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Let S be a finite set in a real linear space and let JS be a family consisting of |S| intervals in R. In
this paper we deal with a convex operator co(S,JS) called the convex interval hull. This operator
generalizes the familiar concepts of the convex hull, conv(S), and the affine hull, aff(S), of S.
The set co(S,JS) is a convex subset of the linear space and can be either bounded or unbounded,
depending on the families JS . In this paper we apply co(S,JS) to obtain unbounded images of
a finite set S. As special images of co(S,JS) for finite S we obtain such unbounded objects as:
hyperplanes, cylinders, cones, penumbras and wedges. We also apply co(S,JS) to study some
properties of extreme points. In relation to co(S,JS) we introduce the so-called extreme interval
operator Eco(S) and prove some analogues of the celebrated Minkowski-Krein-Milman’s theorem.
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1. Introduction

In this note L denotes a real linear space. Let S = {x1, . . . , xm} ⊂ L be a finite set
of distinct points in L. By S î we denote the set S \{xi}. If A is a family of sets in L,
then by

∩
A and

∪
A we denote the intersection and the union, respectively, of all

elements of A. For α ∈ R by αA we denote the family of sets αA = {αx : x ∈ A},
where A ∈ A. For subsets K and M of L and real numbers α and β we put

αK ± βM = {αx± βy : x ∈ K, y ∈ M}.

For this type of operations on sets and many more much general ones we refer the
reader to [6].
In the (ordinary) convexity theory and also in any of its generalizations the concept
of a convex hull operator plays a central role. One is aware that convexity in a
linear space is defined in terms of an algebraic structure. Hence, it is natural that
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag
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the convex hull operator also has some algebraic structure. It is not a surprise that
also any change in the algebraic requirements in the definition of the convex hull
results in some generalizations. We show here that one such change results in a
generalization which gives an unified approach to several known concepts.
The very classical convex sets associated with the finite set S are the convex hull of
S and the affine hull of S defined by

conv(S) =

{
m∑
j=1

αj xj : xj ∈ S, αj ≥ 0,
m∑
j=1

αj = 1

}

and aff(S) =

{
m∑
j=1

αj xj : xj ∈ S, αj ∈ R,
m∑
j=1

αj = 1

}
(1)

respectively. The operators S 7→ conv(S) and S 7→ aff(S) belong to the class of
relatively recently introduced operator S 7→ co(S,JS) defined in [3] by the following
definition.

Definition 1.1. Let S = {x1, . . . , xm} be a finite set of distinct points in a linear
space L and let JS = {I1, . . . , Im}, Ij ⊂ R, j = 1, . . . ,m, be a family of nonempty
intervals (some of which can be degenerated to a singleton). By co(S,JS) we denote
the set defined by

co(S,JS) :=

{
m∑
j=1

αj xj : xj ∈ S, αj ∈ Ij,
m∑
j=1

αj = 1

}
. (2)

The set co(S,JS) is called the convex interval hull of S.
Obviously, for JS = {I1, . . . , Im} with Ij = [0, tj], where tj ≥ 1, j = 1, . . . ,m, we
have co(S,JS) = conv(S) and for JS = {I1, . . . , Im} with Ij = R, j = 1, . . . ,m, we
have co(S,JS) = aff(S).
Notice that one could go even further and instead of (2) define for any real number
t the set co(S,JS, t) as follows

co(S,JS, t) :=

{
m∑
j=1

αj xj : xj ∈ S, αj ∈ Ij,

m∑
j=1

αj = t

}
.

The latter definition, however, is only slightly more general than the previous one,
because in all cases but t = 0 the set co(S,JS, t) can be expressed by means of
co(S,JS).

Proposition 1.2. Let t be a nonzero real number. Then

co(S,JS, t) = co
(
t S, (1/t)JS

)
.

