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In this note we give necessary and sufficient conditions for a 
holomorphic operator valued function to coincjde weakly with the 
characteristic function of a bounded operator on a Krein space. We also 
present a sufficient condition such that the weak isomorphism is an 
isomorphism, i.e., is bounded. 

Let 5 and 8 be Krein spaces. By S(3 ,8 )  we denote the (generalized 

Schur) class of all functions O, defined and holomorphic at z = 0  and with 

values in L(5,8), the space of bounded Linear operators from 5 to 8 (we write 

L ( 8 )  for L(3,S)). It is known, see Section 3 below, that any OeS(3,8)  is in 

some neighborhood of z = 0  the characteristic function On of a unitary 

colligation A = (J?,S,@;U) with outer spaces 3,O and a Krein space R as inner 

space, that is, there exists a unitary mapping U with matrix representation 

such that the relation 

(1.2) O(Z)  =o,(z) = H+ZG(I-ZT)-'F 

holds for all z in this neighborhood of 0. Here, e.g., stands for the ' 5 )  
Krein space which is the orthogonal sum Re5 of R and 3 (for details see 

Section 3). 

Now let 2 be an arbitrary Krein space and TEL(R). We fix a fundamental 

symmetry Js on R and denottl by the adjoint of T with respect to the 



Hilbert inner product on R generated by JR. We define the operators 

and set XIT = R(D~) ' ,  the closure of the range !R(DT). Then with T there is 

associated the unitary colligation AT = (R,lSTC, XIT; UT) with 

Here LP is the so-called link operator, introduced by Gr. Arsene, T. 

Constantinescu and A. Gheondea in [ACG] (for details see Section 4).  The 

characteristic function of the colligation AT: 

defined for all z in a neighborhood of z = 0 ,  is also called the characteristic 

function of the operator T (relative to  J R ) .  It is the main purpose of this 

paper, t o  prove in Theorem 5.2 necessary and sufficient conditions for a 

given function @ ~ S ( 8 , 8 )  t o  coincide in a neighborhood of z = 0  with the 

characteristic function of some TEL(R).  In other words, these conditions are  

equivalent t o  the fact, that the operators F, G, H and the spaces 3, 8 in 

(1.1) or  (1.2) can be "identified" with the operators DT*J DT, -JTIJT+ and 
D P '  

the spaces XIp, XIT, respectively, in (1.4) or (1.5), which are all determined 

by the operator T in the left upper corner of the matrix in (1.4) 

representing U. If, in particular, the Krein space R is a Hilbert space, then 

JR = I, LT = T and the characteristic function in (1.5) becomes the well-known 

function 

In this case such necessary and sufficient conditions for the equality O=OT 

to  hold were proved by J.A. Ball, see [Ba], and we show in Section 6 how his 

result (formulated below as Theorem 6.1) follows from Theorem 5.2. 

In these representation theorems for functions O E S ( ~ , @ )  the question 

arises of the uniqueness of the corresponding colligation A or the operator 

T. As is typical for Krein spaces, the colligation A or the Krein space 8 and 

the operators in i t  are, in general, only unique up t o  weak isomorphisms. 

Recall that  two Krein spaces R, 8' are called weakly isomorphic, if there is 

a (closed) linear mapping V from a dense subspace D c 8  onto a dense subspace 



of R' such that [Vx, Vy] = [x, y], x, y e  D. In Section 7 (Theorem 7.1) we give a 

sufficient condition, which assures that such a weak isomorphism V is a.n 

isomorphism, i.e., that V is continuous. 

At several places in this paper we use an extension of a basic result 

of M.C. Krein about operators in "spaces with two norms", which is formulated 

in Section 2. To conclude the outline of the contents of this paper we 

mention, that we do not repeat the (lengthy) proof of the basic statement 

(Theorem 3.4), that any OeS(5 ,6 )  is the characteristic function of some 

unitary colligation A, see, e.g., [DLS2]. However, in Proposition 3.6 we 

prove this result in the particular case of O being holomorphic and unitary 

on an arc of the boundary aID of the open unit disc ID in C. Then the proof in 

[DLSB] can be simplified considerably. 

In the sequel we shall use, as we did above, without further 

specification the elementary facts and the common notations from the theory 

of linear operators in Krein and Pontryagin spaces. They can be found in 

[AI], [Bo], [Cu], [DLSl], [DLSB], [M,] and [L]. Here we only recall the 

notation that, if T is a densely defined operator from 5 to (9, T' denotes the 

Krein space adjoint of T:  T'= J ~ T * J ~ ,  where J3 and Je, are fundamental 

symmetries on 5 and 6, respectively and T* denotes the adjoint of T with 

respect to the Hilbert space structures on 5 and 6 induced by these 

symmetries. We shall use [. , . ]  as the generic notation for the possibly 

indefinite inner product and (.,.) in the cases, where we want to emphasize 

that the inner product is positive definite. 

The second author acknowledges the financial support of the 

"Koninklijke Nederlandse Akademie voor Wetenschappen", K.N.A.W., to present 

this paper a t  the International Conference on Operator Theory in Calgary. 

2. EXTENSION OF A RESULT OF M.G. KREIN ON OPERATORS IN 

SPACES WITH TWO NORMS 

Let (4, (. , . ) )  be a Hilbert space and let [ . , .I  be a (possibly 

indefinite) inner product (hermitian, sesquilinear form) on @ which is 

bounded, i.e., there exists a constant C > 0 such that I [x, y] ( 5 C(x, x)'l2( y. y)'/2, 

x , y ~ @ .  By the Riesz' representation theorem there exists a selfadjoint GEL(@) 

such that [ x ,  y] = (Gx, y), x, YE@. G is called the Cram operator. We may write 

the Hilbert space 4 as the orthogonal sum @ = @ + @ @ - @ @ O ,  where 



@+ = v ( I  TsgnG) and 4, = v ( G ) .  Here the sign function is defined by sgn(t) = -1, 

0 or 1, if t < 0 ,  t = 0 or t > 0 ,  respectively, and v ( T )  stands for the null space 

of the operator T .  The spaces 4, - equipped with the inner product + [ x , y ]  are 

pre-Hilbert spaces. We denote their completions by R+ - and retain the notation 

+ [ x , y ]  for their inner products. We put R = R+$R-,  direct sum, and denote by - 
P+ - the projections of R onto 9, along RT. Then ( x , y )  = [P+x,  P+y] - [P-x ,  P-y] 

turns R into a Hilbert space and [ x , y ]  = [P+x,P+y]+[P-x ,P-y]  turns 5? into a' 

Krein space with fundamental symmetry JR = P+ - P-. W e  call Si' the Krein space 

associated with the Hilbert space 4 and the bounded inner product [. ,. 1. 

Clearly, 4, = { x  € 4  1 [x ,  y ]  = 0 for all Y E @ }  and the factor space 6 = 4/4,, 
consisting of equivalence classes 2 = { x  + y 1 y E @,), can be identified with 

4+ $ 4- and is dense in R. 

