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An unexpected limit of expected values
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Abstract
Let t �0. Select numbers randomly from the interval [0, 1] until the sum is greater than t.

Let �(t) be the expected number of selections. We prove that �(t) = et for 0� t �1. Moreover,
limt→+∞ (�(t) − 2t) = 2

3 . This limit is a special case of our asymptotic results for solutions of the
delay differential equation f ′(t) = f (t) − f (t − 1) for t > 1. We also consider four other solutions
of this equation that are related to the above selection process.
� 2006 Elsevier GmbH. All rights reserved.
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1. Introduction

Consider the following question: Select numbers randomly from the interval I = [0, 1]
until the sum is greater than 1. What is the expected number of selections?

The unexpected expected value is e.
This question appeared as a Putnam examination problem in 1958 [1, Part I, Problem

3]. It has attracted considerable attention, so that solutions appear in [1–5]. The question
is also mentioned by John Derbyshire [6, p. 366]. We first learned about this question in a
talk given by Erol Peköz [7].
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Fig. 1. �(t) and 2t + 2
3 .

In this article we consider a more general question: Let t �0. Select numbers randomly
from the interval I until the sum is greater than t. What is the expected number �(t) of
selections?

That more general question can be answered using a formula derived by James Uspensky
[8, Example 3, p. 278]. Also, see [5]. Uspensky attributes that formula to Laplace. We use
a different method. It turns out that �(t) = et for 0� t �1. The answer for t > 1 is more
complicated. In this article we investigate the function �.

It turns out that � satisfies a delay differential equation

f ′(t) = f (t) − f (t − 1), t > 1.

This leads to an explicit formula for �. Surprisingly, the formula for � does not reveal its
asymptotic behavior. Since the average value of a selection from I is 1

2 , one might reasonably
guess that �(t) is approximately 2t for large values of t. But is this guess correct? The graph
of � in Fig. 1 and its values in Table 1 strongly suggest that, in fact,

lim
t→+∞ (�(t) − 2t) = 2

3
. (1.1)

In addition to�we study the function�, where�(t) is the expected value of the last selected
number. We thought that �(t) → 1

2 as t → +∞. Then we discovered the following relation
between � and �:

�(t) = t + 1 − �(t)

2
for t �0. (1.2)
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Table 1
Exact and approximate values of �

n �(n) Approximate values

1 e 2.71828183

2 e2 − e 4.67077427

3 1
2

(
2e3 − 4e2 + e

)
6.66656564

4 1
6

(
6e4 − 18e3 + 12e2 − e

)
8.66660449

5 1
24

(
24e5 − 96e4 + 108e3 − 32e2 + e

)
10.66666207

6 1
120

(
120 e6 − 600 e5 + 960 e4 − 540 e3 + 80 e2 − e

)
12.66666714

From (1.1) and (1.2),

lim
t→+∞ �(t) = 2

3
,

which is the unexpected limit in the title of this article. Notice that the value �(1)=2−e/2 ≈
0.641 is surprisingly close to 2

3 .
Our proofs of asymptotic properties of � and � are based on the fact that they belong to a

class of functions which we call delay functions; see Definition 4.1. Sections 4–7 discuss the
existence, uniqueness, asymptotic behavior, and oscillations of delay functions. In Sections
8 and 9 we prove that � and � are delay functions. As a consequence, we obtain the results
about � and � stated above. In Section 10, we briefly discuss three more delay functions
related to the process under consideration. We conclude the article with a heuristic argument
for the asymptotic behavior of all five delay functions.

Apparently, asymptotic properties of � have not been considered in the literature, and �
has not been studied at all.

An even more general question is as follows: let a > 0. Select numbers randomly from the
interval [0, a] until the sum is greater than t.What is the expected number �a(t) of selections?
This question can easily be reduced to the second question above: �a(t) = �(t/a).

