμ, gμ} ∈ S∗
μ ⇔ {W fμ,Wgμ} ∈ S∗

μ. (2.13)

They show that, like bμ,P, also bμ,P({W ·,W ·}) is a boundary mapping for Sμ. Hence
Lemma 2.1(ii) implies the existence of an invertible 2d × 2d matrix V such that

bμ,P({W fμ,Wgμ}) = Vbμ,P({ fμ, gμ}) for all { fμ, gμ} ∈ S∗
μ. (2.14)

By Theorem 2.4(ii),(iii) and (2.12) the equivalence in (2.13) can be restated as

z fμ(z) − gμ(z) ≡ P(z)bμ,P({ fμ, gμ})
⇔ zW(z) fμ(z) − W(z)gμ(z) ≡ P(z)bμ,P({W fμ,Wgμ}).

Multiplying the left-hand side by W(z) and using (2.14) we obtain

W(z)P(z)bμ,P({ fμ, gμ}) ≡ P(z)Vbμ,P({ fμ, gμ}) for all { fμ, gμ} ∈ S∗
μ.

Since bμ,P : S∗
μ → C

2d is a surjection, this implies (2.11).
To prove the converse, assume (2.11) and (2.12). Then by Lemma 2.8, (2.9) holds.

By [10, Theorem 6.2] (2.9) yields that the first equality in (2.10) holds as well. To
prove the second equality, we use the following implications

{ fμ, gμ} ∈ S∗
μ

1⇒ z fμ(z) − gμ(z) ≡ P(z)bμ,P({ fμ, gμ})
2⇒ zW(z) fμ(z) − W(z)gμ(z) ≡ P(z)Vbμ,P({ fμ, gμ})
3⇒ {W fμ,Wgμ} ∈ S∗

μ.

The implication
1⇒ follows from Theorem 2.4(ii) and (iii),

2⇒ follows from (2.11) and
3⇒ follows from Theorem 2.4(ii). These implications are in fact equivalences since
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W : Cμ → Cμ is a linear bijection. This proves (2.13) and hence the equivalent second
equality in (2.10).

(ii) To prove the last statement of the theorem, assume (2.11), (2.12), and set
T(z) = W(z)P(z). By Lemma 2.8(iii) and [10, Theorem 10.4] the operator W is
an isomorphism between Cμ = (Cμ, KQ,P) and Cμ = (Cμ, KQ,T).

Assume Q = V∗QV. Since Q = V∗QV is equivalent to Q−1 = VQ−1V∗, (2.11)
implies that KQ,T(z, w) ≡ KQ,P(z, w). Hence, the reproducing kernel spaces KQ,P
and KQ,T coincide, and thus W is an isomorphism on Cμ = KQ,P = (Cμ, KQ,P).

To prove the converse, assume thatW is an isomorphism onCμ = KQ,P. SinceW is
also an isomorphism between Cμ = KQ,P and Cμ = KQ,T, the two reproducing kernel
inner products on Cμ coincide. Hence the adjoints of Sμ in KQ,P and KQ,T coincide.
It follows from Theorem 2.4(ii)(iii) and (2.11) that

P(z)bμ,P = T(z)bμ,T = P(z)Vbμ,T for all z ∈ C.

Formula (2.5) now implies that bμ,T = V−1bμ,P. Since −Q is the Gram matrix for
bμ,P as well as for bμ,T, by Lemma 2.1(iii) there exists an invertible 2d × 2d matrix
U such that bμ,T = U−1bμ,P and Q = U∗QU. It follows that U = V and Q = V∗QV. ��

2.4 Examples

In all examples, Q is a self-adjoint 2d × 2d matrix with d positive and d negative
eigenvalues and P(z) is a d × 2d matrix polynomial such that the pair

(

Q,P(z)
)

has
the properties (a)–(d) of Theorem 2.4. Recall that the degree of P(z) is p = μ1 ≥ 1.

In each example below we study the solution of the equation

W(z)P(z) ≡ P(z)V, (2.15)

where P(z) is known, and the unknowns are a unimodular d × d matrix polynomial
W(z) and an invertible 2d × 2d matrix V. It is evident that for any α ∈ C\{0}, the pair
W(z) ≡ α Id and V = α I2d forms a solution, which we call trivial. In the next example
and Example 2.12, we present cases where P(z) admits only the trivial solution.

Example 2.10 We determine the solution of (2.15) in the case d = 1. Then W(z) is a
scalar polynomial which we denote by w(z). By Lemma 2.8(ii) w(z) is unimodular
and hence equal to a nonzero constant which we denote by a. The equation (2.15)
becomes P(z) (V − aI2) ≡ 0. Now (2.5) implies V = aI2. Therefore, for every pair
(

Q,P(z)
)

satisfying the properties (a)–(d) of Theorem 2.4 with d = 1 the equation
(2.15) has only the trivial solution.

Next, we reformulate (2.15) as a matrix equation. If W(z) satisfies (2.15), then by
Lemma 2.8(ii) degW(z) ≤ p − 1. Consequently, W(z) can be expressed as

W(z) = W0 + · · · + Wp−1z
p−1, where Wk ∈ C

d×d for all k ∈ {0, . . . , p − 1}.
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Define the 2pd × 2pd block Toeplitz matrixW as follows:

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

W0 0 · · · 0 0 · · · 0 0

W1 W0 · · · 0 0 · · · 0 0

...
...

. . .
...

...
. . .

...
...

Wp−1 Wp−2 · · · W0 0 · · · 0 0

0 Wp−1 · · · W1 W0 · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · Wp−1 Wp−2 · · · W0 0

0 0 · · · 0 Wp−1 · · · W1 W0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Formally, for j, k ∈ {1, . . . , 2p} the d × d block in j-th block-row and k-th block-
column of W isW j−k if j − k ∈ {0, . . . , p − 1} and 0 otherwise.

The identity in (2.15) can now be expressed in matrix form as

WCP = CPV, (2.16)

where CP is the 2pd × 2d coefficient matrix of P(z), with the coefficients of powers
of z greater than p being the zero matrices.

From (2.5) and (1.1), it follows that thematrixCP has linearly independent columns.
Therefore, the matrix I2pd − CP

(

C∗
PCP

)−1C∗
P is the orthogonal projection onto the

orthogonal complement of ran(CP) , the range of CP, in the Euclidean space C
2pd .