The notion co(S,JS, 0) is still of some interest, particularly when every interval in
JS is R. It can be easily checked that in this case co(S,JS, 0) represents the linear
subspace L parallel to aff(S). On several occasions it will be convenient to use this
special set in our note, for instance in Theorems 2.3 and 2.10.
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We have already mentioned two unbounded convex interval hulls assigned to a finite
set in L, namely co(S,JS) and co(S,JS, 0), both when every interval in JS is the
entire real line. In Section 2 we explore possibilities of obtaining unbounded sets
further. We show that cones, halfspaces, cylinders, wedges, penumbras and some
other sets can be obtained as images of finite sets in a linear space by the convex
interval hull. In addition to the operator S 7→ co(S,JS) we will also consider the
operator S 7→ Eco(S) that assigns to S its extreme points with respect to the convex
interval hull co(S,JS). In Section 3 we examine relationships between extreme points
(defined with respect to the operator conv) and extreme points with respect to the
operator co(S,JS). We also obtain Minkowski-Krein-Milman – type theorems.

2. Unbounded images of convex interval hulls

Since our primary interest in this paper is to study the cases which lead to unbounded
sets co(S,JS), it is convenient to recall the following theorem from [3, Theorem 3.4].

Theorem 2.1. Let S = {x1, . . . , xm} be a finite set of distinct points in a linear
space L and let JS = {I1, . . . , Im}, Ij ⊆ R, j = 1, . . . ,m, be a family of nonempty
intervals. The set co(S,JS) is bounded if and only if at least one of the conditions
below is satisfied.
(1) All the intervals in JS are bounded below.
(2) All the intervals in JS are bounded above.
(3) At most one interval in JS is unbounded.
If any of the conditions (1)–(3) is satisfied, then there exists a family of bounded
intervals J ′

S such that co(S,JS) = co(S,J ′
S).

Let A be a set and let x0 be a point in L. By cone(x0, A) we denote the cone with
vertex x0 and directrix conv(A) which is the convex set defined by

cone(x0, A) =
{
(1− t)x0 + tv : v ∈ conv(A), t ≥ 0

}
. (3)

If A = {y} is a singleton, then cone(x0, {y}) is called a ray in L.

Theorem 2.2. Let S = {x1, . . . , xm} be a finite set of distinct points in a linear
space L and let JS = {I1, . . . , Im}, Ij ⊆ R, j = 1, . . . ,m, be a family of nonempty
intervals. Then co(S,JS) is unbounded if and only if there exists a ray R contained
in co(S,JS).
Proof. The sufficiency is obvious. Now we prove the necessity. Assume that
co(S,JS) is unbounded and hence nonempty. Thus there exists

y =
m∑
j=1

γjxj ∈ co(S,JS).

From Theorem 2.1 it follows that among the sets in JS there are two, say I1 and I2,
which contain, respectively, half-lines of the type (−∞, b] and [a,∞). Apparently,
(−∞, γ1] ⊂ I1 and [γ2,∞) ⊂ I2 and for any t ≥ 0 we have γ1− t ∈ I1 and γ2+ t ∈ I2.

Let R = { yt = y + t(x2 − x1) : t ≥ 0}
= { yt = (γ1 − t)x1 + (γ2 + t)x2 + γ3x3 + · · ·+ γmxm : t ≥ 0}.
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Clearly, R is a ray emanating from y and parallel to x2 − x1 and is contained in
co(S,JS). The proof is complete.

Take a non-empty convex set M ⊂ L and a subspace L of L. Following [10] the set
M + L is called an F -cylinder in L.

Theorem 2.3. Let k and m be positive integers with m − k ≥ 2. In L consider
finite sets S1 = {x1, . . . , xk}, S2 = {xk+1, . . . , xm} and put S = S1 ∪S2. Further, let
JS = {I1, . . . , Ik, Ik+1, . . . , Im} be a family of closed intervals in R (possibly single-
tons) such that Ij = [aj, bj], aj ≤ bj, for j = 1, . . . , k and Ij = R for j = k+1, . . . ,m.
Then there exist a family J ′

S and a subspace L = co(S2,JS2 , 0) of L such that
co(S,JS) is an F -cylinder of the form

co(S,JS) = co(S,J ′
S) + co(S2,JS2 , 0).

Proof. Put a =
∑k

j=1 aj and b =
∑k

j=1 bj. Clearly a ≤ b. Take any real numbers
a′j, b

′
j, j = k + 1, . . . ,m, such that

a′j ≤ b′j,

m∑
j=k+1

a′j = 1− b,

m∑
j=k+1

b′j = 1− a.