This paragraph concerns the book [9] by Diekmann et al. It gives a general treatment of
delay differential equations, using methods of functional analysis. In particular see Exercise
3.15 and Example 5.13, both in Chapter IV. The formula at the top of page 109 can be used
to derive the linear function 2t + 2

3 which appears in (1.1).
Sections 2–7 in this article use undergraduate mathematics only. In Sections 8 and 9 we

integrate on the Hilbert cube.
We use R for the set of all real numbers and N for the set of all positive integers. As

mentioned above, I stands for the closed interval [0, 1]. In this article we deal only with
real numbers.
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2. A partial solution

We first prove that �(1) = e. Let n ∈ N. Let Rn be n-dimensional Euclidean space.
Consider two subsets of Rn:

Cn = {
(x1, . . . , xn) ∈ In : x1 + · · · + xn �1

}
,

Dn = {
(y1, . . . , yn) ∈ In : y1 � · · · �yn

}
.

Let

p0 := 1 and pn := Vol (Cn), n ∈ N.

That is, pn is the n-dimensional volume of Cn. Notice that pn is the probability that the sum
of n randomly selected numbers from I does not exceed 1.

To evaluate pn, define Ln : Rn → Rn to be the linear transformation given by

Ln (x1, . . . , xn) = (x1, x1 + x2, . . . , x1 + x2 + · · · + xn) .

The determinant of its matrix is 1 and Ln(Cn)=Dn. Therefore the volumes of Cn and Dn are
equal. From any given set of n distinct numbers in I, we can form n! distinct n-tuples, only
one of which is in increasing order. Therefore, the volume of Dn is 1/n!. Thus, pn = 1/n!
for all n ∈ N.

Since {pn} is a nonincreasing sequence that converges to 0, the definition of expected
value gives

�(1) =
+∞∑
n=1

n (pn−1 − pn) . (2.1)

Notice that if {vn} is a sequence of numbers and k ∈ N, then

k∑
n=1

n (vn−1 − vn) =
(

k−1∑
n=0

vn

)
− kvk . (2.2)

By (2.1), (2.2) and the fact that kpk → 0 as k → +∞,

�(1) =
+∞∑
n=0

1

n! = e.

To determine �(t) in general, for n ∈ N and t �0, we define the sets

Cn,t = {
(x1, . . . , xn) ∈ In : x1 + · · · + xn � t

}
(2.3)

and let

pn,t := Vol (Cn,t ) for n ∈ N (2.4)

and

p0,t := 1.
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Notice that pn,t is the probability that the sum of n randomly selected numbers from I does
not exceed t. Clearly pn,t is nonincreasing in n and nondecreasing in t.

Let n ∈ N, t > 0, and let Mn,t : Rn → Rn be the linear transformation of scalar
multiplication by t. Then

Mn,t (Cn) =
⎧⎨
⎩(x1, . . . , xn) ∈ [0, t]n :

n∑
j=1

xj � t

⎫⎬
⎭ .

Since the determinant of Mn,t is tn, we conclude that

Vol
(
Mn,t (Cn)

)= tnpn = tn/n!.
If 0 < t �1, then Mn,t (Cn) ⊂ In, and therefore Mn,t (Cn) = Cn,t . Consequently,

pn,t = tn

n! for 0 < t �1, n ∈ N. (2.5)

For t > 1 we have Cn,t ⊂ Mn,t (Cn) and therefore

pn,t <
tn

n! for 1 < t, n ∈ N. (2.6)

Since
∑+∞

n=0 tn/n! = et , we have

+∞∑
n=0

pn,t = et for 0 < t �1,

+∞∑
n=0

pn,t < et for t > 1.

The value of �(t) for t > 0 is now calculated using (2.2) in the same way as before,

�(t) =
+∞∑
n=1

n
(
pn−1,t − pn,t

)=
+∞∑
n=0

pn,t .

Thus,

�(t) = et for t ∈ I,

�(t) < et for t > 1. (2.7)

It is clear from Definition (2.4) that the functions t 	→ pn,t are continuous for each
n ∈ N. Inequalities (2.5), (2.6), and the Weierstrass M-test, imply that � is continuous on
[0, t] for each t > 0. Thus � is continuous on [0, +∞).