Applying this orthogonal projection to both sides of (2.16) results in the equivalent
matrix equation forW:

(

I2pd − CP
(

C∗
PCP

)−1C∗
P

)

WCP = 02pd×2d .

Solving the precedingmatrix equation for the pd2 unknown entries ofW, we determine
that the matrix V, which satisfies (2.16), is given by

V = (C∗
PCP

)−1C∗
PWCP.

If the leading coefficient ofP(z)has full rank, that isμ = (p, . . . , p), Lemma2.8(ii)
implies thatW(z) is a constant invertible d×d matrixW0. In this case (2.16) simplifies
to

(

Ip+1 ⊗ W0
)

CP = CPV,

where CP is the (p + 1)d × 2d coefficient matrix of P(z).
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Example 2.11 Let P(z) be a d × 2d matrix binomial of degree p and assume that
the pair

(

Q,P(z)
)

satisfies conditions (a)–(d) of Theorem 2.4. These conditions are
equivalent to the following four conditions:

P(z) = P0 + Ppz
p,

the 2d × 2d matrix

[

P0
Pp

]

is invertible, P0Q−1P∗
0 = PpQ−1P∗

p = 0, and iPpQ−1P∗
0 is

an invertible self-adjoint d × d matrix.
Since in this case μ = (p, . . . , p), if W(z) satisfies (2.15), then Lemma 2.8(ii)

implies W(z) ≡ W0, that is, it is a constant invertible matrix. Then (2.15) takes the
form

W0P(z) ≡ P(z)V, (2.17)

or, equivalently,

[

W0 0

0 W0

][

P0

Pp

]

=
[

P0

Pp

]

V.

Since

[

P0
Pp

]

is invertible, the solution forW0 and V of (2.17), and thus of (2.15), is

V =
[

P0

Pp

]−1 [
W0 0

0 W0

][

P0

Pp

]

for all invertible W0 ∈ C
d×d .

Block matrix calculations show that

V∗QV = Q ⇔ W0
(

iPpQ−1P∗
0

)

W∗
0 = iPpQ−1P∗

0.

The kernel associated with P(z) is

KQ,P(z, w) = iPpQ−1P∗
0

p−1
∑

k=0

z p−1−kw∗k, z, w ∈ C.

The corresponding reproducing kernel Pontryagin space is the pd-dimensional space
C
d [z]<p. Its negative and positive index equal to pd/2, if p is even. If p is odd, the

negative index is (p− 1)d/2+ e− and the positive index is (p− 1)pd/2+ e+, where
e− denotes the number of negative and e+ denotes the number of positive eigenvalues
of the self-adjoint d × d matrix iPpQ−1P∗

0.
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Example 2.12 Consider the 2 × 4 matrix polynomial

P(z) =
[

0 2z z2 1

1 z2 0 z

]

with Q =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

⎤

⎥

⎥

⎥

⎥

⎦

.

This pair satisfies conditions (a)–(d) of Theorem 2.4.
Since in this case P2 = P∞, Lemma 2.8(ii) implies thatW(z) is a constant invertible

2 × 2 matrix. That is, W(z) ≡ W0. To find W0 we need to solve

(

I6 − CP(C∗
PCP)−1C∗

P
)

(I3 ⊗ W0)CP = 06×4. (2.18)

Setting W0 =
[

a b
c d

]

and calculating (2.18) yields

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2b −c 0 1

2 (a − d)

0 0 0 0

0 2
5 (a − d) − 2

5c
1
5b

− 1
2b c 0 1

2 (d − a)

0 0 0 0

0 4
5 (d − a) 4

5c − 2
5b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 06×4.

Hence, the only solution of (2.11) is the trivial solution W0 = aI2 and consequently
V = aI4 with a ∈ C.

For a matrix V = aI4 to satisfy V∗QV = Q we need a = eis with s ∈ R. Thus the
only solution for (2.11) which satisfies V∗QV = Q is the trivial solution

V = eis I4 and W(z) = eis I2 with s ∈ R.

The kernel associated with P(z) is

KQ,P(z, w) = −
[

2 w∗ − z

z − w∗ zw∗

]

, z, w ∈ C.

The corresponding Pontryagin reproducing kernel space is the 4-dimensional space
C
2[z]<2 with the negative index 3 and the positive index 1.
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Example 2.13 Consider the 3 × 6 matrix polynomial P(z) and the 6 × 6 matrix Q as
follows:

P(z) =

⎡

⎢

⎢

⎣

1 0 z3 + 1 0 −z −z2

2z z2 2z 1 −z2 −1

0 1 0 z 0 −z

⎤

⎥

⎥

⎦

, Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 i 0 0 −i 0

−i 0 0 0 0 0

0 0 0 0 −i 0

0 0 0 0 0 i

i 0 i 0 0 0

0 0 0 −i 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This pair satisfies conditions (a)–(d) of Theorem 2.4 and we studied it in [10, Exam-
ple 12.2].

Wolfram Mathematica gives the following solutions for (2.15):

V =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c 0 0 −b a b

0 c 0 0 0 0

0 a c b −a −b

−2a −b −2a c 0 0

0 0 0 −2a c 2a

−2a −b −2a 0 0 c

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, W(z) =
⎡

⎢

⎣

c az a + bz2

0 c 2az

0 0 c

⎤

⎥

⎦
,

where a, b, c ∈ Cwith c �= 0. Substituting V into the equation V∗QV = Q and solving,
we obtain a Q-unitary V,

V = eis

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 α2 − iβ iα −α2 + iβ

0 1 0 0 0 0

0 iα 1 −α2 + iβ −iα α2 − iβ

−2iα α2 − iβ −2iα 1 0 0

0 0 0 −2iα 1 2iα

−2iα α2 − iβ −2iα 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and the corresponding W(z),

W(z) = eis

⎡

⎢

⎣

1 iαz iα + (−α2 + iβ)z2

0 1 2iαz

0 0 1

⎤

⎥

⎦
,

where s, α, β ∈ R.
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In this example d = 3 and μ = (3, 2, 1). The kernel associated with P(z) is

KQ,P(z, w) = −
⎡

⎢

⎣

1 − zw∗(w∗ + z) w∗ − z z2

z − w∗ 2zw∗ 0

(w∗)2 0 0

⎤

⎥

⎦
, z, w ∈ C.