The following theorem is a generalization of a result announced by 

M.C. Krein in 1937 and published in [Kr] in 1947 (see also [AI]  p. 220 and 

[Bo]  p. 92, p. 98) ,  which was later also proved in a similar form 

independently by W.T. Reid [Re] (see also [Ha], p.51), P.D. Lax [La] and J. 

DieudonnC [Di]. For the proof of the theorem, as Krein's proof based on 

repeated application of the Cauchy-Schwarz inequality, we refer to [DEB].  

THEOREM 2.1. Let 4, and 4, be two Hilbert spaces and suppose that o n  

each Q j  there i s  given a bounded, and i n  general indefinite, inner product 

[. , . ] j ,  j = l , 2 .  Furthermore, assume that we are given two operators 

u o ~ L ( 4 1 , 4 2 )  and Vo ~ L ( 4 2 , 4 1 )  that [Uox,y]2= [x,Voy]l ,  x ~ 4 1 ,  ~ € 4 2 .  Then  the 

operators 6,  EL(^,,$^) and f , ~ ~ ( f i , , f i , )  obtained from Uo and V ,  o n  the factor 

spaces 6 ,  and fi2 in the usual way, can be extended by  continuity to  operators 

U E L (R l ,  R,) and V E L(R,, R, ), respectively, between the associated Krein spaces 
t R, and R, and [Ux,y] ,=[x,Vy], ,  X E R , ,  ~ E R , ,  i.e., V = U  . 

For later reference we amplify two special cases of Theorem 2.1: 

COROLLARY 2.2. Let 4 be a Hilbert space, let [. , . ]  be a bounded inner 

product o n  4 and let So E L ( @ )  be such that [Sox, y ]  = [x,S,y] ,  x ,  y E 4 .  Then  

go E ~ ( 6 , )  can  be extended by continuity to  a bounded selfadjoint operator S = st 
on the associated Krein space R. I f ,  moreover, [., .] i s  positive definite on  

4, then R i s  a Hilbert space containing 4 as a dense subspace and S o  itself 

can  be extended by continuity to a bounded selfadjoint operator S=S* on  R. 

COROLLARY 2.3. Let 4, and 4, be two Hilbert spaces and suppose that on  



each ej there is given a bounded inner product [. , . Ij, j = 1,2. Furthermore, 

assume that we are given a bijective operator U,EL(@,,@,) such that 

[Uox,Uoy]2 = [x,y],, x, YE@,. Then D o ~ ~ ( A 1 , i $ , )  can be extended by continuity to 

a unitary operator UEL($,,R,) between the associated Krein spaces R, and R,. 

Proof. Apply Theorem 2.1 with Vo = u,' and let U and V be the continuous 
h 

extensions of 0, and Po with V = u'. From [g0x, fiOy], = [x, y],, x, Y E  4, it follows 

by continuity that [Ux,Uy], = [x, y],, x , y ~ R , ,  that is U'U = I Similarly, one Rl. 
can show that V'V = I*, and therefore UU' = In,. Hence U is unitary. 

For more results in the theory of operators in spaces with two norms 

we refer to [GZl], [GZ2]. 

3. UNITARY COLLIGATIONS AND THEIR CHARACTERISTIC FUNCTIONS, 

THE GENERAL REPRESENTATION THEOREM 

Let 5 and Ot be Krein spaces. If O E S ( S , ~ )  we denote by b(O) the domain 

of holomorphy of O in ID = { z E C 1 ( z  1 < 1 ) and by s;(z, w) the matrix kernel 

defined for z and w in a neighborhood of 0 contained in ID, z # G with values in 
5 L ) Clearly, S;(Z, w)' = S ~ ( z , w ) .  A kernel K(z,w) defined for z, w in some 

set b c C  and with values in L(R), where $ is a Krein space, is called positive 

definite, positive semidefinite, etc., if K(z,w)'=K(w,z), so that all 

matrices of the form ( [ ~ ( z ~ , z ~ ) f ~ ,  fj]);, j=l, where n EN, z,, . . . , Z, E 2) and 

f,,. . . , f n ~ $  are arbitrary, are hermitian, and the eigenvalues of each of 

these matrices are positive, nonnegative, etc., respectively. More generally, 

we say that K(z,w) has K positive (negative) squares if K(z,w)'=K(w,z) and 

all these hermitian matrices have at most K and a t  least one has exactly K 

positive (negative) eigenvalues. It has infinitely many positive (negative) 

squares if for each K at least one of these matrices has not less than K 

positive (negative) eigenvalues. A Pontryagin space of (negative) index K, 

for example, is a Krein space on which the constant kernel K(z,w) = I has K 

negative squares. 



Finally, OES(S,@) and 0 1 ~ S ( S ' , 8 ' )  are said to coincide, if there are 

two unitary operators VeL(S1,8) and W EL(@',@) such that O(Z)V = W@'(Z)  for z in 

some neighborhood of 0 contained in the intersection 3(O)nd(O1) .  

A colligation A is a quadruple A =  (R,S,@;U) consisting of three Krein 

spaces R (the inner or state space), 5 and 8 (the left outer or input space 

and the right outer or output space, respectively) and a mapping 

I I E L ( R ~ S ,  R e  8 )  (the connecting operator), which we usually write in the 

form of a 2x2 block matrix 

with bounded operators T (the basic operator), F, G and H; we often write 

A = (R,S,@;T, F,G, H )  The colligation A is called unitary, if U is unitary and 

it is called closely connected if for some small neighborhood N of 0 

contained in ID 

i.e., R is the closed linear span of the elements in the union of the 

indicated ranges. 

An operator TEL(R) will be called simple if there does not exist a 

nonzero subspace (i.e., linear subset) Ro of ft such that TRo=Ro and 

(I-T+T)R0 = (0). This definition extends the one given in for instance [BDS]. 

Note that in the definition R0 may be degenerated. It is not difficult to  

check that if T is simple, then so are T+ and T* = JRT+JR for any fundamental 

symmetry JR on R. 

LEMMA 3.1. Let A = (R,S, @;T,F,G, H )  be a unitary colligation. Then  the 

following statements are equivalent : 

( i )  d i s  closely connected, 

( i i )  there does not exist a nonzero subspace R0 of Q such that T.Ro = Ro and 

GRO = (01, 

(iii) there does not exist a nonzero subspace Ro of R such that T+R,  = 3, and 

F+R, = (0). 

Moreover, if T i s  simple then A i s  closely connected and the converse i s  true 

if one of the following four conditions i s  valid: %(G)'=@, 8 i s  a Hilbert 

space, %(Ft)' = 3 or 5 i s  a Hilbert space. 



Proof. For the proof of the first part of the lemma we refer to the 

proof of Proposition 3.2 in [DLSl], which can easily be adapted from the case 

where 3 and 6 are Hilbert spaces to the case where they are Krein spaces. In 

order to prove the second statement, suppose that A is not closely connected. 