Notice that such numbers do exist. For instance, the numbers

a′j =
1− b

m− k
, b′j =

1− a

m− k
, j = k + 1, . . . ,m (4)

satisfy the above requirements. Define a new family J ′
S of closed and bounded

intervals by

J ′
S = {I1, . . . , Ik, I ′k+1, . . . , I

′
m}, I ′j =

[
a′j, b

′
j

]
, j = k + 1, . . . ,m.

We will show that co(S,JS) is an F -cylinder of the form

co(S,JS) = co(S,J ′
S) + L = co(S,J ′

S) + co(S2,JS2 , 0). (5)

To prove equality (5) take any x ∈ co(S,JS). Then x =
∑m

j=1 cjxj with cj ∈ Ij and∑m
j=1 cj = 1. Since

m∑
j=k+1

cj = 1−
k∑

j=1

cj ∈
[
1− b, 1− a

]
,

we can choose any numbers ξj ∈ I ′j, j = k + 1, . . . ,m, such that
m∑

j=k+1

cj =
m∑

j=k+1

ξj. (6)

Referring to the special case (4), we could choose

ξj =
1

m− k

m∑
j=k+1

cj ∈
[

1− b

m− k
,
1− a

m− k

]
, j = k + 1, . . . ,m.

Then x =
m∑
j=1

cjxj =
k∑

j=1

cjxj +
m∑

j=k+1

ξjxj +
(
xm +

m∑
j=k+1

(cj − ξj)xj

)
− xm.
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Using (6) we see that
∑k

j=1 cj+
∑m

j=k+1 ξj = 1 and 1+
∑m

j=k+1(cj−ξj) = 1. Therefore
by (2) and (1) we have respectively

k∑
j=1

cjxj +
m∑

j=k+1

ξjxj ∈ co(S,J ′
S)

and xm +
m∑

j=k+1

(cj − ξj)xj ∈ aff(S2).

Thus, we proved that for an arbitrary x ∈ co(S,JS) it holds that

x ∈ co(S,J ′
S) + (aff(S2)− xm) = co(S,J ′

S) + L = co(S,J ′
S) + co(S2,JS2 , 0).

A proof of the converse inclusion in (5) is straightforward.

Theorem 2.4. Let k and m be positive integers such that m − k ≥ 1 and δ ∈ R.
Further, let S1 = {x1, . . . , xk} and S2 = {xk+1, . . . , xm} be finite sets in L and put
S = S1 ∪ S2. Consider the family JS = {I1, ..., Ik, Ik+1, ..., Im}, where Ij = (−∞, δ]
for j = 1, . . . , k, and Ij = [0,+∞) for j = k + 1, . . . ,m. Then

co(S,JS) = {xδ}+ cone
(
0, S2 − S1

)
, (7)

where xδ =



k∑
i=1

1

k
xi when δ ≤ 1

k
,

k∑
i=1

δxi −
m∑

j=k+1

δk − 1

m− k
xj when δ >

1

k
.

Proof. Before proving (7), notice that v ∈ cone
(
0, S2 − S1

)
if and only if

v =
m∑

j=k+1

ξjxj −
k∑

j=1

ξjxj, where
m∑

j=k+1

ξj =
k∑

j=1

ξj, ξj ≥ 0, j = 1, . . . ,m.

To show this we first observe that any linear combination (in particular any convex
combination which we in fact need) of the k(m − k) vectors from S2 − S1 can be
written as follows

k∑
j=1

m∑
i=k+1

αij(xi − xj) =
m∑

i=k+1

( k∑
j=1

αij

)
xi −

k∑
j=1

( m∑
i=k+1

αij

)
xj

=
m∑

i=k+1

ηixi −
k∑

j=1

ηjxj,

where
m∑

i=k+1

ηi =
m∑

i=k+1

( k∑
j=1

αij

)
=

k∑
j=1

( m∑
i=k+1

αij

)
=

k∑
j=1

ηj (8)

and all the numbers in (8) for a convex combination are nonnegative. This together
with (3) justifies the characterization of any v ∈ cone

(
0, S2 − S1

)
given at the

beginning of the proof.
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To show equality (7), let x ∈ co(S,JS) be such that

x =
m∑
l=1

clxl,

m∑
l=1

cl = 1, cl ∈ Il, l = 1, . . . ,m.