The corresponding Pontryagin reproducing kernel space is the 6-dimensional space
(

C[z]<3
)⊕ (C[z]<2

)⊕ C with the negative index 2 and the positive index 4.

3 The Coupling Theorem and Shtraus Subspaces

3.1 The Coupling Theorem

The Coupling Theorem formulated below is a copy of [12, Theorem 5.1]. A similar
theorem for boundary triplets appeared in [18, Theorem 6.4], [19, Theorem 5.3] and is
subsequently generalized in [33]. It is formulated in a Krein space setting. We leave to
the reader the straightforward reduction to the original Hilbert space version, applying
fundamental symmetries as in Subsection 2.1.

Theorem 3.1 For k ∈ {1, 2} let Sk be a closed symmetric linear relation in a Krein
space (Hk, [ ·,·]Hk ) with defect numbers d

−
k , d+

k ∈ {0} ∪ N, δk = d−
k + d+

k .

(i) S1 ⊕ S2 has a canonical self-adjoint extension ˜A in the direct sum Krein space
˜H = H1 ⊕ H2 such that ˜A ∩ H2

k = Sk for all k ∈ {1, 2} if and only if

d+
1 = d−

2 and d−
1 = d+

2 . (3.1)

(ii) Assume that (3.1) holds. If S1 (S2) is self-adjoint in H1 (H2), then S2 (S1) is
self-adjoint, ˜A in (i) is unique and given by ˜A = S1 ⊕ S2.

(iii) Assume that (3.1) holds and that S1 and S2 are not self-adjoint. Set δ = δ1 =
δ2 ∈ N. Let bk : S∗

k → C
δ be a boundary mapping for Sk with Gram matrix Qk ,

k ∈ {1, 2}. The formula

˜A =
{
⎧

⎨

⎩

⎡

⎣

f1
f2

⎤

⎦,

⎡

⎣

g1
g2

⎤

⎦

⎫

⎬

⎭

: { f1, g1} ∈ S∗
1 , { f2, g2} ∈ S∗

2 ,

b1({ f1, g1}) + �b2({ f2, g2}) = 0

}

(3.2)

gives a bijection between all canonical self-adjoint extensions ˜A of S1 ⊕ S2 in
H1 ⊕H2 with ˜A∩H2

k = Sk, k ∈ {1, 2}, and all δ × δ invertible matrices � with

Q2 + �∗Q1� = 0. (3.3)

Note that we do not assume that the resolvent set ρ(˜A) of ˜A is nonempty. The
operator ˜A defined by (3.2) with � satisfying (3.3) will often be denoted by ˜A� .
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The defining relation in (3.2) and formula (3.3) can be written as

[

Iδ �
]

[

b1({ f1, g1})
b2({ f2, g2})

]

= 0 and
[

Iδ �
]

[

Q−1
1 0

0 Q−1
2

]

[

Iδ
�∗
]

= 0.

According to Theorem 2.3, these equalities show that ˜A is indeed a canonical self-
adjoint extension of S1 ⊕ S2 in ˜H = H1 ⊕ H2.

3.2 The Family of Shtraus Subspaces

The self-adjoint relation ˜A in theCouplingTheorem can also be viewed as an extension
in the direct sum space H1 ⊕ H2 of the symmetric linear relation S1 in the smaller
space H1 and then H2 is called the exit space of ˜A. It is often with this in mind that
one associates with ˜A the following family of linear relations T

˜A(z), z ∈ C:

T
˜A(z) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

{

{ f1, g1} :
⎧

⎨

⎩

⎡

⎣

f1
f2

⎤

⎦,

⎡

⎣

g1
g2

⎤

⎦

⎫

⎬

⎭

∈ ˜A, g2 − z f2 = 0

}

, z ∈ C,

{

{ f1, g1} :
⎧

⎨

⎩

⎡

⎣

f1
f2

⎤

⎦,

⎡

⎣

g1
g2

⎤

⎦

⎫

⎬

⎭

∈ ˜A, f2 = 0

}

, z = ∞.

(3.4)

In [23] it is named afterA.V. Shtraus [37, 38] and called the family of Shtraus subspaces
associated with ˜A. It is studied in for example [22], [23], [18, 19] and [25]. Each
member of the family is a kind of compression of ˜A to H1 and satisfies S1 ⊂ T

˜A(z) ⊂
S∗
1 for all z ∈ C. For this reason the family is also called the family of Shtraus extensions

of S1associated with ˜A. The inclusions and the fact that dim S∗
1/S1 = 2d with d ∈ N

imply that all members of the family are closed. For z ∈ C we have the resolvent
relations

(

T
˜A(z) − z IH1

)−1 =
{

{g1 − z f1, f1} :
⎧

⎨

⎩

⎡

⎣

f1
f2

⎤

⎦,

⎡

⎣

g1
g2

⎤

⎦

⎫

⎬

⎭

∈ ˜A, g2 − z f2 = 0

}

,

(

˜A − z I
˜H

)−1 =
{
⎧

⎨

⎩

⎡

⎣

g1 − z f1
g2 − z f2

⎤

⎦,

⎡

⎣

f1
f2

⎤

⎦

⎫

⎬

⎭

:
⎧

⎨

⎩

⎡

⎣

f1
f2

⎤

⎦,

⎡

⎣

g1
g2

⎤

⎦

⎫

⎬

⎭

∈ ˜A
}

,

and hence the first resolvent coincides with generalized (or compressed) resolvent of
the associated self-adjoint relation:

(

T
˜A(z) − z IH1

)−1 = ˜PH1

(

˜A − z I
˜H

)−1∣
∣

H1
, z ∈ C,

where ˜PH1 is the orthogonal projection in ˜H onto H1. The linear relation T
˜A(∞) is

the compression of ˜A to H1 and often written as

CH1(
˜A) := T

˜A(∞) = ˜PH1
˜A
∣

∣

dom(˜A∩H1)
.
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It can be viewed as the formal limit

T
˜A(∞) = lim

z→0
T
˜A(1/z) = lim

z→0

{

{

˜PH ˜f , ˜PH1 g̃
} : { ˜f , g̃} ∈ ˜A, zg̃ − ˜f ∈ H1

}

.