3. The delay differential equation

For t > 1, calculating pn,t is complicated. Therefore, we derive a differential equation for
�(t) to evaluate it. On average, it will take �(t) selections to reach t > 0. Given that the first
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selection is u ∈ I, the expected number of additional selections to exceed t > 1 is �(t − u).
It is plausible to surmise that �(t) equals 1 plus the average of �(t − u) as u varies over I.
That is,

�(t) = 1 +
∫ 1

0
�(t − u) du for t > 1. (3.1)

A rigorous derivation of this equation is given in Section 8. Eq. (3.1) can be rewritten as

�(t) = 1 +
∫ t

t−1
�(s) ds for t > 1. (3.2)

Since � is continuous on [0, +∞), (3.2) implies that � is differentiable on (1, +∞). There-
fore, to find � we have to solve the equation

�′(t) = �(t) − �(t − 1) for t > 1 (3.3)

with �(t) = et for t ∈ I. Eq. (3.3) is an example of a delay differential equation. It can be
used to find an explicit recursive formula for �. Multiplying by the integrating factor e−t ,
we find that Eq. (3.3) is equivalent to

d

dt

(
e−t�(t)

)= −e−t�(t − 1) for t > 1. (3.4)

Starting with

�(t) = et , t ∈ [0, 1],
Eq. (3.4) simplifies to (d/dt)

(
e−t�(t)

)= −1/e on (1, 2]. Hence,

�(t) = et

(
1 +

(
1 − t

e

))
, t ∈ [1, 2]. (3.5)

Proceeding successively on intervals [2, 3] and [3, 4] we find that the continuous solution
of (3.4) is

�(t) = et

(
1 +

(
1 − t

e

)
+ 1

2

(
2 − t

e

)2
)

, t ∈ [2, 3],

and

�(t) = et

(
1 +

(
1 − t

e

)
+ 1

2

(
2 − t

e

)2

+ 1

6

(
3 − t

e

)3
)

, t ∈ [3, 4].

The pattern is now clear; for t �0 we define

A(t) :=

t�∑
k=0

1

k!
(

k − t

e

)k

.
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Fig. 2. �(t) − (2t + 2
3 ).

Here 
t� denotes the largest integer which does not exceed t. It is easy to show that A is
continuous on [0, +∞) and A(t)=1 for t ∈ I. Differentiation of A for t > 1 and t /∈ N gives

A′(t) = − 1

e


t�∑
k=1

1

(k − 1)!
(

k − t

e

)k−1

= − 1

e


t−1�∑
j=0

1

j !
(

j − (t − 1)

e

)j

= − 1

e
A(t − 1).

This formula and the continuity of A imply that A is differentiable on (1, +∞). Notice that
A is not differentiable at 1. For t > 1 we now have

d

dt

(
etA(t)

)= etA(t) + etA′(t) = etA(t) − et−1A(t − 1).

Thus, the function t 	→ etA(t), t �0, satisfies (2.7) and (3.3). Assuming uniqueness, which
is dealt with in Theorem 5.2,

�(t) = etA(t).

However, this formula does not even suggest anything about the asymptotic behavior
of �. But, the asymptotic behavior of � given in the Introduction is strongly suggested by
the graph in Fig. 1 and the approximate values in Table 1. Furthermore, Figs. 1 and 2 and
Table 1 suggest that the function �(t) oscillates about the line 2t+ 2

3 . We consider oscillations
in Section 7. Table 1 also appears in [5].
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The reasoning used to derive (3.3) can also be used on the interval (0, 1) to obtain an
alternative argument for (2.7). Although this reasoning is not rigorous, we find it useful for
understanding �. To make it rigorous one would use the method of Sections 8 and 9.

Let 0 < t < 1. The first selection exceeds t with probability 1 − t and the first selection
does not exceed t with probability t. Given that the first selection u belongs to [0, t], the
expected number of additional selections to exceed t is �(t − u). Thus, the average number
of selections for which the first selected number belongs to [0, t] is

1 + 1

t

∫ t

0
�(t − u) du = 1 + 1

t

∫ t

0
�(s) ds.

Therefore it is plausible that

�(t) = (1 − t) 1 + t

(
1 + 1

t

∫ t

0
�(s) ds

)
= 1 +

∫ t

0
�(s) ds, 0 < t < 1.