We start with the case δ > 1
k
. Express x as follows

x =
k∑

l=1

δxl +
m∑

l=k+1

clxl +
k∑

l=1

(cl − δ)xl

=
k∑

l=1

δxl +
m∑

l=k+1

clxl −
k∑

l=1

(δ − cl)xl

Let α be a nonnegative number. Clearly we have

x =
k∑

l=1

δxl −
m∑

l=k+1

αxl +
m∑

l=k+1

(cl + α)xl −
k∑

l=1

(δ − cl)xl. (9)

Now we will check whether there exists an α for which the difference of the last
two sums in (9) represents a vector from cone(S2 −S1). To use the characterization
given at the beginning of the proof we first observe that all the numbers cl + α and
δ − cl in (9) are nonnegative. In addition we need to find an α for which we have

m∑
l=k+1

(cl + α) =
k∑

l=1

(δ − cl).

This equality is equivalent to
m∑

l=k+1

cl + (m− k)α = kδ −
k∑

l=1

cl = kδ −
(
1−

m∑
l=k+1

cl

)
= kδ − 1 +

m∑
l=k+1

cl

and therefore also to (m− k)α = kδ − 1. Thus

α =
kδ − 1

m− k
≥ 0.

When we substitute this value for α in the second sum in (9) we see that (9) guar-
antees validity of the inclusion

co(S,JS) ⊂ {xδ}+ cone(S2 − S1)

in the case δ > 1
k
.

Now suppose that δ ≤ 1
k
. Clearly, cl ≤ δ ≤ 1

k
for l = 1, . . . , k. In this case write x

in the form

x =
k∑

l=1

1

k
xl +

m∑
l=k+1

clxl −
k∑

l=1

(
1

k
− cl

)
xl (10)

and check that the difference of the last two sums in (10) also represents a vector
from cone(S2 − S1). This implies that the same inclusion is true in this case. The
proof of the converse inclusion in (7) in both cases is straightforward.
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Let A1 and A2 be disjoint subsets of L. Following [7] we define the penumbra of A2

with respect to A1 as the set

PA1(A2) = {(1− λ)A1 + λA2 : λ ≥ 1}. (11)

If A1 and A2 are convex, then the penumbra PA1(A2) is also convex. With this
notion we can have another look at the case δ = 0 in Theorem 2.4.

Theorem 2.5. Let S1 = {x1, . . . , xk} and S2 = {xk+1, . . . , xm} be subsets of L with
disjoint convex hulls. Let S = S1 ∪ S2. Let JS = {I1, . . . , Ik, Ik+1, . . . , Im} be a
family of closed intervals such that Ij = (−∞, 0], for j = 1, . . . , k and Ij = [0,+∞),
j = k+1, ...,m. Then co(S,JS) is the penumbra of conv(S2) with respect to conv(S1)

co(S,JS) = Pconv(S1)

(
conv(S2)

)
. (12)

Proof. To show (12), let x ∈ co(S,JS) be such that

x =
m∑
l=1

clxl,

m∑
l=1

cl = 1, ci ≤ 0, i = 1, . . . , k, cj ≥ 0, j = k + 1, . . . ,m.

Let γ =
∑k

i=1 ci, γ ≤ 0. If γ = 0, then ci = 0 for i = 1, . . . , k and

x ∈ conv(S2) ⊂ Pconv(S1)

(
conv(S2)

)
. (13)

Let γ < 0. To avoid a repetition of similar calculations we express x in two forms
by making the indicated substitutions

x = γ
k∑

i=1

ci
γ
xi + (1− γ)

m∑
j=k+1

cj
1− γ

xj

=
m∑

j=k+1

cj
1 + t

xj + t
m∑

j=k+1

cj
1 + t

xj − t
k∑

i=1

(
− ci

t

)
xi, t = −γ > 0, (14)

= (1− λ)
k∑

i=1

ci
1− λ

xi + λ
m∑

j=k+1

cj
λ
xj, λ = 1− γ > 1. (15)

The reader can easily check that from (15) (the case λ > 1) and (13) (the case λ = 1)
it follows that x belongs to the penumbra. The proof of the converse inclusion in
(12) is straightforward.