If dimH2 ∈ N, then, by the indefinite version [3, Theorem 4.1] of W. Stenger’s
lemma [39, Lemma1], the compressionCH1(

˜A) is self-adjoint inH1. The compression
has also been studied, for example, in [23], [32], [1], and [25].

3.3 A Polynomial Description of Shtraus Subspaces

When one of the components in the Coupling Theorem is a canonical subspace, the
family of Shtraus subspaces admits a polynomial description.

Theorem 3.2 Let d ∈ N and let Q1 and Q be self-adjoint 2d × 2d matrices with d
positive and d negative eigenvalues. Let (H1, [ ·,·]H1) be a Krein space and let S1 be
a closed symmetric linear relation with defect numbers equal to d and a boundary
mappingb1 : S∗

1 → C
2d withGrammatrixQ1. LetP(z) be a d×2d matrix polynomial

such that the pair
(

Q,P(z)
)

has the properties (a)–(d) of Theorem 2.4 and let μ, Cμ,
Sμ, KQ,P, S∗

μ, and bμ,P be as in Theorem 2.4.
Let ˜B� be the linear relation in the Krein space H ⊕ (Cμ, KQ,P

)

defined by

˜B� =
{
⎧

⎨

⎩

⎡

⎣

f1
fμ

⎤

⎦,

⎡

⎣

g1
gμ

⎤

⎦

⎫

⎬

⎭

: { f1, g1} ∈ S∗
1 , { fμ, gμ} ∈ S∗

μ,

b1({ f1, g1}) + �bμ,P({ fμ, gμ}) = 0

}

, (3.5)

where � is an invertible 2d × 2d matrix such that −Q + �∗Q1� = 0.
Then ˜B� is self-adjoint in the Krein space H1 ⊕Cμ, ˜B� ∩H2

1 = S1, ˜B� ∩C2
μ = Sμ

and the family of Shtraus subspaces associated with ˜B� is given by

T
˜B�

(λ) =
{

{ f1, g1} ∈ S∗
1 : P(λ)�−1b1({ f1, g1}) = 0

}

for all λ ∈ C. (3.6)

Proof The linear relation ˜B� is self-adjoint by Theorem 3.1(iii). The equalities for S1
and Sμ follow immediately from (3.5) and the definition of a boundary mapping.

We prove (3.6) for λ ∈ C. According to the definition in (3.4), { f1, g1} ∈ T
˜B�

(λ)

if and only if { f1, g1} ∈ S∗
1 and

∃ fμ ∈ Cμ such that { fμ, λ fμ} ∈ S∗
μ and b1({ f1, g1}) + �bμ,P({ fμ, λ fμ}) = 0.

By Theorem 2.4(iii) the latter holds if and only if { f1, g1} ∈ S∗
1 and

∃ fμ ∈ Cμ such that (z − λ) fμ(z) ≡ P(z)bμ,P({ fμ, λ fμ}) ≡ −P(z)�−1b1({ f1, g1}).

By Lemma 2.6(i) this is equivalent to { f1, g1} belonging to the right-hand side of (3.6).
This proves the equality (3.6).
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We now prove (3.6) for λ = ∞. By (3.4), { f1, g1} ∈ T
˜B�

(∞) if and only if
{ f1, g1} ∈ S∗

1 and

∃gμ ∈ Cμ such that {0, gμ} ∈ S∗
μ and b1({ f1, g1}) + �bμ,P({0, gμ}) = 0.

By Theorem 2.4(iii) the latter holds if and only if { f1, g1} ∈ S∗
1 and

∃gμ ∈ Cμ such that −gμ(z) ≡ P(z)bμ,P({0, gμ}) ≡ −P(z)�−1b1({ f1, g1}).

Thus, { f1, g1} ∈ T
˜B�

(∞) if and only if { f1, g1} ∈ S∗
1 and P(z)�−1b1({ f1, g1}) ∈ Cμ.

By Lemma 2.6(ii) this condition is equivalent to the equality in (3.6) for λ = ∞. ��

4 Main Results

4.1 Main Assumptions

In this paperwe study the families of Shtraus subspaces associatedwith the self-adjoint
extensions ˜A described in the Coupling Theorem 3.1. Thereby we make the following
main assumptions:

dimH2 ∈ N and σp(S2) = ∅. (4.1)

By σp(S2) we denote the point spectrum of S2 in C; by definition ∞ ∈ σp(S2) if and
only if S2 is not an operator.

The assumptions (4.1) are related to the requirement that ˜A isminimal with respect
to H1, or that ˜A and H1 are closely connected (see [23, p. 462]), which means that
ρ(˜A) �= ∅ and

˜H = span
{

u + (˜A − z I
˜H

)−1
v : u, v ∈ H1, z ∈ ρ

(

˜A
) ∩ C

}

.

In fact, the following result holds.

Proposition 4.1 Let ˜A be a self-adjoint relation with ρ(˜A) �= ∅ in ˜H = H1 ⊕ H2, the
direct sum of the Krein spaces H1 and H2, and set S2 = ˜A ∩ H2

2.

(i) If ˜A is minimal with respect to H1, then σp(S2) = ∅.
(ii) If (4.1) holds, then ˜A is minimal with respect to H1.

Proof We use that ρ(˜A) is symmetric relative to the real axis: for all z ∈ C we have
z ∈ ρ(˜A) if and only if z∗ ∈ ρ(˜A).

(i) Assume σp(S2) �= ∅ and λ ∈ σp(S2). If λ = ∞, then there exists f2 �= 0 such
that {0, f2} ∈ S2. Then {0, f2} ∈ ˜A and, consequently, (˜A − z I

˜H)−1 f2 = 0 for all
z ∈ ρ(˜A) ∩ C. Therefore, for all u, v ∈ H1 and all z ∈ ρ(˜A) ∩ C we have

[

u + (˜A − z I
˜H

)−1
v, f2

]

˜H
= [v,

(

˜A − z I
˜H

)−1
f2
]

˜H
= 0,
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proving that ˜A is not minimal.
If λ ∈ C and λ ∈ σp(S2), then λ /∈ ρ(˜A) and there exists f2 �= 0 such that

{ f2, λ f2} ∈ S2. Consequently, λ∗ /∈ ρ(˜A) and { f2, λ f2} ∈ ˜A. Furthermore, for all
z∗ ∈ ρ(˜A) ∩ C we have

(

˜A − z∗ I
˜H

)−1
f2 = 1

λ−z∗ f2. Therefore for all u, v ∈ H1 and
for all z ∈ ρ(˜A) ∩ C we have

[

u + (˜A − z I
˜H

)−1
v, f2

]

˜H
= 1

λ∗ − z

[

v, f2
]

˜H
= 0,

proving that ˜A is not minimal. Thus, we proved that σp(S2) �= ∅ implies ˜A is not
minimal, which is equivalent to (i).