Consequently, �′(t) = �(t) for 0 < t < 1. In Section 2 we proved that � is continuous. Since
by definition �(0) = 1, we obtain �(t) = et for t ∈ [0, 1).

4. Delay functions

The delay differential equation (3.3) is the motivation for the following definition.

Definition 4.1. A function f defined on [0, +∞) will be called a delay function if:

(i) f is continuous on [0, +∞),
(ii) f is differentiable on (1, +∞),

(iii) f ′(t) = f (t) − f (t − 1) for all t > 1.

The following proposition is easy to prove.

Proposition 4.2. A linear combination of delay functions is a delay function. If f is a
delay function and c > 0, then the function g(t) = f (t + c), t �0, is a delay function.

Theorem 4.3. Let f be a continuous function on [0, +∞). Set

a = f (1) −
∫ 1

0
f (s) ds and b =

∫ 1

0
sf (s) ds.

The following four statements are equivalent:

(a) at + (b − a) = ∫ 1
0 (1 − u)f (t − u) du for t �1.

(b) f (t) = a + ∫ 1
0 f (t − u) du for t �1.

(c) f (t) = at + b + ∫ 1
0 uf (t − u) du for t �1.

(d) f is a delay function.
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Proof. First, we set the notation for the functions that appear in the first three statements.
For t �1 we put

�(t) =
∫ 1

0
(1 − u)f (t − u) du,

�(t) = f (t) −
∫ 1

0
f (t − u) du,

�(t) = f (t) −
∫ 1

0
uf (t − u) du. (4.1)

A straightforward calculation gives

�(1) = b, �(1) = a, �(1) = a + b.

The change of variable t − u = s in (4.1) yields

�(t) =
∫ t

t−1
(1 + s − t)f (s) ds for t �1.

Then, for t > 1,

�′(t) = (1 + t − t)f (t) − (1 + t − 1 − t)f (t − 1) +
∫ t

t−1
(−1)f (s) ds

= f (t) −
∫ t

t−1
f (s) ds

= f (t) −
∫ 1

0
f (t − u) du.

Thus,

�′ = � and � − � = �,

the second equation being a straightforward consequence of the definitions.
We proceed by proving the following equivalences:

(a) ⇔ (b), (b) ⇔ (c), and (b) ⇔ (d).

Assume (a). Then a = �′ = �. Hence (b) holds.
Assume (b). Then (a) follows from �′ = � and �(1) = b.
Now assume (c): �(t) = at + b. Then �(t) = at + b − �(t). Differentiating, we get

�′ = a − �′ = a − �. Also, �(1) = a. Therefore � = a. This proves (b).
Assume (b) again. This implies (a). Therefore �(t)=�(t)+�(t)=at+(b−a)+a=at+b.

This proves (c).
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Now assume (d). The equation in Definition 4.1(iii) implies that f ′ is continuous on
(1, +∞) and the one-sided limit at 1 exists. Therefore for t > 1 we calculate:

f (t) = f (1) +
∫ t

1
f ′(s) ds

= f (1) +
∫ t

1
f (s) ds −

∫ t

1
f (s − 1) ds

= f (1) +
∫ t

1
f (s) ds −

∫ t−1

0
f (s) ds

= f (1) −
∫ 1

0
f (s) ds +

∫ t

t−1
f (s) ds

= a +
∫ 1

0
f (t − u) du.

This proves (b).
To finish the proof assume (b) again. A change of variable in (b) leads to

f (t) = a +
∫ t

t−1
f (s) ds for t �1.

Since f is continuous, it follows that f is differentiable on (1, +∞). The differentiation yields
(iii) in Definition 4.1. Thus f is a delay function. �

Definition 4.4. By F(a, b) we denote the set of all delay functions f which satisfy the
equivalent conditions of Theorem 4.3.

A straightforward calculation proves the following lemma.

Lemma 4.5. Any linear function �(t) = mt + k is in F(a, b), where a = m/2 and b =
k/2 + m/3.

The most importation example of a delay function in this article is the function �. We
proved that � is continuous on [0, +∞) in Section 2. The proof that � is a delay function
will be completed in Section 8 with the rigorous proof of (3.3). Then, using (2.7), one easily
verifies that � ∈ F(1, 1).