Remark 2.6. On our way to establish (12) we obtained (14). Using the character-
ization from the beginning of the proof of Theorem 2.4 one can recognize in (14) the
representation of a vector from conv(S2) + cone

(
0, S2 − S1). Moreover it is easy to

check that when δ ≤ 0 in Theorem 2.4, then the convex interval hull co(S,JS) also
satisfies the following equality

co(S,JS) = conv(S1) + cone
(
0, S2 − S1

)
. (16)

To see that this is true write x from co(S,JS) in the form

x =
k∑

j=1

c′jxj +
m∑

j=k+1

cjxj −
k∑

j=1

(c′j − cj)xj,
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where
k∑

j=1

c′j = 1 and c′j ≥ 0, j = 1, . . . , k

and use the characterization of vectors from cone
(
0, S2 − S1) which was already

mentioned in this remark. Using (12), (14) and (16) we see that the convex interval
hull from Theorem 2.4 in the case δ = 0 can be expressed in the following forms

co(S,JS) = conv(S2) + cone
(
0, S2 − S1) = conv(S1) + cone

(
0, S2 − S1)

= Pconv(S1)

(
conv(S2)

)
Theorem 2.7. Let S = {x1, . . . , xm}, m ≥ 2, be a set of distinct points in a
linear space L. Further, let S0 = {x0} ∪ S for some x0 /∈ aff(S) = F . Denote by
F0 = aff(S0) and by F+

0 the affine halfspace bounded by F and containing x0. Then
for the family JS0 = {I0, . . . , Im}, where I0 = [0,+∞) and I1 = · · · = Im = R we
have

co(S0,JS0) = F+
0 .

Similarly, for any flat (in particular for a subspace of L) H = F + {u}, u ∈ L, and
H+

0 = F+
0 + {u} we have

co(S ′
0,JS′

0
) = H+

0 ,

where S ′
0 = S0 + {u} and JS′

0
= JS0.

Proof. The first part of the theorem simply follows from Definition 1.1 and (1).
The second part of the theorem is a consequence of the following observation which
can be easily checked.

co(S ′
0,JS′

0
) = co(S0 + {u},JS0) = co(S0,JS0) + {u} = F+

0 + {u} = H+
0 .

The next theorem shows a way in which a convex cone over a finite set in a linear
space can be spanned. Notice that for the sake of consistency with next two results,
in Theorem 2.8 we take I1 = R instead of I1 = (−∞, 1] which would be enough.

Theorem 2.8. Let S = {x1, . . . , xm}, m ≥ 2, be a set of distinct points in a linear
space L. Put I1 = R, I2 = · · · = Im = [0,+∞) and let JS = {I1, I2, . . . , Im}. Then

co(S,JS) = cone(x1, S 1̂). (17)

Proof. To show the inclusion co(S,JS) ⊂ cone(x1, S 1̂) take z ∈ co(S,JS). Then
for some numbers ai ∈ Ii we have z =

∑m
i=1 aixi. Let t =

∑m
i=2 ai. The case t = 0

is possible only when a2 = · · · = am = 0 and in this case z = x1 ∈ cone(x1, S 1̂). If
t > 0, then a1 = 1− t ∈ I1 and

z =
m∑
i=1

aixi = a1x1 + t

m∑
i=2

ai
t
xi = (1− t)x1 + t

m∑
i=2

ai
t
xi.

Clearly
m∑
i=2

ai
t
xi ∈ conv(S 1̂)

and in view of (3) z ∈ cone(x1, S 1̂). The converse inclusion in (17) is immediate.
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Theorem 2.8 in conjunction with some known properties of convex sets imply the
following corollary.

Corollary 2.9. Assume that k and m are positive integers such that m − k ≥ 1.
Let S1 = {x1, . . . , xk} and S2 = {xk+1, . . . , xm} be finite sets in L and S = S1 ∪ S2.
Let JS = {I1, . . . , Ik, Ik+1, . . . , Im} be a family of closed intervals such that Ij = R,
for j = 1, . . . , k and Ij = [0,∞), j = k + 1, . . . ,m. Then

conv
(∪{

cone
(
xi, S2

)
: i = 1, . . . , k

})
⊂ co(S,JS). (18)

The following theorem shows that for S and JS as in Corollary 2.9, the set co(S,JS)
is much bigger than the set on the left-hand side in (18).