(ii) Assume that dimH2 ∈ N and that ˜A is not minimal. Then there exists g̃ ∈ ˜H
such that g̃ �= 0 and

[

u + (˜A − z I
˜H

)−1
v, g̃

]

˜H
= 0 for all u, v ∈ H1 and for all z ∈ ρ

(

˜A
) ∩ C.

Then
[

u, g̃
]

˜H
= 0 for all u ∈ H1, implying that g̃ ∈ H2, and

[

v,
(

˜A − z∗ I
˜H

)−1
g̃
]

˜H
= 0 for all v ∈ H and for all z ∈ ρ

(

˜A
) ∩ C.

Therefore, for all z ∈ ρ
(

˜A
) ∩ C we have

(

˜A − z I
˜H

)−1
g̃ ∈ H2.

Set

M = span
(

{

g̃
} ∪

{

(

˜A − z I
˜H

)−1
g̃ : z ∈ ρ

(

˜A
) ∩ C

})

.

Since the spanning set for M is a subset of H2, we have that M is a nontrivial finite-
dimensional closed subspace of H2.

Let w ∈ ρ
(

˜A
) ∩ C. Next we will prove that M is invariant under the resolvent

(

˜A − w I
˜H

)−1. It is sufficient to prove that
(

˜A − w I
˜H

)−1 maps the spanning set for

M into M. It is clear that
(

˜A − w I
˜H

)−1
g̃ ∈ M. Recall the resolvent identity [8,

Proposition VI.1.4]:

(

˜A − w I
˜H

)−1− (˜A − z I
˜H

)−1= (w − z)
(

˜A − w I
˜H

)−1(
˜A − z I

˜H

)−1
,

which implies that for z ∈ ρ
(

˜A
) ∩ C such that z �= w we have

(

˜A − w I
˜H

)−1(
˜A − z I

˜H

)−1
g̃ = 1

w − z

(

(

˜A − w I
˜H

)−1
g̃ − (˜A − z I

˜H

)−1
g̃
)

∈ M.

(4.2)

Taking the limit as z → w in (4.2), by the continuity of the resolvent, see [8, Theo-
rem VI.1.7], the element of M in (4.2) converges to

(

˜A − w I
˜H

)−1(
˜A − w I

˜H

)−1
g̃ ∈ M,
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which is an element of M since M is closed. Thus,
(

˜A − w I
˜H

)−1
M ⊆ M.

Since dimM ∈ N, the restriction of
(

˜A − w I
˜H

)−1 to M has an eigenvalue μ ∈ C

and a corresponding eigenvector f2 ∈ M\{0}; that is (˜A − w I
˜H

)−1
f2 = μ f2. Thus

{

μ f2, (wμ + 1) f2
} ∈ ˜A ∩ H2

2 = S2.

Now, either ∞ ∈ σp(S2) (if μ = 0) or (w + 1/μ) ∈ σp(S2) (if μ �= 0), proving that
σp(S2) �= ∅. In conclusion, we proved that dimH2 ∈ N and ˜A is not minimal imply
σp(S2) �= ∅. This implication is equivalent to (ii). ��

The main assumptions (4.1) rule out the possibility that ˜A takes the form described
in part (ii) of the Coupling Theorem 3.1. Specifically, since in part (ii) the operator S2
is self-adjoint, (4.1) implies that S2, being an operator, is densely defined and hence
everywhere defined on H2, as H2 is finite dimensional. Consequently, S2 must have
an eigenvalue, which contradicts the second part of (4.1). Therefore, we shall only
consider the case where ˜A = ˜A� , as described in part (iii) of Theorem 3.1.

The main assumptions (4.1) and [10, Lemma 3.4] imply that the defect numbers of
S2 are equal and nonzero, hence all four defect numbers of S1 and S2 are equal to the
same number d ∈ N, say, that is,

d = d±
k and δ = δk = 2d for all k ∈ {1, 2}. (4.3)

Finally, the main assumptions (4.1) also imply the existence of a d × 2d matrix
polynomial P(z) as in Theorem 2.4 with which we construct a canonical subspace
model (Cμ, Sμ) of the pair (H2, S2), see Theorem 4.2. The model in turn is used to
describe the Shtraus family in terms of P(z) and the parameter � from (3.3), see (4.7)
in Theorem 4.4.

4.2 TheModel Theorem

In this section we use the notation of Theorem 2.4. The following result, which we call
the Model Theorem, states that the quadruple

(

Cμ, K−Q,P, Sμ,bμ,P
)

is a model for
(

G, [ ·,·]G, S,b
)

under the assumptions analogous to (4.1): dimG ∈ N and σp(S) =
∅.
Theorem 4.2 Let (G, [ ·,·]G) be a finite-dimensional Pontryagin space and let S be a
symmetric operator in G without eigenvalues. Then the defect numbers of S coincide
and are equal to d = codim(dom S). Let b : S∗ → C

2d be a boundary map for S
with Gram matrix Q. Moreover, S is nilpotent.

Let m denote the nilpotency index of S, and define

δ j = dim
(

dom S j−1), j ∈ {1, . . . ,m + 1}, (so that δ1 = dimG, δm+1 = 0).

Let μ = (μ1, μ2, . . . , μd) be the d-tuple with entries

μ j = #
{

i ∈ {1, . . . ,m} : δi − δi+1 ≥ j
}

, j ∈ {1, . . . , d},
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so that μ1 ≥ · · · ≥ μd ≥ 1.
Then there exists a d × 2d matrix polynomial P(z) such that the pair

(−Q,P(z)
)

satisfies (a)–(d) of Theorem 2.4 and there exists an isomorphism

� : (G, [ ·,·]G
)→ (Cμ, K−Q,P)

such that:

(a) �S = Sμ�, and
(b) for all { f , g} ∈ S∗ we have {� f ,�g} ∈ S∗

μ and b({ f , g}) = bμ,P({� f ,�g}).
The matrix polynomial P(z) is unique up to multiplication on the left by a unimod-

ular d × d matrix polynomial W(z) = [w jk(z)
]d
j,k=1 satisfying (2.9).