We close this section with a lemma which combines the three equations of Theorem 4.3
in a single statement about linear functions. For convenience, we change the interval of
integration from [0, 1] to [t − 1, t].

Lemma 4.6. Let f be a delay function in F(a, b) and let � be a linear function, with
�(t) = mt + k. If t �1, then

∫ t

t−1
�(s)f (s) ds = �(t − 1)f (t) + (mb − ka) .
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Proof. Let t �1 and f ∈ F(a, b). By Theorem 4.3,

∫ t

t−1
�(s)f (s) ds =

∫ 1

0
�(t − u)f (t − u) du

=
∫ 1

0
(mt − mu + k) f (t − u) du

= (mt + k)

∫ 1

0
f (t − u) du − m

∫ 1

0
uf (t − u) du

= (mt + k) (f (t) − a) − m (f (t) − (at + b))

= (m(t − 1) + k) f (t) + (mb − ka)

= �(t − 1)f (t) + (mb − ka) . �

5. Existence and uniqueness of delay functions

Lemma 5.1. Let f be a delay function and let c�1. If f = 0 on [c − 1, c], then f = 0 on
[0, +∞).

Proof. Assume that c�1 and f = 0 on [c − 1, c]. By Definition 4.1(iii)

f ′ = f on (c, c + 1].

Since f (c) = 0, this implies that f (t) = 0 for all c < t �c + 1. By induction, f (t) = 0 for
all t �c − 1.

Let d �c be an integer. Since f (t)=f ′(t)=0 for t > d −1, (iii) in Definition 4.1 implies

0 = 0 − f (t − 1) for d − 1 < t < d.

Thus, f (t)=0 for d−2 < t < d−1. By induction we conclude that f (t)=0 for 0 < t < c−1.
Since f is continuous, this proves the lemma. �

Theorem 5.2. If � is a continuous function on I, then there exists a unique delay function
f such that f = � on I.

Proof. Existence can be proved using an inductive argument starting with � and proceeding
as we did for � using (3.4).

For uniqueness, let f and g be delay functions such that f (t) = g(t) = �(t) for all t ∈ I.
Then h= f − g is a delay function such that h(t)= 0 for all t ∈ I. By Lemma 5.1, h(t)= 0
for all t �0. Thus f = g. �
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6. Asymptotic properties of delay functions

Lemma 6.1. Let w be a nonnegative continuous function on I such that
∫ 1

0 w(u) du = 1.
Let g be a continuous function on [0, +∞) such that

g(t) =
∫ 1

0
w(u)g(t − u) du for t �1. (6.1)

Let

m = min
s∈I

g(s) and M = max
s∈I

g(s).

Then m�g(t)�M for t �0.

Proof. We prove g(t)�M for t �0 by contradiction. Suppose g(t1) > M for some t1 > 1.
Set

t0 := min {t ∈ [0, +∞) : g(t) = g(t1)} .

Clearly t0 > 1 and

g(t) < g(t0) for 0� t < t0.

By (6.1) we have

g(t0) =
∫ 1

0
w(u)g(t0 − u) du <

∫ 1

0
w(u)g(t0) du = g(t0)

∫ 1

0
w(u) du = g(t0),

which is a contradiction. The proof of g(t)�m for t �0 is analogous. �

Lemma 6.2. Suppose that f ∈ F(0, 0). Set

m = min
{
esf (s) : s ∈ I

}
and M = max

{
esf (s) : s ∈ I

}
.

Then

me−t �f (t)�M e−t for t �0.

Proof. By Theorem 4.3(c) for t �1 we have

f (t) =
∫ 1

0
uf (t − u) du.

Define g(t) = etf (t), t �0. Then

g(t) = et

∫ 1

0
ue−(t−u)g(t − u) du =

∫ 1

0
ueug(t − u) du for t �1.

Since
∫ 1

0 ueu du = 1, Lemma 6.1 implies that

m�g(t)�M for t �0.

This proves the lemma. �
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Theorem 6.3. If f ∈ F(a, b), then

lim
t→+∞ (f (t) − 2at) = 2b − 4

3
a.