Then by the first part there exists a nonzero subspace 8, of .R such that 

TR, = R, and GR, = {0), whence (I -T+T)$, = G'GR, = {0), so that T is not simple. 

Conversely, if T is not simple, then there exists a nonzero subspace Ro of R 

such that TR, = R, and G+GRo = (I - T+T)$, = (0). If Y?(G)' = 6 or if 6 is a Hilbert 

space this implies that GR,={O) and from (ii) it follows that A is not 

closely connected. In a similar way it can be shown that the other two 

conditions also imply that A is not closely connected. 

The characteristic function OA of a colligation A = (R, 3,6 ;T, F, G, H) is 

defined by O,(z) = H + ZG(I - ZT)-'F. This definition stems from M.G. Krein. 

Clearly, O,E S ( 3 , 6 )  and 

LEMMA 3.2. If A = (R,3,6;T, F,G, H) is unitary, then 

( 2 )  O , ( Z ) - O ~ ( W )  = (2-W)G(I-ZT)-'(I -wT)-'F, 

(i i)  I-O,(W)+O,(Z) = (1-z~)F+(I-@T+)-'(I-ZT)-'F, 
+ -1 + 

(iii) I -OA(z)O,(w)+ = (1  -ZG)G(I -zT)-'(I -GT ) G 

and hence, for f i e%,  g j € 6 ,  j=1,2,  

+ -1 + + -1 + [ ( I - Z T ) - ~ F ~ ~ + ( I - Z T  ) G g l , ( ~ - w ~ ) - 1 ~ f 2 + ( ~ - w T  ) G g,]. 

The proof can be given by straightforward calculation, cf. M.S. 

Brodskii [Br]. 

COROLLARY 3.3. Let A = (R, 5 , 6 ;  T, F, G, H) be unitary. (i) If R is a Hilbert 

space or if A is closely connected, then 

where N is same neighborhood of 0 contained in 3(OA). ( i i )  I f  A is closely 

connected, then 



positive 
dimR? = # negative squares of S: d ( z , ~ ) ,  

where R=B, +B- i s  any  fundamental decomposition of the state space R. 

An operator V from 5 to (st is called a weak isomorphism if it has a 

dense domain B(V) c8 and a dense range %(V)c(st ,  and is isometric, that is 

V'V = I ID("). A weak isomorphism is closable and hence, it may be assumed to be 

closed. The spaces 5 and (st are called weakly isomorphic if there exists such 

a weak isomorphism between them. If V is a weak isomorphism from 5 to @ t,hen 

V is bounded (and hence, is an isomorphism between 5 arid 8) in each of the 

following cases: ( 2 )  5 and (st are Pontryagin spaces and ( i i )  there exist 

fundamental symmetries J8 and Jg such that V J 8 =  J8V on B(V). For a more 

general result in this direction we refer to Section 7. 

Two colligations A = (R, %,(st; T, F, G, H) and A' = (R', 5,6; T', F', G', H') with 

the same outer spaces 5 and 6 are called weakly isomorphic if H = H' and there 

exists a weak isomorphism V from R' to $ such that 

If V can be extended to a unitary operator from 2' onto 2, then of course, A 

and A' are called isomorphic or unitarily equivalent. 

THEOREM 3.4. Every OeS(5,6)  can be written as O(z) =On(%) with z in a 

neighborhood of 0 in D, for some unitary colligatim A= (R,S,(st;U). Here A can 

be chosen to be closely connected in which case it i s  uniquely determined u p  

to weak isomorphisms and 

positive dimR, =#  squares of s:(z, w ) ,  - negative 

where Q=R,+R-  i s  any fundamental decomposition of the state space R. 

For this theorem see T.Ya. Azizov [Azl], [ A z ~ ] .  Azizov's proof starts 

with a result of D.Z. Arov [Ar] which states that an arbitrary operator 

valued mapping, holomorphic at z =0,  is the characteristic function of a (not 

necessarily unitary) colligation and applies C. Davis' statement [Da] that 

any bounded operator has a unitary dilation in a Krein space. In [DLSB] we 

have stated and proved a more detailed version of Theorem 3.4 in the sense 

that we specified beforehand the domain of points z for which the equality 

O(z)=Od(z) is to be valid. Our proof is based on Corollary 2.3, but it is 

quite lengthy and therefore will not be repeated here. However, in order to 



show how Corollary 2.3 can be applied, we shall prove Theorem 3.4 for 6's in 

a special subclass of S(3 ,8) .  The assumptions make a much simpler proof 

possible, than the one in [DLSB] for the general case and lead to the 

slightly stronger conclusion that the unitary colligation can be chosen to be 

closely innerconnected and closely outerconnected. The reason for this is 

formulated in Proposition 3.5 below, which is of some interest of its own. 

Proposition 3.6 below is the restricted version of Theorem 3.4. Neither of 

the propositions will be used in the remainder of this paper. 

Recall that a unitary colligation A = (R, 3 ,8 ;T ,  F, G, H) is closely 

innerconnected if 

and closely outerconnected if 

Clearly, if A is closely innerconnected or closely outerconnected, then it is 

closely connected. The following result gives a sufficient condition for the 

converse to hold. 

PROPOSITION 3.5. Let A = (R, 3, @;T, F, G, H) be a unitary colligation. 

Assume that the point 0 ~ p ( T )  and that it also belongs to the unbounded 

component of p(T). If A is closely connected, then it is closely 

innerconnected and closely outerconnected. I n  particular, this holds if 

dim8 < co and T is invertible. 

Proof. We have that 

The first equality is valid since O,oo~p(T) and the second one follows from 

the fact that these points belong to the same component as this implies that 

T-' can be approximated in the uniform topology by polynomials in T. Let 

O c p ( T )  be a neighborhood of 0 and oo, which is symmetric with respect to aD. 

We extend the definition of OA(z) to all values ZEC for which l / z ~ p ( T )  in the 

obvious way: OA(z) = H + ~ G ( I  -2~)- 'F.  It is easy to verify that the equalities 

(i i)  and (iii) of Lemma 3.2 are valid for this extended Od. They imply that 

Od(l/z) is invertible with inverse 0 ~ ( 1 / z ) - ~ = @ ~ ( ~ ) ~  for all ~ E U .  It follows 

from the relation 



that 

Hence, if A is closely connected, then it is closely innerconnected. The same 

reasoning applied to T+, instead of T easily yields that then A is also 

closely outerconnected. This completes the proof. 