The theorem implies that the positive (negative) index of G is equal to the number
of positive (negative) squares of the kernel K−Q,P in (2.4), dimG = ∑d

j=1 μ j and
the nilpotency index of S equals m = μ1 = degP.

Remark 4.3 Concerning more general models, in [16, Theorem 3.3] a model is pre-
sented of a closed simple entire symmetric operator in a Pontryagin space as the
multiplication operator by the independent variable in a de Branges-Pontryagin space
determined by an entire de Branges d × 2d matrix function P(z) (not necessarily a
polynomial) and Q = diag

(

Id ,−Id
)

. For this case the formula analogous to S∗
μ in

Theorem 2.4(ii) is given in [15, Theorem 4.3] in terms of P(z). We refer to [17] for
isometric analogs of results in [15] and [16].

Proof of Theorem 4.2 By [10, Theorem 11.1] there exists a d × 2d matrix polynomial
T(z) such that the pair

(−Q, T(z)
)

satisfies (a)–(d) of Theorem 2.4. Hence K−Q,T is
well defined, and there exists an isomorphism

� : (G, [ ·,·]G
)→ (

Cμ, K−Q,T
)

(4.4)

such that�S = Sμ�. Taking the adjoint of both sides of�S = Sμ�, and using�∗ =
�−1 we obtain �S∗ = S∗

μ�. Hence for all { f , g} ∈ S∗ we have {� f ,�g} ∈ S∗
μ.

Consequently, the mapping defined by

b1({ f , g}) = bμ,T({� f ,�g})

is defined for all { f , g} ∈ S∗, it is linear and surjective with nul b1 = S. Hence b1
is a boundary mapping for S. Using the fact that � is an isomorphism and that, by
Theorem 2.4(iii), Q is the Gram matrix of bμ,T we have

i
([ f , k]G − [g, h]G

) = i
([� f ,�k]Cμ

− [�g,�h]Cμ

)

= bμ,T({�h,�k})∗Qbμ,T({� f ,�g})
= b1({h, k})∗Qb1({ f , g})
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for all { f , g}, {h, k} ∈ S∗, proving thatQ is the Grammatrix of b1. Thus the boundary
mappings b and b1 for S have the same GrammatrixQ. By Lemma 2.1(iii) there exists
an invertible 2d × 2d matrix V such that V∗QV = Q and

b({ f , g}) = V−1b1({ f , g}) = V−1bμ,T({� f ,�g}) for all { f , g} ∈ S∗. (4.5)

Define the matrix polynomial P(z) by P(z) ≡ T(z)V. Since V is invertible, the pair
(−Q,P(z)

)

has properties (a)–(d) of Theorem 2.4. The equality V∗QV = Q implies
that K−Q,P(z, w) ≡ K−Q,T(z, w). Hence � from (4.4) is an isomorphism between
the Pontryagin spaces (G, [ ·,·]G) and

(

Cμ, K−Q,P
)

and (a)) holds.
From the definition of P(z) and the defining formula of the boundary mapping for

Sμ in Theorem 2.4(iii) we deduce that for all { f , g} ∈ S∗

z
(

� f
)

(z) − (�g
)

(z) ≡ T(z)bμ,T({� f ,�g})
≡ P(z)V−1bμ,T({� f ,�g}),

hence V−1bμ,T({� f ,�g}) = bμ,P({� f ,�g}). It follows from this equality and (4.5)
that (b)) holds as well.

We prove uniqueness. Let S(z) be a d × 2d matrix polynomial such that the pair
(−Q,S(z)

)

has properties (a)–(d) of Theorem 2.4 and let

� : (G, [ ·,·]G) → (Cμ, K−Q,S)

be an isomorphism for which (a)) and (b)) hold. Set W = ��−1. Then

W : (Cμ, K−Q,P) → (Cμ, K−Q,S)

is an isomorphism, and it follows from (a)) that WSμ = SμW . Moreover, it follows
from (b)) that

bμ,P({ fμ, gμ}) = bμ,S({W fμ,Wgμ}) for all { fμ, gμ} ∈ S∗
μ. (4.6)

By [10, Theorem 6.2] there exists a d × d unimodular matrixW(z) which satisfies
(2.9) and such that W is the operator of multiplication by W(z). Again from the
defining formula of the boundary mapping for Sμ in Theorem 2.4(iii) and from (4.6)
we obtain that for all { fμ, gμ} ∈ S∗

μ

W(z)P(z)bμ,P({ fμ, gμ}) ≡ zW(z) fμ(z) − W(z)gμ(z)

≡ S(z)bμ,S({W fμ,Wgμ})
≡ S(z)bμ,P({ fμ, gμ}).

Since bμ,P : S∗
μ → C

2d is a surjection, this implies that S(z) ≡ W(z)P(z). ��
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4.3 Shtraus Subspaces in Terms ofP(z) and 0

We now come to the first main result of this paper.

Theorem 4.4 Assume that in the setting of the Coupling Theorem 3.1(iii) we have
dimH2 ∈ N and S2 is a symmetric operator without eigenvalues. Then the defect
numbers of S1 and S2 are all equal to d, so that (4.3) holds: d = d−

k = d+
k and

δk = δ = 2d for k ∈ {1, 2}. Let P(z) be a d ×2d matrix polynomial such that the pair
(−Q2,P(z)

)

satisfies (a)–(d) of Theorem 2.4 and
(

Cμ, K−Q2,P, Sμ,bμ,P
)

is a model
for the quadruple

(

H2, [ ·,·]H2 , S2,b2
)

as in Theorem 4.2. Then the family of Shtraus
subspaces associated with ˜A� defined in (3.2), where � satisfies (3.3), is given by the
formula

T
˜A�

(λ) =
{

{ f1, g1} ∈ S∗
1 : P(λ)�−1b1({ f1, g1}) = 0

}

for all λ ∈ C. (4.7)

Formula (4.7) does not maintain the bijection between the families of Shtraus
subspaces defined by the self-adjoint extensions ˜A� in the Coupling Theorem 3.1(iii)
on the one hand and the matrices � in (3.3) on the other hand. The reason is that the
family of Shtraus subspaces in (4.7) is characterized as a nulspace involving P(λ)�−1

: T
˜A�

(λ) = nul
(

P(λ)�−1b1
)

where P(λ)�−1b1 is a mapping from S∗
1 to Cd . Finally

note that if T
˜A�

(λ) is also described as the null space

T
˜A�

(λ) = nul
(

T(λ)b1
)

, λ ∈ C,

for some d × 2d matrix polynomial T(z), then

nul
(

P(λ)�−1) = b
(

T
˜A�

(λ)
) = nul T(λ), λ ∈ C.