Proof. Set g(t) = 2at − 2b + 4a/3. By Lemma 4.5, g ∈ F(a, b). Set h = f − g. The
linearity property of integration yields that h ∈ F(0, 0). The theorem now follows since
h(t) → 0 as t → +∞ by Lemma 6.2. �

Proposition 6.4. Let f ∈ F(a, b). Then f is bounded if and only if a = 0. A bounded delay
function reaches its minimum and its maximum on I.

Proof. The first claim is an immediate consequence of Theorem 6.3. The second claim
follows from Lemma 6.1 since, by Theorem 4.3(b),

f (t) =
∫ 1

0
f (t − u) du for t �1. �

7. Oscillations of delay functions

Definition 7.1. Let f be a real function defined on an open interval J. We say that f
changes sign at least once in J if it takes on both positive and negative values. We say that
f changes sign at least twice in J if there exist t1, t2, t3 ∈ J such that

t1 < t2 < t3

and the numbers

f (t1), f (t2), f (t3)

are nonzero and alternate in sign.

Lemma 7.2. Let f be a nonzero function in F(0, 0). For each c�1, f changes sign at least
twice in (c − 1, c).

Proof. Let c�1. Set

A = {x ∈ [c − 1, c] : f (x) < 0} and B = {x ∈ [c − 1, c] : f (x) > 0} .

If � is linear, then by Lemma 4.6,∫ c

c−1
�(s)f (s) ds = �(c − 1)f (c).

First, let �(t) = t − (c − 1). Then � > 0 on (c − 1, c), and∫ c

c−1
�(s)f (s) ds = 0.
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Hence, f changes sign at least once in (c − 1, c). That is, A and B are nonempty (and clearly
disjoint).

Second, assume that f does not change sign at least twice in (c − 1, c). Then there exists
d ∈ (c − 1, c) such that d separates A and B. We assume that A is to the left of d. If not,
consider −f . Let �(t) = t − d . Then �f �0 on [c − 1, c] and∫ c

c−1
�(s)f (s) ds = �(c − 1)f (c) = (c − 1 − d)f (c)�0.

Thus �f = 0 on [c − 1, c] and that is a contradiction. �

Theorem 7.3. Let f be a nonlinear function inF(a, b). For each c�1, the nonzero function

t 	→ f (t) −
(

2at + 2b − 4

3
a

)
(7.1)

changes sign at least twice in (c − 1, c).

Proof. The linearity of integration and Lemma 4.5 imply that the function in (7.1) is a
nonlinear function in F(0, 0). Now the theorem follows from Lemma 7.2. �

8. The function �

The function � is defined in the Introduction. For t �0, we considered a process of
selecting numbers randomly from the interval I until the sum is greater than t and defined �(t)

to be the expected number of selections. Instead, in the rest of this article we assume that the
selection process goes on forever. The associated sequence of partial sums is nondecreasing.
The mathematical framework for this is provided by the probability space IN, which consists
of all sequences in I. This is the Hilbert cube.

The following definition is analogous to (2.3). For n ∈ N and t �0 we put

Bn,t =
{
x ∈ IN : x1 + · · · + xn � t

}
= Cn,t × IN

and

B0,t = IN.

Clearly Bn,t is closed and its measure in IN is equal to Vol(Cn,t ). Let B ⊂ IN be the set of
all sequences in I for which the corresponding series converges. That is,

B =
+∞⋃
k=1

+∞⋂
n=1

Bn,k .

By (2.5) and (2.6), the measure of B in IN is 0.

Theorem 8.1. The function � is a delay function in F(1, 1) and

lim
t→+∞ (�(t) − 2t) = 2

3
. (8.1)
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Proof. Let t �0. Define the random variable Ft : IN → N ∪ {+∞} by

Ft(x) := min {n ∈ N : x1 + · · · + xn > t} .

Here we adopt the convention that min ∅ = +∞. Since B has measure 0 and

F−1
t ({+∞}) =

+∞⋂
n=1

Bn,t ⊂ B,

Ft is finite almost everywhere on IN. For n ∈ N we have

F−1
t ({n}) = Bn−1,t\Bn,t .