Theorem 2.10. Assume that k and m are positive integers such that m − k ≥ 1.
Let S1 = {x1, . . . , xk} and S2 = {xk+1, . . . , xm} be finite sets in L and S = S1 ∪ S2.
Let JS = {I1, . . . , Ik, Ik+1, . . . , Im} be a family of closed intervals such that Ij = R,
for j = 1, . . . , k and Ij = [0,∞), j = k + 1, . . . ,m. Then

co(S,JS) =
∪{

cone
(
y, S2

)
: y ∈ aff(S1)

}∪(
co(S1,JS1 , 0) + conv(S2)

)
(19)

Proof. We start in the same way as in the proof of Theorem 2.8. Let z∈co(S,JS).

Then z =
m∑
i=1

aixi for some numbers ai ∈ Ii with
m∑
i=1

ai = 1. Clearly

z =
m∑
i=1

aixi =
k∑

i=1

aixi +
m∑

i=k+1

aixi. (20)

Let t =
m∑

i=k+1

ai ≥ 0. If t = 0, then ai = 0 for i = k+1, . . . ,m and
k∑

i=1

ai = 1. In this

case we have

z =
k∑

i=1

aixi ∈ co(S1,JS1) ⊂ aff(S1) ⊂
∪{

cone
(
y, S2

)
: y ∈ aff(S1)

}
.

If t > 0 and t 6= 1, then

z =
m∑
i=1

aixi = (1− t)
k∑

i=1

ai
t− 1

xi + t

m∑
i=k+1

ai
t
xi

One can easily check that the vector y =
k∑

i=1

ai
t− 1

xi belongs to aff(S1) and the

vector
m∑

i=k+1

ai
t
xi belongs to conv(S2). In view of (3)

z ∈
∪{

cone
(
y, S2

)
: y ∈ aff(S1)

}
.

Now we consider the case when t = 1. Clearly, the first sum in (20) represents a
vector from co(S1,JS1 , 0) and the second sum a vector from conv(S2). This ends the
proof of the considered inclusion. The converse inclusion in (19) is immediate.
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We will need the following lemma.

Lemma 2.11. Let A ⊂ B = {x1, ..., xm} ⊂ L and let JA = {IA1 , IA2 , ..., IAn } and
JB = {IB1 , IB2 , . . . , IBm}, n ≤ m, be families of intervals such that IAi ⊂ IBi when
xi ∈ A and 0 ∈ IBj when xj ∈ B \ A. Then

co(A,JA) ⊂ co(B,JB).

Notice that when we put A = S 1̂ and B = S then Example 3.7 shows that the
assumption that 0 ∈ IBj when xj ∈ B \ A is essential in Lemma 2.11. Indeed, in
that example 0 /∈ I1 and co(S1̂,J1̂) is not a subset of co(S,JS).

Theorem 2.12. Let k and m be positive integers satisfying m−k ≥ 1. Assume that
S1 = {x1, . . . , xk} and S2 = {xk+1, . . . , xm} are finite sets in L and S = S1∪S2. Let
JS = {I1, . . . , Ik, Ik+1, . . . , Im} be a family of closed intervals such that Ij = [0,+∞),
for j = 1, . . . , k and Ij = R, j = k + 1, . . . ,m. Put

S∗
i = {xi} ∪ S2, JS∗

i
= {Ii, Ik+1, . . . , Im}, i = 1, . . . , k.

Then co(S,JS) is a wedge described in the following way

co(S,JS) = conv
( k∪

i=1

co(S∗
i ,JS∗

i
)
)
. (21)

Proof. In order to establish the inclusion co(S,JS) ⊂ conv
(∪k

i=1 co(S
∗
i ,JS∗

i
)
)

it is
enough to show, see [7, 11], that any z ∈ co(S,JS) is a convex combination of some
points zi ∈ co(S∗

i ,JS∗
i
), i = 1, . . . , k. Take z ∈ co(S,JS). Thus

z =
k∑

j=1

λjxj +
m∑

j=k+1

λjxj

were λj ≥ 0 for j = 1, . . . , k and λj ∈ R for j = k + 1, . . . ,m with
∑m

j=1 λj = 1.
If λ1 = · · · = λk = 0, then obviously z ∈ conv(S2) ⊂ co(S∗

i ,JS∗
i
), i = 1, . . . , k,

and the inclusion in (21) is satisfied. If at least one of λ1, . . . , λk is positive put
λ =

∑k
i=1 λi > 0 and define points

zi = λxi +
m∑

j=k+1

λjxj, i = 1, . . . , k.