Hence, by Lemma 2.7 there is a unimodular d × d matrix polynomialW(z) such that
W(z)T(z) ≡ P(z)�−1.

Proof of Theorem 4.4 Let λ ∈ C. By the definition in (3.4), { f1, g1} ∈ T
˜A�

(λ) if and
only if { f1, g1} ∈ S∗

1 and

∃ f2 ∈ H2 such that { f2, λ f2} ∈ S∗
2 and b1({ f1, g1}) + �b2({ f2, λ f2}) = 0.

(4.8)

In the proof of Theorem 3.2 we proved that { f1, g1} ∈ T
˜B�

(λ) if and only if { f1, g1} ∈
S∗
1 and

∃ fμ ∈ Cμ such that { fμ, λ fμ} ∈ S∗
μ and b1({ f1, g1}) + �bμ,P({ fμ, λ fμ}) = 0.

(4.9)

According to the Model Theorem 4.2, there exists an isomorphism

� : (H2, [ ·,·]H2

)→ (

Cμ, K−Q2,P
)



Operators Without Eigenvalues in Finite-Dimensional Vector Page 29 of 34   201 

such that { f2, g2} ∈ S∗
2 if and only if {� f2,�g2} ∈ S∗

μ and furthermore

b2({ f2, g2}) = bμ,P({� f2,�g2}) for all { f2, g2} ∈ S∗
2 .

This implies that (4.9) and (4.8) are equivalent. Consequently, T
˜A�

(λ) = T
˜B�

(λ) for
all λ ∈ C. Similarly, T

˜A�
(∞) = T

˜B�
(∞). With these equalities, the theorem follows

from Theorem 3.2. ��

4.4 Five Equivalent Statements

Theorem 4.5 Assume the setting of Theorem 4.4. Let � and � be invertible 2d × 2d
matrices satisfyingQ2+�∗Q1� = 0 andQ2+�∗Q1� = 0. The following statements
are equivalent.

(i) For all λ ∈ C we have T
˜A�

(λ) = T
˜A�

(λ).
(ii) There exists an isomorphism � : H2 → H2 such that S2� = �S2 and

(

IH1 ⊕ �
)

˜A� = ˜A�

(

IH1 ⊕ �
)

.

(iii) There exists an isomorphism W : (Cμ, K−Q2,P
) → (

Cμ, K−Q2,P
)

such that
W Sμ = SμW and

(

IH1 ⊕ W
)

˜B� = ˜B�

(

IH1 ⊕ W
)

, (4.10)

where ˜B� and ˜B� are self-adjoint relations introduced in (3.5) in the Krein space
H1 ⊕ (Cμ, K−Q2,P

)

.
(iv) There exists a d × d matrix polynomial W(z) such that

W(z)P(z) ≡ P(z)V, (4.11)

where V = �−1� satisfies V∗Q2V = Q2.
(v) There exists a linear bijection
 : H2 → H2 such that
S2 = S2
,
S∗

2 = S∗
2


and

�b2({
 f2,
g2}) = �b2({ f2, g2}) for all { f2, g2} ∈ S∗
2 .

If any of the above equivalent statements hold, then T
˜A�

(∞) = T
˜A�

(∞).

Proof Throughout the proof, we use the notation from Theorem 4.4 and its proof.
First we introduce an isomorphism that will be used in several items in this proof.
Since the quadruple

(

Cμ, K−Q2,P, Sμ,bμ,P
)

is a model for
(

H2, [ ·,·]H2 , S2,b2
)

as
in Theorem 4.2, there exists an isomorphism

� : (H2, [ ·,·]H2

)→ (

Cμ, K−Q2,P
)

(4.12)
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such that �S∗
2 = S∗

μ� and b2({ f2, g2}) = bμ,P({� f2,�g2}) for all { f2, g2} ∈ S∗
2 .

Then

IH1 ⊕ � : H1 ⊕ H2 → H1 ⊕ (Cμ, K−Q2,P
)

is an isomorphism of Krein spaces such that for every � satisfying Q2 + �∗Q1� = 0
we have

˜B�

(

IH1 ⊕ �
) = (IH1 ⊕ �

)

˜A�,

where ˜B� is defined in (3.5) and ˜A� is defined in (3.2). Since the only boundary
mapping for Sμ in this proof is bμ,P, we abbreviate it as bμ. By Theorem 2.4 its Gram
matrix is Q2.

(iv)⇒(iii). Assume (iv). Then W(z)P(z) ≡ P(z)V and V∗Q2V = Q2. Since V is
invertible, Lemma 2.8(ii) implies thatW(z) is unimodular. By Theorem 2.9 it follows
that the operator

W : (Cμ, K−Q2,P
)→ (

Cμ, K−Q2,P
)

(4.13)

of multiplication by W(z) is an isomorphism such that WSμ = SμW and WS∗
μ =

S∗
μW .
To prove (4.10) we first prove: For all { fμ, gμ} ∈ S∗

μ we have

Vbμ({ fμ, gμ}) = bμ({W fμ,Wgμ}). (4.14)

By the definition of the boundary operator bμ in Theorem 2.4(iii) the following iden-
tities hold for all { fμ, gμ} ∈ S∗

μ:

P(z)bμ({W fμ,Wgμ}) ≡ zW(z) fμ(z) − W(z)gμ(z)

≡ W(z)P(z)bμ({ fμ, gμ})
≡ P(z)Vbμ({ fμ, gμ}),

which, by (2.5), yields (4.14). Now equality (4.10) can be obtained as follows:

(

IH1 ⊕ W
)

˜B�

(

IH1 ⊕ W−1)