Therefore, Ft : IN → N ∪ {+∞} is a Borel function. By definition, � is the expected value
of Ft :

�(t) =
∫

IN
Ft(x) dx.

The following property of Ft , which is the key to the proof that � is a delay function, is
an immediate consequence of its definition. If t �1 and

x = (x1, x2, x3, . . .) = (u, v1, v2, . . .) = (u; v) ∈ IN, (8.2)

then 2�Ft(x)� + ∞ and

Ft(x) = Ft(u; v) = 1 + Ft−u(v). (8.3)

Using Fubini’s Theorem [10, Theorem 4.19] first, and than (8.3), we get

�(t) =
∫

IN
Ft(x) dx

=
∫ 1

0

(∫
IN

Ft(u; v) dv

)
du

=
∫ 1

0

(
1 +

∫
IN

Ft−u(v) dv

)
du

= 1 +
∫ 1

0
�(t − u) du.

Hence, (3.1) is proved. Since in Section 2 we proved that � is continuous, by
Theorem 4.3, � is a delay function. Moreover, � ∈ F(1, 1), as is easily verified using
the fact that �(t) = et on I, which is proved in Section 2. Finally, equality (8.1) is a conse-
quence of Theorem 6.3. �

The asymptotic behavior of � suggested in Table 1 and Fig. 1 is now proved. To explain
the oscillations, let g(t)= 2t + 2

3 and recall Theorem 7.3. Then for c�1 the function f −g

changes sign at least twice in the interval (c − 1, c), as suggested by Table 1 and Figs. 1
and 2.
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9. The function �

The function � is defined in the Introduction. Here, �(t) is the expected value of the first
selection for which the partial sum exceeds t.

Theorem 9.1. The function � is a delay function in F
(
0, 1

3

)
. Moreover,

�(t) = t + 1 − �(t)

2
for t �0 (9.1)

and

lim
t→+∞ �(t) = 2

3
. (9.2)

Proof. Let t �0. Define the random variable Gt : IN\B → I by

Gt(x) := x
Ft (x)

, x ∈ IN\B.

Since B is of measure 0, Gt is defined almost everywhere on IN. In other words, Gt(x) is
the first selected number for which the corresponding partial sum exceeds t. Equivalently,

Gt(x) = xn if and only if x ∈ Bn−1,t\
(
Bn,t ∪ B

)
.

Hence, the restriction of Gt to each Borel set Bn−1,t\
(
Bn,t ∪ B

)
, n ∈ N, is a continuous

function. Since the union of these Borel sets coincides with the domain of Gt , it follows
that Gt is a Borel function. By definition, �(t) is the expected value of Gt :

�(t) =
∫

IN
Gt(x) dx.

Let x ∈ IN\B. Then Ft(x) ∈ N and Gt(x) ∈ I. Let, in addition, 0�s < t and compare
|Gt(x) − Gs(x)| with Ft(x) − Fs(x). Clearly, |Gt(x) − Gs(x)| �1 and Ft(x) − Fs(x) ∈
N ∪ {0}. Since by definition Ft(x) − Fs(x) = 0 implies Gt(x) = Gs(x), we conclude that

|Gt(x) − Gs(x)| �Ft(x) − Fs(x).

Therefore,

|�(t) − �(s)| =
∣∣∣∣
∫

IN
Gt(x) dx −

∫
IN

Gs(x) dx

∣∣∣∣
�
∫

IN
|Gt(x) − Gs(x)| dx

�
∫

IN
(Ft (x) − Fs(x)) dx

= �(t) − �(s).

Since � is continuous, the last inequality implies that � is continuous as well.
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The following property of Gt , which is the key to the rest of the proof that � is a delay
function, is a consequence of the definitions of Ft and Gt . For t �0 and x given by (8.2) we
have

Gt(x) = Gt(u; v) =
{

u for 0� t < u,

Gt−u(v) for u� t.
(9.3)

We first consider � on I. For 0 < t < 1, Fubini’s theorem and (9.3) imply that

�(t) =
∫ 1

0

(∫
IN

Gt(u; v) dv

)
du

=
∫ t

0

(∫
IN

Gt−u(v) dv

)
du +

∫ 1

t

u du

=
∫ t

0
�(t − u) du + 1

2
− t2

2

=
∫ t

0
�(s) ds + 1

2
− t2

2
.