Clearly, zi ∈ co(S∗
i ,JS∗

i
), i = 1, . . . , k. For αi = λi

λ
and the convex combination∑k

i=1 αizi we have
k∑

i=1

αizi =
k∑

i=1

λi

λ

(
λxi +

m∑
j=k+1

λjxj

)
=

k∑
i=1

λixi +
k∑

i=1

λi

λ

m∑
j=k+1

λjxj

=
k∑

i=1

λixi +
m∑

j=k+1

λjxj = z.

Hence z ∈ conv
( k∪

i=1

co(S∗
i ,JS∗

i
)
)

.
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To establish the converse inclusion in (21) notice that by Lemma 2.11
co(S∗

i ,JS∗
i
) ⊂ co(S,JS)

for i = 1, . . . , k. This together with convexity of co(S,JS) implies

conv
( k∪

i=1

co(S∗
i ,JS∗

i
)
)
⊂ co(S,JS)

and ends the proof of (21).

3. Extreme points

In many literature sources extreme points of sets in a linear space with ordinary
convexity are considered for convex sets, cf. [2, 5, 9, 12, 13]. In [4] one can find the
following definition. A point x is an extreme point of a set S in L if

x ∈ S but x 6∈ conv(S \ {x}). (22)
A consequence of this definition is the fact that x is an extreme point of S if and
only if conv(S \ {x}) is a proper (convex) subset of conv(S). Let E(S) denote the
extreme set, that is, the set of all extreme points of S.

Example 3.1. This and every other example was calculated and plotted using
Mathematica. Points of S are listed starting from the lowest point that is fur-
thermost to the left. Then we proceed counterclockwise, finishing with the point
inside. In each figure the points in S are marked with black dots (•) and the polygon
co
(
S,JS

)
is shaded gray with its edges slightly darker. Let

S =
{
x1 = (−1, 0), x2 = (1, 0), x3 = (0,

√
3)
}

and JS =
{
I1 = [0, 2/3], I2 = [0, 2/3], I3 = [0, 2/3]

}
.

The set co(S,JS) is shown in Figure 1. Notice that the sets S and co(S,JS) are
disjoint.

Figure 1: S disjoint with co(S,JS)
Example 3.1 illustrates that in general it is possible to have S 6⊂ co(S,JS). This
observation is a good motivation to show the following proposition.



12 B. Ćurgus, K. Kołodziejczyk / Convex Interval Hull ...

Proposition 3.2. Let S be a finite set in L and let JS be a family of intervals. If
for each xi ∈ E(S) we have {0, 1} ⊂ Ii and 0 ∈ Ij for each xj ∈ S \ E(S), then
conv(S) ⊂ co(S,JS).

Proof. Our assumptions guarantee that E(S) ⊂ co(S,JS). Using the monotonicity
of the operator conv and applying [2, Theorem 5.10] and [3, Proposition 3.1] we get

S ⊂ conv(S) = conv(E(S)) ⊂ conv(co(S,JS)) = co(S,JS)

which ends the proof.

In the proof of Proposition 3.2 we used the well-known fact that for any finite set
S in a linear space L we have conv(S) = conv(E(S)). As the following example
illustrates we do not always have co(S,JS) = co(E(S),JE(S)).

Example 3.3. Take S = {x1, x2, x3, x4} ⊂ R2 and JS as in [3, Example 2.7]. In
each of the six cases considered in that example and illustrated in Figures 7–12 in
[3] we have E(S) = {x1, x2, x3} and co(E(S),JE(S)) = conv(S) 6= co(S,JS). Notice
that the case presented in Figure 12 provides an evidence that in Proposition 3.2
the assumption that 0 ∈ Ij when xj ∈ S \ E(S) is essential.

Although we cannot expect to have always co(S,JS) = co(E(S),JE(S)), nevertheless
for some special family J ∗

E(S) we do have the equality

co(S,JS) = co(E(S),J ∗
E(S)).

This will be shown in the next theorem which can be considered as a version of the
celebrated Minkowski-Krein-Milmann’s Theorem, cf. [1, 2]. Before presenting this
theorem we recall some definitions of concepts used in its proof. Let δ be a nonzero
real number and v ∈ L. The transformation Hδ

v : L → L defined by

Hδ
v(x) = v + δ x

is called a homothety. The vector v is called the center of homothety and the number
δ is called the ratio of the homothety. If δ > 0 the homothety is called positive and
if δ < 0 the homothety is called negative. The image of K ⊂ L under Hδ

v is denoted
by Hδ

v(K) and it is called a homothet of K.