PROPOSITION 3.6. Assume that O E S ( ~ , @ )  can be extended holon~orphically 

t o  a simply connected domain b in the extended complex plane c, *u)hich i s  

symmetric with respect to the  un i t  circle dD and contains neighborhoods of 

0 , l  and m, s u c h  that  0(f)- '=O(l/z)+. Let 0 be a closed smooth Jordan  curve  in 

C with interior,  exterior denoted b y  I (d ) ,  E(d),  respectively, s u c h  that 

E ( d ) u d c b ,  the  points 0, 1 and m belong t o  E ( a )  and there ex i s t s  a conformal 

mapping y from I ( d )  onto ID, which c a n  be extended t o  a continuously 

dif ferentiable function, also denoted by y, from I ( d ) u d  onto DudD with 

y'(z)#O for  all z E I ( d )  u d. Then ,  for all z E E(d),  O(z) = OA(z) for some un i tary  

colligation A, that can  be chosen t o  be closely innerconnected and closely 

outerconnected, in which case i t  i s  uniquely determined u p  t o  weak 

isomorphisms. 

REMARK. According to a theorem of Kellogg, a sufficient condition for 

the existence of y is that the angle of the tangent to 13, considered as a 

function of the arc length along d satisfies a Lipschitz condition, see [GI 

Theorem 6, p. 374. 

Proof. Put b - = { z ~ C ( l / z ~ a )  and d _ = { z ~ Q : ( l / z ~ d ) .  Then 3- and d- 

have the same characteristics as b and d described in the proposition. We 

write y- for the corresponding conformal mapping from I (d- )  onto ID. In the 

proof we shall consider contour integrals f which are always over the contour 

d- traversed in the positive direction with respect to I(d-)  and write 

- 
f u ( Z ) z = f  qq d l .  

We put P(z)  = 0( l/z). Then we have Cauchy's formula 

l ~ ( z )  = ~ ( m ) - ~ s  E s d w ,  z s ~ ( a - )  (strongly). 

We fix fundamental symmetries .J8 on 5 and J8 on 6. When we consider 5 and 6 



as Hilbert spaces, we mean the linear spaces 5, 8 endowed with the positive 

definite inner products [Jp., . 15, [Je.,.]& respectively. By f j  = ~ : ( l ( d - ) )  we 

denote the Hilbert space of all functions h: l (d-)+B for which h  ̂ = hoy~':D+g 

belongs to the Hardy class H~(D) .  In this class the functions can be extended 

to dD by their nontangential limits and hence the functions in @ can also be 

extended to d-. The inner product is given by 

Note that because 0 < c 5 1 y:/y- I IC < oo on a_, the norm corresponding to  this inner 

product is equivalent to the norm 

This, the fact that @ is holomorphic in a neighborhood of d- and the equality 

@(w)'@(z) = 1 when zG = 1, Z ,WE d-, immediately yield that the inner product [. , . ] 
defined by 

is bounded on 4. We want to apply Corollary 2.3 and define the Hilbert spaces 

the inner products [. ,.I1, [. , . I 2  and the operator Uo by 

where h, k ~ @ ,  f l ,  f2, f €5 and gl,g2e@. The operator Uo maps 4, onto @, and, as 

one can easily verify using Cauchy's formula, is invertible with inverse 

given by 

With the exception of the equality [Uox, U0yl2 = [ x ,  y],, the hypotheses of 



Corollary 2.3 are  easily checked. The equality can be proved in a 

straightforward manner: 

= 4 double integrals + 4 inner products 

where s (a ,b )  stands for the sum of the double integral and the inner product 

involving a and b. Using Cauchy's formula we obtain the equalities 

s(h,k)=[h,kI, s(h,f2)=s(f,,k)=O, s(fl,fz)=[fl,f215. 

We shall prove the second and fourth equality, as the other two can be proved 

in a similar way. Concerning the second relation we have 

The first summand is equal to  

and, consequently, s(h,  f2)  = 0. Also, 

and here the first summand equals 



which implies S (  fl ,  f 2 )  = [fl, f2]5. Hence, the equality [Uox, Uoy], = [ x ,  y], holds. 

It is not difficult to see that the Krein space associated with 4, and [.,.Il 

(Q2 and [. , .I2) is R e 5  ( R e @ ,  respectively), where R is the Krein space 

associated with 4 and [. , . I .  Let U:R$5+Re8 be the continuous extension of 

8, :6$5+$e@, which exists and is unitary by Corollary 2.3. Then 

A = (R;5,6;U) is a unitary colligation and we claim that O(z) =OA(z),  

z ~ E = ( d - ) .  Indeed, writing 

1 
where (T,h)(w)=wh(w), (Fof )(w)=f, Goh=&ly(w)h(w) dw and Hof=P(m)f, we 

have that for z ~ E ( d - )  

and from this the claim can be proved. We leave the details to the reader. It 

is easy to check that T E F , ~  =wnf, f ~ 8 ,  which implies that A is closely 

innerconnected. To see this, it is sufficient to show that the polynomials 

with coefficients in 5 are dense in Q =  H;(I(~-)).  Since these polynomials are 

dense in H$(D), it follows that when composed with 7- they form a dense set 

in 4, Hence, it suffices to  prove that for each neN and f €5 the function 

y-(z)*f can be approximated in 4 by polynomials in z with coefficients in 5. 
But this follows from Mergelyan's theorem (see, for instance, [R]), which 

implies that y-(z)n can, in fact, be approximated by polynomials in z, 

uniformly on I ( d - ) u d .  Hence, A is closely innerconnected. Finally, writing 

I!,' as 

n 
we have that the linear span .V !R(7{c0) is equal to the linear space 3=1 



{ ~ 7 , ~ z - j f  ( f j~ 8 ) c 4 and the above argument (in the end applied to the 

function (l/y-(z))n/z instead of y-(z)n) gives that A is closely 

outerconnected. We leave to the reader the proof of the uniqueness of A up to 

weak isomorphisms. 

We thank Prof. B.L.J. Braaksma for pointing out the above application 

of Mergelyan's theorem. By similar methods one can obtain Caratheodory type 

representations of holomorphic operator functions, see, e.g., [DLS3]. 

4. CHARACTERISTIC FUNCTIONS OF BOUNDED OPERATORS I N  KREIN SPACES 

The definition of the characteristic function of a bounded operator in 

a Hilbert space goes a t  least back to M.S. LivSic and V.P. Potapov [LP], A.V. 

Straus [St] and Yu.L. Smul'jan [Sm]. In this section we extend it to a 

bounded operator on a Krein space. The ideas leading to this extension are 

taken mainly from [ACG], where Arsene, Constantinescu and Gheondeaconsider 

bounded operators acting from one space to another. For our purpose, however, 

it suffices to consider a bounded operator T from a Krein space (9, [ . , . I )  to 

itself. Relative to a fixed fundamental symmetry Ja we define the operators 

v 2  JT = sgn (Ja - 7'*JRT), DT = ( JR - T*J*T ( , 

computed using the functional calculus on the Hilbert space (R, [Ja., . I), and 

we set DT = R(D~) ' .  Note that DT endowed with the inner product [JnJT. ,  . ] is a 

Krein space and when we refer to DT as a Krein space it is with respect to  

this inner product. 