=
{
⎧

⎨

⎩

⎡

⎣

f1
W fμ

⎤

⎦,

⎡

⎣

g1
Wgμ

⎤

⎦

⎫

⎬

⎭

:
⎧

⎨

⎩

⎡

⎣

f1
fμ

⎤

⎦,

⎡

⎣

g1
gμ

⎤

⎦

⎫

⎬

⎭

∈ ˜B�

}

=
{
⎧

⎨

⎩

⎡

⎣

f1
W fμ

⎤

⎦,

⎡

⎣

g1
Wgμ

⎤

⎦

⎫

⎬

⎭

: { f1, g1} ∈ S∗
1 , { fμ, gμ} ∈ S∗

μ,

b1({ f1, g1}) + �bμ({ fμ, gμ}) = 0

}

=
{
⎧

⎨

⎩

⎡

⎣

f1
W fμ

⎤

⎦,

⎡

⎣

g1
Wgμ

⎤

⎦

⎫

⎬

⎭

: { f1, g1} ∈ S∗
1 , { fμ, gμ} ∈ S∗

μ,

b1({ f1, g1}) + �V−1bμ({W fμ,Wgμ}) = 0

}
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=
{
⎧

⎨

⎩

⎡

⎣

f1
uμ

⎤

⎦,

⎡

⎣

g1
vμ

⎤

⎦

⎫

⎬

⎭

: { f1, g1} ∈ S∗
1 , {uμ, vμ} ∈ S∗

μ,

b1({ f1, g1}) + �bμ({uμ, vμ}) = 0

}

= ˜B�.

(iii)⇒(ii). Assume (iii) and define � : H2 → H2 by � = �−1W�. Then � is a
Krein space isomorphism satisfying �S2 = S2�. We have

IH1 ⊕ � = (IH1 ⊕ �−1W
)(

IH1 ⊕ �
) = (IH1 ⊕ �−1)(IH1 ⊕ W

)(

IH1 ⊕ �
)

.

Consequently,
(

IH1 ⊕ �
)

˜A� = (IH1 ⊕ �−1W
)

˜B�

(

IH1 ⊕ �
)

= (IH1 ⊕ �−1)
˜B�

(

IH1 ⊕ W�
)

= ˜A�

(

IH1 ⊕ �
)

,

which proves (ii).
(ii)⇒(i). First notice that the equality in (ii) is equivalent to the equality

˜A� =
{
⎧

⎨

⎩

⎡

⎣

f1
� f2

⎤

⎦,

⎡

⎣

g1
�g2

⎤

⎦

⎫

⎬

⎭

:
⎧

⎨

⎩

⎡

⎣

f1
f2

⎤

⎦,

⎡

⎣

g1
g2

⎤

⎦

⎫

⎬

⎭

∈ ˜A�

}

. (4.15)

Assume (ii). Let λ ∈ C be arbitrary. By (4.15), { f1, g1} ∈ T
˜A�

(λ) is equivalent to

the statement: there exists

⎧

⎨

⎩

⎡

⎣

f1
f2

⎤

⎦,

⎡

⎣

g1
g2

⎤

⎦

⎫

⎬

⎭

∈ ˜A� with λ� f2 − �g2 = 0. Since � is

an isomorphism, the last statement is equivalent to: there exists

⎧

⎨

⎩

⎡

⎣

f1
f2

⎤

⎦,

⎡

⎣

g1
g2

⎤

⎦

⎫

⎬

⎭

∈ ˜A�

with λ f2 − g2 = 0, which in turn is equivalent to { f1, g1} ∈ T
˜A�

(λ). Since λ ∈ Cwas
arbitrary, (i) is proved.

(i)⇒(iv). Assume (i). Then, according to Theorem 4.4,

nul
(

P(z)�−1) = b1
(

T
˜A�

(z)
) = b1

(

T
˜A�

(z)
) = nul

(

P(z)�−1) for all z ∈ C.

By Lemma 2.7 there exists a unimodular d × d matrix polynomial W(z) such that
(4.11) holds. This proves (iv).

(iv)⇒(v). Assume (iv) and introduce the isomorphismW as in (4.13) and notice its
property in (4.14). Recall the property of the isomorphism� in (4.12): for all { f2, g2} ∈
S∗
2 we have b2({ f2, g2}) = bμ({� f2,�g2}). Equivalently: for all { fμ, gμ} ∈ S∗

2 we
have b2

({�−1 fμ,�−1gμ}) = bμ({ fμ, gμ}).
Set 
 = �−1W�, let { f2, g2} ∈ S∗

2 be arbitrary, and calculate

b2({ f2, g2}) = bμ({� f2,�g2})
= V−1bμ({W� f2,W�g2})
= V−1b2

({�−1W� f2,�
−1W�g2}

)

= V−1b2
({
 f2,
g2}

)

.
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Since V−1 = �−1�, (v) holds.
(v)⇒(iv). Assume (v) and define W = �
�−1. Then W : Cμ → Cμ is a linear

bijection such that WSμ = SμW and WS∗
μ = S∗

μW . By Theorem 2.9(i) there exists
a unimodular d × d matrix polynomial W(z) and an invertible matrix V satisfying
W(z)P(z) ≡ P(z)V and such that W is operator of multiplication by W(z).

By properties of � and 
 we have for all { fμ, gμ} ∈ S∗
μ

bμ({W fμ,Wgμ}) = bμ

({�
�−1 fμ,�
�−1gμ})

= b2
({
�−1 fμ,
�−1gμ})

= �−1�b2
({�−1 fμ,�−1gμ})

= �−1�bμ({ fμ, gμ}).
By the definition of the boundary mapping bμ we have

W(z)P(z)bμ({ fμ, gμ}) ≡ zW(z) fμ(z) − W(z)gμ(z),

≡ P(z)bμ({W fμ,Wgμ}),
≡ P(z)�−1�bμ({ fμ, gμ}).

Thus

W(z)P(z)bμ({ fμ, gμ}) ≡ P(z)�−1�bμ({ fμ, gμ}).
The fact that bμ is a surjection implies thatW(z)P(z) ≡ P(z)�−1�. This proves (iv).

To prove the last claim in the theorem, assume (iv). Then, by Lemma 2.8 with
V = �−1�, there exists a d × d invertible matrix W such that WP∞ = P∞�−1�.
Therefore,

nul
(

P∞�−1) = nul
(

P∞�−1).

Now, T
˜A�

(∞) = T
˜A�

(∞) follows from Theorem 4.4. ��
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