Since � is continuous, differentiating the last equality leads to

�′(t) = �(t) − t for 0 < t < 1.

In addition, by definition of � we have �(0) = 1
2 . Therefore

�(t) = t + 1 − et/2 for t ∈ I.

A straightforward calculation yields

�(1) −
∫ 1

0
�(s) ds = 0 and

∫ 1

0
s�(s) ds = 1

3
. (9.4)

For t > 1, applying again Fubini’s theorem and (9.3) we find

�(t) =
∫ 1

0

(∫
IN

Gt−u(v) dv

)
du =

∫ 1

0
�(t − u) du.

Thus, by Theorem 4.3, � is a delay function and � ∈ F
(
0, 1

3

)
by (9.4).

As a linear combination of delay functions, the function

g(t) = t + 1 − �(t)/2, t �0,

is a delay function by Proposition 4.2 and Lemma 4.5. Since � and g coincide on I,
Theorem 5.2 implies (9.1). Equality (9.2) is a consequence of Theorem 8.1. �

Theorem 7.3 implies that for each c�1 the function � − 2
3 changes sign at least twice in

the interval (c − 1, c).
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Fig. 3. The function �.

By Proposition 6.4 the function � reaches its maximum and its minimum on I; see
Fig. 3. It is easy to check that

min � = �(0) = 1
2 ,

max � = � (ln 2) = ln 2.

10. Three other delay functions

1. For t �0, let �(t) be the expected value of the first partial sum that exceeds t. The
method used in Sections 8 and 9 could be used here, but we shall give a different treatment.

Recall that pn,t is the probability that the nth partial sum does not exceed t. Hence, pn,t

is the contribution to �(t) of the nth selection. Therefore,

�(t) =
+∞∑
n=0

pn,t .

This formula was derived in Section 2 in a different way. Since the expected value of the
nth selection is 1

2 ,

�(t) =
+∞∑
n=0

1

2
· pn,t = 1

2
�(t).

Thus, � is a delay function, � ∈ F
( 1

2 , 1
2

)
and

lim
t→+∞ (�(t) − t) = 1

3
.

2. For t �0, let 	(t) be the expected value of the last partial sum that does not exceed t.
We set 	(0) = 0. Clearly

	 + � = �.
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Thus 	 is a delay function and

	(t) = �(t) − (t + 1), 	 ∈ F
( 1

2 , 1
6

)
, lim

t→+∞ (	(t) − t) = −1

3
.

3. For t �0, let 
(t) be the expected number of partial sums in the interval (t, t + 1]. In
particular 
(0) = e − 1. Clearly,


(t) = �(t + 1) − �(t).

By Proposition 4.2, 
 is a delay function. If t ∈ I, then by (2.7) and (3.5) we have


(t) = et+1 + et (−t) − et = (e − 1 − t)et .

A simple computation shows that


 ∈ F(0, 1) and lim
t→+∞ 
(t) = 2.

Notice that 
(t) = �′(t + 1) if t > 0.

11. A heuristic argument

Here it is convenient to write f (t) ≈ g(t) to mean that

lim
t→+∞ (f (t) − g(t)) = 0.

After proving that

�(t) ≈ 2t + 2
3 ,

we looked for a heuristic argument for that result and this is what we found.
The expected value of any selection is 1

2 . It is plausible that


(t) ≈ 2.

The following statement is well known and easy to prove: For the random selection of
two numbers from I, the expected value of the minimum is 1

3 and the expected value of the
maximum is 2

3 .
This statement suggests, but does not imply, that

�(t) ≈ t + 1
3 and 	(t) ≈ (t − 1) + 2

3 = t − 1
3 .

Since � = � − 	, we have

�(t) ≈ 2
3 .

It is also plausible that �(t) ≈ 2�(t). If so,

�(t) ≈ 2t + 2
3 .
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