THEOREM 4.1. Let $ be a Krein space, JR a fundamental symmetry on 9 

and TEL(R). Then 

( i )  there exists a uniquely determined operator LT~L(DT,DT*) such that 

DpLT = TJspDT on DT, 

(ii)  the operator UT with decomposition 

defines a unitary colligation AT = (9, DT*, DT;UT) and 

(iii) AT is closely connected if and only if T is simple. 

Part (iii) of the Theorem 4.1 is a consequence of the foregoing parts 



and the last statement in Lemma 3.1 as R(DT)'=DT. Parts ( i )  and (ii)  are 

copied from [ACG], Proposition 4.1 and Corollary 4.5, respectively. Their 

proof of part ( i )  applies Corollary 2.2 of this note and in order to  show 

this we briefly repeat it. Take in Corollary 2.2 Q = D p ,  provided with the 

Hilbert inner product (x, y ) = [JRx,y], x, y~ D p ,  [x, y] = ( D ~ x ,  Y )  and 

So = JpJnTJplaPIBp. Then the hypotheses of Corollary 2.2 are satisfied and, 

moreover, [. , . ]  is positive definite. It follows that there exists a constant 

C 1 0  such that [Sx,x] <C[x,x] for all X E R ,  the Hilbert space associated with Q 

and [. , . 1. Hence, 

The Douglas factorization theorem (see [Fu] p. 124) now implies the existence 

of LT with the desired property; its uniqueness follows from the injectivity 

of Dp.  

We refer to [ACG] for special cases concerning the link operator LT 

and the various properties of the operators JT,DT and LT such as 

if DT is considered as a (bounded) mapping from the Krein space R to  the 

Krein space DT. 

Theorem 4.1 gives rise to the following definition. We defirlc 

the characteristic function OT of TEL(R) relative to a fundamental symmetry 

JR to  be the mapping 

+(z) = 8, T ( z )  = - J ~ L ~ + Z D ~ ( I  - Z T ) - ' D ~ I ~ ~ ,  z ~ a ( @ n ~ ) ,  

i.e., the characteristic function of the unitary colligation AT. This notion 

reduces to the usual one, if R is a Hilbert space, for then Ja = I, LT = T and 

OT(z) = - T * J ~  + Z D ~ ( I  - Z T ) - ~ D ~ I  
DP 

with ~ , = s g n ( I - h )  and DT= II-PTI'~. 

5. CHARACTERISTIC FUNCTIONS OF BOUNDED OPERATORS IN KREIN SPACES 

(CONTINUED) 

If in a unitary colligation A= (R,S,B;V) in which V is decomposed as in 

(1.1) and the null spaces v(F) and v(&) of F and G' are orthocomplemented in 

5 and 6, then U has the 3x3 block matrix representation 



in which [ F1 ) and H, are unitary. In this section we want to investigate 
Gl Hl 

some sort of equivalence between A and the unitary colligation AT 

corresponding to its basic operator T. A necessary condition for this, even 

when v(F) and U(G+) are not assumed to be orthocomplemented, is that they are 

equal to {0), or, equivalently, that 3?(Ft)'=5 and R(G)'=@, as the 

corresponding entries in UT have these properties. With the following 

definition of equivalence these conditions turn out to be sufficient as well. 

We shall say that two colligations A = (R,5,8;T, F,G, H) and 

A' = (R,5',8';T, F',Gi, H') with the same state space R and basic operator T 

coincide weakly if there are two weak isomorphisms V from 5' to 5 and W from 

8' to 8 such that 

/ T  F, 0 ' ' R  

Similarly, @ ~ S ( 3 , 8 )  and O 'ES(~ ' ,@' )  are said to coincide weakly if for some V 

and W as above @(z)V = WO'(z) for z in some neighborhood of 0 contained in 

3(0)n3(O1) .  Clearly, if two colligations A and A' coincide weakly, then so do 

their characteristic function. If V and W are continuous, then they are 

unitary operators from 5' onto 5 and 8' onto 8, respectively, and A and A' as 

well as 0, and On, coincide. A sufficient condition to ensure boundedness of 

these operators will be formulated and proved in Section 7. 

PROPOSITION 5.1. Let A = (R, 5, Q;T, F, G, H) be a unitary colligation and 

let J R  be a fundamental symmetry on  i ts  state space R. Let AT be the uni tary 

colligation defined for the basic operator T of A relative t o  JR.  Then  A and 

AT coincide weakly if and only if R(Ft)' =?j and $?(GI' = 8. 

u =  

Proof. Assume 3?(Ft)'=~, R ( G ) ' = ~  and define W:R(DT)cDT+%(G)cB by 

WDTx = Gx, XER.  To see that W is a well defined weak isomorphism we first note 

that, as A is unitary, I - T'T = G'G and hence we have that for xr,y'  E .R 

, 0 0 H,, , v(F) 

: GI H, 0 R(Ft)' 



From the density of the ranges R(G) and R(DT) in 6 and DT, respectively, it 

follows that the null spaces of G and DT coincide and this implies that W is 

well defined. If x, Y E  R(DT) and x = DTx' and y = DTy' for some x',yf E 8, then the 

above equalities show that [Wx, Wylo = [x, ylD i.e., W is isometric. Since 
T' 

D(W) = R(DT) and R(W) = R(G), W is a weak isomorphism. Similarly, it can be shown 

that the mapping v :R(D~)cD~-+R(F+)cs  defined by 

is a well defined isometry with a dense domain and, by assumption, a dense 

range. Therefore, V is a weak isomorphism between Dp and 3 .  From the 

defining relation of V and the fact that the Krein space adjoint of 

D P I ~ ~ : D T ~ - + ~  

is given by 

(DPIDP)+ = JPDPJR, 

it easily follows that FV = DP on D(V). It remains to prove that HV = - W J T L p  on 

D(V). As A is unitary F+T= -H+G and therefore, 

+ + This implies that v ( J ~ L ~ ) + = - H + W  on R(DT) and therefore, (JTLp) W =-V+H' on 

R(W). Taking adjoirits we obtain the desired equality. The proof of t,he 

converse is left to the reader. 

We now come to the main result of this paper. 

THEOREM 5.2. Let OcS(3,  8). If  

where N is some neighborhood of 0 contained in a(@), then O coincides weakly 

with a 0, for some bounded operator T on a Krein space 3. Here T can be 

chosen to be simple in which case 

positive 
dim'? = # negative squares of s ~ ( z , w ) ,  

where 8 = 8, + 8 -  is any fundamental decomposition of 8. If  O coincides weakly 



with OT and if T i s  simple or .Q i s  a Hilbert space, then the equalities (5.1) 

are valid. 

Proof. According to Theorem 3.4 O can be represented as the 

characteristic function O, of a closely connected unitary colligation A. By 

Corollary 3.3 ( i )  and (5.1) R ( F + ) ' = ~  and R(G)'= 8. From Proposition 5.1 it 

follows that A and AT coincide weakly, where T is the basic operator of A and 

hence, so do O = 0, and OAT. Moreover, AT is closely connected and therefore, T 

is simple, see Theorem 4.1 ( i i i ) .  Now assume that V and W are weak 

isomorphisms such that OV = WOT, where OT is the characteristic function of 

some simple, bounded operator T on a Krein space R relative to a fi~ndament~al 

symmetry JR. Then 

and the formula concerning dim R+ now easily follows from Theorem 4.1 ( i i i )  

and Corollary 3.3 ( i i ) .  The last part of the theorem can be proved in the 

same vein. 

6. J.A. BALL'S CHARACTERIZATION OF CHARACTERISTIC FUNCTIONS OF 

BOUNDED OPERATORS IN HILBERT SPACES 

The following representation theorem is due to Ball, see [Ba]. Its 

formulation in terms of Krein spaces stems from B.W. McEnnis, see [Mc]. 

THEOREM 6.1. The mapping @ ~ S ( 8 , 8 )  coincides with O p ~ S ( l b ~ , l b ~ )  for some 

bounded operator T on  a Hilbert space i f  and only i f  

( i )  I - 0 ( 0 ) + 0 ( 0 )  i s  injective on 8 and commutes with some fundamental 

symmetry J g  on 8, 
( i i )  I - 0 ( 0 ) 0 ( 0 ) +  i s  injective on 8 and commutes with some fundamental 

symmetry J a  on  8 and 

( i i i )  the kernel S;(Z, w )  i s  positive semidefinite. 

Theorem 6.1 is an extension of a result of D.N. Clark [C] who 

considered the case where O ( 0 )  and hence T are invertible. V.M. Brodskii, 

I.C. Gohberg and M.G. Krein treated this same case in [BGK]. For the case 

where 0 ( 0 )  and hence T are contractions we refer to the monograph [Sz.F]. 

Before we show how Theorem 6.1 can be deduced from Theorem 5.2, we want to 



make the following remarks. 

REMARKS 1. McEnnis proved in [Mc] that Theorem 6.1 remains valid if 

property (iii) is replaced by: the kernels 

I-@( w ) '@(z ) and I-@(@ )O(Z)+ 

1 -az  1 - a z  

(with values in L(5)  and I,(@), respectively) are positive semidefinite. Note 

that  these kernels are  the elements on the main diagonal of the matrix kernel 

S;(Z,W). In case 5 and @ are Hilbert spaces it is known that S;(Z,W) has 6 

negative squares if and only if one of the kernels above has K negative 

squares, see, e.g., [DLSl] Theorem 6.1. 

2. If O E S ( ~ , ~ )  has the property that I-0(0)'0(0) is positive definite on 5 
and commutes with a fundamental symmetry J g  on 5, then the operators J g  and 

~ = s ~ n ( I - O ( O ) ' O ( O ) )  are equal, where the latter is computed via the 

functional calculus on 5 with the Hilbert space inner product [ . I 5 . , . ] .  

Indeed, McEnnis showed that J too is a fundamental symmetry on 5 and as it 

commutes with Jg the equality J=Jg follows, cf. [Mc] p. 165. Hence, if 

O E S ( ~ , ~ )  has the properties (i)-(iii) of Theorem 6.1, then 

J g  = sgn (I-0(0)'0(0)) and JB = sgn (I-0(0)0(0)'). 

3. McEnnis also proved that the isomorphisms V E L ( I S ) ~ , ~ )  and W eL(DT,B) such 

that  O(z)V=WOT(z) for z near 0 are not only unitary with respect t o  the 

indefinite inner products, but are also unitary with respect t o  the positive 

definite inner products induced by the symmetries Jp, JT, J g  and Js. This 

now follows easily from the previous remark. E.g., O(0)V = WOT(0) implies that 

(I-o(o)+o(o))v=v(I-PT)I 
D P  

(see the argument in the proof of Theorem 6.1 below), whence 

and therefore, V is unitary with respect t o  the positive definite 

inner products. 

Proof of Theorem 6.1. If O coincides with OT, then it has the 

properties (2)-(iii), as OT~S(Dp,DT) has these properties. This is easy to  

verify and we skip the details. It remains to  prove the converse. Assume O 

satisfies (2)-(iii), then (5.1) of Theorem 5.2 is valid and O coincides 

weakly with a OT where T is a simple, bounded operator on a Krein space R: 



there exist weak isomorphisms V from 19p to  5 and W from lgT t o  8 such that  

O(z)V =WOT(z) on D(V) for z near 0. The proof of Theorem 6.1 is complete when 

we have shown that V and W are bounded. For, then they are  unitary operators 

and O and OT coincide. It suffices to  prove the continuity of V, that of W 

can be established in a similar way. From O(0)V = WOT(0) we obtain on account 

of Theorem 4.l(ii), that on D(V) 

Hence, since V+ is injective, we have the intertwining relation AV=VB, where 

we have put A=I-0(0)+8(0) and B=JpDpJR(DpIDp).  From the assumptions ( i )  

and (iii) in Theorem 6.1 concerning O it can easily be verified that A has 

the following properties: 

AEL(S), A is positive definite and commutes with a fundamental 

symmetry Jg on 5. 

Assumption (iii) in Theorem 6.1 implies that R is a Hilbert space, hence JR = I 

and B = J p ( D p (  )2 = (I - TT') IDp. Hence, it follows that B has the same 
DT* 

properties as A: 

BeL(IS)p), B is positive definite on the Krein space D p  and commutes 

with the fundamental symmetry Jp  on D p .  

The following proposition with @ = DP implies that V has the desired property. 

In the next section we treat a generalization of this result, see Theorem 

7.1. 

PROPOSITION 6.2. Let V : 6 + 5  be a weak isomorphism between the Krein 

spaces 6 and 5. Assume there exist positive definite operators AEL(S) and 

BEL(@) which commute with a fundamental symmetry on 5 and on @, respectively, 

such that AV =VB on D(V). Then V is a unitary operator from 8 onto 8. 

Proof. The positive definiteness implies in particular that both 

operators are  selfadjoint, injective and have dense ranges. It follows that 

the spaces BD(V) and AR(V) are dense in @ and 5, respectively, and that  V 

maps BD(V) isometrically and bijectively onto AR(V). Let Jo ( J g )  be the 

fundamental symmetry on 6 (5) which commutes with B ( A ,  respectively). Recall 

that in (a, [. , . I & )  ((5, [. ,. 1 % ) )  WP have denoted by (.,. )@ (( .  ,. )g) and (1 (Is 



( ( 1  ( I 5 )  the Hilbert space inner products and corresponding norms on 6 (5) 
generated by J@ (Jg, respectively). From the inequality 

with y = BJG, one easily obtains the inequality 

We want to apply Corollary 2.3 and define 4, as the Hilbert space completion 

of %(B) with respect to the positive definite inner product (x,y), = [ ~ - ' x , y ] ~  

and 4, as the Hilbert space completion of %(A)  with respect to the positive 

definite inner product ( U , V ) ~ = [ A - ' U , V ] ~ .  The above inequality and the 

relation 

imply that 4, can be identified with a linear manifold in 6, that B;D(V) is 

dense in 4, and that the inner product [. , . I , ,  defined as the restriction of 

[. , .IcS to  4, is bounded on 4, with B as the Gram operator. Similarly, it can 

be shown that 4, can be identified with a linear manifold in 3, that AR(V) is 

dense in 4, and that the restriction [. , . I 2  of [. , . l5 on 4, is a bounded 

inner product on 4, with A as the Cram operator. Since for x,y~BD(v)cXl(V) we 

have that Vx,VyeAR(V) and 

V on BD(V) can be extended by continuity to a unitary and hence bijective 

mapping U, E L(4,, 4,) and [Vx, Vy18 = [x, y]@ implies that 

We are now in a position t o  apply Corollary 2.3. Let 8,, 8, and UEL(-R,,R,) be 

as in its conclusion. Let P+ be the orthogonal projection of 6 onto 

6, = %(ITJ@). Then, since B commutes with J@, we have that P,4,c4,. It follows 

that we can identify 8, with 6 and, similarly, 8, with 5. Finally, it can be 

verified that V = U, which completes the proof. 

7. A SUFFICIENT CONDITION FOR THE CONTINUITY OF A WEAK ISOMORPHISM 

We begiri by recalling some facts from [L]. Let S be a densely defined 

selfadjoint operator with p(S)#@ on a Krein space (8, [. , . I )  and suppose that 

the form [S. ,. ] has a finite number of negative squares on the domain Xl(S). 



Then S is definitizable, i.e., p(S)#@ and there exists a polynomial p with 

real coefficients such that [p(S)r,x] L O  for all x e B ( s k )  where k is the degree 

of p. It follows that S has a spectral function E on R. A critical point t of 

E in R (the one point compactification of R), which is also called a critical 

point of S, is said to  be regular if there exists an open neighborhood d0cR 

of t, in which t is the only critical point, such that the projections E ( d ) ,  

~ c d , \ { t ) ,  are uniformly bounded. A critical point which is not regular is 

called singular. The set of singular critical points of S will be denoted by 

c,(S). 
Let us say that a bounded operator A on a Krein space ( 3 ,  [ 1 )  has 

property P,, if 

A is injective, A = A + ,  the form [A., . ]  has K negative squares and 

0 @ c,( A).  

If AEL(R) has property P,, then S = A - ~  is a densely defined selfadjoint 

operator, the form [S., . ]  has. K negative squares on B(S) and w#c,(S). It 

can be shown that AEL(R) has property Po if and only if A =A+,  A is positive 

definite and commutes with some fundamental symmetry on R, cf. [Cu]. The 

latter properties are precisely the ones we arrived at  a t  the end of the 

previous section. 

The main theorem of this section is as follows. 

THEOREM 7.1. Let V be a weak isomorphism from the Krein space 8 to the 

Krein space 3. Suppose that there exist operators AeL(8)  and BcL(6 )  having 

properties P, and P,,, respectively, such that AV =VB on D(V). Then V is  a 

unitary operator from (35 onto 3 and K =n'. 

In order to prove the theorem we need the following preliminary 

results. If a subspace Z! of a Krein space (R, [. , . ] )  is nondegenerate and 

decomposable, then there exists a fundamental decomposition 

(7.1) Z! = + t ,  orthogonal direct sum, 

in which C+, I!- are positive, negative subspaces of 3, respectively. Hence Z! 

has a fundamental symmetry Jc. The topology on C induced by the norm [ ~ ~ x , x ] ' / ~  

is called a decomposition majorant on I!. Recall that in the case C = R  the 

decomposition majorant is unique, i.e., independent of the fundamental 

symmetries on R, and we shall refer t o  this topology as the norm topology on 

R. A subspace 2 of (2, [ . , . I )  is termed uniformly decomposable if it admits a 



decomposition of the form (7.1), such that 2+, I!- are uniformly positive, 

uniformly negative subspaces of 8, respectively. 

LEMMA 7.2. I f  I! is a nondegenerate decomposable subspace of a Krein 

space R, then the following statements are equivalent: 

( i )  There exists a fundamental symmetry J on R such that JI!cE. 

(ii) The subspace I! is uniformly decomposable. 

(iii) There is a decomposition majorant on (I!, [. , . I )  which is equivalent to 

the norm topology of R restricted to I!. 

The implications (i)-+(ii)+(iii) are easy to prove. The implication 

(ii)-+(i) follows from, e.g., [An] Chapter 1, see also [Bo] Theorem V.9.1. If 

I! is a nondegenerate, decomposable and dense subspace of R and satisfies 

(iii) of Lemma 7.2, then R is the Krein space completion of I! with respect to  

the decomposition majorant referred to in (iii). 

Now we recall and supplement some results from [Cu], where criteria 

are given for the regularity of the crititcal point oo of a definitizable 

(densely defined, selfadjoint) operator, here denoted by S, on a tirein space 

(R, [. , . I ) .  In these criteria the domain D(S) and the set D[JS] play an 

important role, see also Proposition 7.4 below. In what follows J will 

designate a fundamental symmetry of and (.,.) will stand for the Hilbert 

inner product [ J . , . ]  on 8. The set D[JS] is defined to be the domain S ) ( I J S I ~ )  

of I JS(", computed in the Hilbert space (R,(. ,. )). It coincides with the 

domain D((IJS1 +I)"). In [Cu] it is shown that D[JS] is independent of the 

choice of J. From the fact that 1JS1+I is boundedly invertible it easily 

follows that the inner product spaces (D(S), ( (  (JSI +I). , ( I JSI +I). ) )  and 

(D[JS], ( (  1 JS( +I)&. , ( I JS( +I)". ) )  are Hilbert spaces. 

LEMMA 7.3. Let S be a selfadjoint operator in a Krein space (8, [. ,. 1 )  
with p(S)#cd. Then the inner product spaces (D(S), [. , . I )  and (D[JS], [. , . I )  are 

nondegenerate and decomposable, and have unique decomposition majorants. 

Proof. Since D(S) and D[JS] are dense in 8, it is easily verified that 

[. , . ] does not degenerate on these subspaces. Furthermore, the Hilbert space 

topologies on D(S) and D[JS] described above are both majorants of the inner 

product [. , . ] and therefore, the inner product spaces admit Hilbert 

majorants. By Theorems IV.5.2 and IV.6.4. in [Bo] they are decomposable and 



have unique decomposition majorants. 

The equivalences (i)*(iii)*(iv) in the following proposition are  

extensions t o  definitizable operators of the equivalences (i)*(v)*(vii) in 

[Cu] Theorem 2.5. 

PROPOSITION 7.4. Let S be a densely defined, selfadjoint operator in  

the Krein space (8, [.,.I) with p(S)#cd. Then the following statements are 

equivalent : 

( i )  There exists a fundamental symmetry J on R such that JD[JS]cD[JS] .  

( i i )  Each fundamental decomposition of (D[JS],  [. , . ] ) is uniform. 

( i i i )  The decomposition majorant of (D[JS] ,  [. , . 1 )  is equivalent to the norn 

topology of R restricted to D[JS]. 

The three statements obtained from ( i ), ( ii ) and ( iii ) by replacing everywhere 

D[JS] by D(S)  are also equivalent. If S is definitizable, then all six 

statements are equivalent to: 

( i v )  Infinity is not a singular critical point of S. 

Proof. The equivalence of ( i ) - ( i i i )  and that of the other three 

statements follow directly from the preceeding lemmas. The implication 

( i)=+(iv)  with D(S) instead of B[JS] follows from [Cu] Theorem 3.2. Now we 

prove the converse. Denote the spectral function of S by E and let 4 be such 

that  R\A, is a bounded open interval containing zero and all the finite 

critical points of S. Let Jo be a fundamental symmetry on R which commutes 

with E(&)  and put 

4, 
S, = ~ I E ( A , ) D ( s )  + J o I  E(F\A,)R- 

Then the operator S, is boundedly invertible and positive in R, and 

D(S,) = D(S) .  I t  is easy to see that m@c,(S) if and only if m @c,(S,), see 

[Cu] Corollary 3.3. Now the coriverse implication follows from the implication 

( v i i )+- ( i )  in [Cu] Theorem 2.5 applied t o  the operator S,, cf. [Cu] Lemma 2.4. 

Finally, Theorem 3.9 in [Cu] yields that m$c,(S,) if and only if 

m $ cs( J,( ~ d i , ) ~ ) .  We also have that 

see [Cu] Remark 1.4. The equivalence of ( i )  and ( i v )  now follows when we 

apply what has already been proved to  the operator J,(J&)". 

Proof of Theorem 7.1. Let J8 be a fundamental symmetry on the Krein 



space ( 8 ,  [. , . 1s). Denote by 4s the Hilbert space 

As shown in [Cu] Remark 1.7, the inner product [B-I.,.]@ can be extended from 

D(B-') onto D[J@-'1. We denote this extension also by [B-'. , . l o .  The space 

( D[J@-'1, [B-'. , . lo  ) is a Pontryagin space. Provided with its Hilbert 

majorant it coincides with fj@ and B;D(V) is a dense subspace. The same results 

are valid if we replace 8 by 5, B by A and D(V) by R(V). From the 

intertwining relation AV = VB on D(V) it follows that for x = Bye BD(V) cD(V) with 

YE D(V) 

We also have that V(BD(V)) = AR(V) and hence, V I B D ( q  is a weak isomorphism 

from the Pontryagin space D[J@-'1 to the Pontryagin space D[J~A-'1. It 

follows from [W,] Theorem 6.3 that V(BD(V) is a continuous operator and can 

be extended by continuity to  the unitary operator Uo from the Pontryagin 

space D[J@-'1 to the Pontryagin space D[J$-'1. Consequently, K =kt. The 

inner product [. , . I @  ( [. , . I 5 )  is continuous on the Hilbert space fjs (Q5) ,  

since the topology on this space is stronger than the norm topology on the 

Krein space 8 (3, respectively). As V is a weak isomorphism from 8 to  5, 

and hence, by continuity 

To finish the proof observe that O@c,(A) (O$c,(B)) if and only if 

co 4 c,(A-') (co$c,(~-'), respectively). Now, the implication ( iv )  =+ (iii) in 

Proposition 7.4 implies that the completion of ( ;D[J@-'1, [. , . ]@ ) with 

respect to  its unique decomposition majorant is exactly the Krein space 6. In 

other words 8 is the Krein space associated with Qs and [. ,.Is. Analogously, 

5 is the Krein space associated with fjg and [. , .I8. Because U , ~ L ( f j ~ , f j ~ )  and 

is boundedly invertible, Corollary 2.3 implies that U, can be extended by 

continuity to a unitary operator U E L ( @ , ~ ) .  Since BD(V) is dense in 8 and 

since the operator V is closed, it follows that V = I l ~ L ( 6 , 5 ) .  This completes 

the proof of the theorem. 

There is an alternative way to deduce the last conclusion in the proof 



of Theorem 7.1. To show this we first prove the following simple result. 

PROPOSITION 7.5. Let V be a weak isomorphism from the Krein space 

( 6 ,  [.,.I,) to the Krein space (5, [. , . I 5 ) .  Suppose that the subspaces D(V) 

and R(V) are uniformly decomposable in 8 and 5, respectively. Furthermore, 

assume that the inner product space ( ( V ) , .  , . I  ) has a unique 

decomposition majorant. Then V is a unitary operator from 6 to 5. 

Proof. Let D(V)=D++D- be uniform fundamental decompositiorl of 

(D(V), [. ,. I @ ) .  It is easy to see that R(V) = V(D+) +V(D-) is a fundamental 

decomposition of ( R(V), [. , . 15 ). Since R(V) has a unique decomposition 

majorant and is uniformly decomposable, this decomposition is uniform. It 

follows from [An] Chapter 1, that this uniform decomposition, as well as the 

uniform decomposition D(V)=D++D-, can be extended to the fundamental 

decompositions of 5 and 8, respectively. Denote the corresponding fundamental 

symmetries by Jg and J,. Then J 8 V = V J B  on D(V) and this implies the 

boundedness of V. This completes the proof. 

Now notice that Proposition 7.4 and the fact oo&c,(~-') imply that 

D[J@-'1 = D(Uo) satisfies the assumptions in Proposition 7.5. Analogously, 

Proposition 7.4, Lemma 7.3 and the fact that oo@c,(A-') imply that 

D[J~A-'] = P(U,) satisfies the assumptions in Proposition 7.5. Thus, 

Proposition 7.5 applied to the weak isomorphism U, from 6 to 5 yields the 

last conclusion of the proof of Theorem 7.1. 

In [ACC] it is shown that, if HcL(8 )  and the form [(I-H'H).,.] has K 

negative squares, then the form [(I-HH').,.] also has K negative squares. 

This can be used in the last of the following simple consequences of Theorem 

7.1. Let A = (8 ,5 ,@;T,  F,G, H) and A' = (8',5',@';T',F',G1, H') be two unitary 

colligations. 

( i )  Assume that 5 = 5', 8 = @', and A and A' are weakly isomorphic. If the 

operators I-T'T and I-T"T' have property P, (for possibly different K's), 

then A and A' are isomorphic (and all K'S are equal). 

( i i)  Assume that R=R',  and A and A' coincide weakly. If the operators 

I-H'H, I-HH', I-H"H' and I-H'H" have property P, (for possibly different 

K's), then A and A' coincide (and all K'S are equal). 
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