Theorem 3.4. Let S = {x1, ..., xm} ⊂ L , m ≥ 2. Assume that a1, . . . , am are real
numbers such that 1−

∑m
j=1 aj = δ 6= 0. Define the family JS as follows

JS = {Ij = [aj, δ + aj] : j = 1, . . . ,m}, when δ > 0

or JS = {Ij = [δ + aj, aj] : j = 1, . . . ,m}, when δ < 0.

Then there exists a family of intervals J ∗
E(S) such that

co(S,JS) = co
(
E(S),J ∗

E(S)

)
. (23)
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Proof. Let S = {x1, ..., xm} ⊂ L , m ≥ 2. To prove (23) we plan to show that both
the sets are equal homothets. It is easy to check that by virtue of [3, Theorem 6.1]
we have

co(S,JS) = Hδ
v(conv(S)), (24)

where v =
m∑
j=1

ajxj and δ = 1−
m∑
j=1

aj.

We will also show that the set co
(
E(S),J ∗

E(S)

)
is a similar homothet. We may

assume that the points of S are labeled in such a way that the first n belong to E(S).
Then every point xj, j = n + 1, . . . ,m, can be written as a convex combination of
points from E(S). Hence we have xj =

∑n
i=1 α

j
ixi for some αj

i ∈ [0, 1] satisfying∑n
i=1 α

j
i = 1. Now the vector v can be expressed in the following form

v =
n∑

i=1

aixi +
m∑

j=n+1

aj

( n∑
i=1

αj
ixi

)
=

n∑
i=1

(
ai +

m∑
j=n+1

ajα
j
i

)
xi. (25)

Let us put a∗i = ai +
m∑

j=n+1

ajα
j
i for i = 1, . . . , n and define

J ∗
E(S) = {I∗i = [a∗i , δ + a∗i ] : i = 1, . . . , n}, when δ > 0

or J ∗
E(S) = {I∗i = [δ + a∗i , a

∗
i ] : i = 1, . . . , n}, when δ < 0.

From (25) it follows that v =
n∑

i=1

a∗ixi. Moreover we have

n∑
i=1

a∗i =
n∑

i=1

(
ai +

m∑
j=n+1

ajα
j
i

)
=

n∑
i=1

ai +
n∑

i=1

m∑
j=n+1

ajα
j
i

=
n∑

i=1

ai +
m∑

j=n+1

n∑
i=1

ajα
j
i =

n∑
i=1

ai +
m∑

j=n+1

aj

n∑
i=1

αj
i

=
n∑

i=1

ai +
m∑

j=n+1

aj =
m∑
i=1

ai

Thus 1−
n∑

i=1

a∗i = 1−
n∑

i=1

ai = δ 6= 0. Applying again [3, Theorem 6.1] we have

co(E(S),J ∗
E(S)) = Hδ

v(conv(E(S)). (26)

From the equality conv(S) = conv(E(S)) we obviously have

Hδ
v(conv(S)) = Hδ

v(conv(E(S))). (27)

Comparing (24), (26) and (27) we get

co(S,JS) = co(E(S),J ∗
E(S))

and the proof is finished.
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The requirements in condition (22) were adapted to define extreme points not only
in linear spaces (with respect to the conv operator) but also in other structures,
including finite structures, such as: convexity spaces, closure spaces, matroids and
antimatroids cf. [1, 8, 12].
In this context it is natural to use the ideas of condition (22) to introduce the notion
of an extreme point with respect to the convex interval hull in the following definition.

Definition 3.5. A point xi of a finite set S = {x1, . . . , xm} ⊂ L is an extreme point
of S with respect to the convex interval hull co(S,JS) provided

xi ∈ S but xi 6∈ co(S î,JS î
).

Now we are ready to introduce the extreme interval operator S 7→ Eco(S) as

Eco(S) := {x ∈ S : x is an extreme point of S with respect to co(S,JS)}.

The following fact simply follows from the above definition.

Proposition 3.6. Let xi be an extreme point of S with respect to co(S,JS) in
which every interval Ij contains 0. Then xi is an extreme points of A with respect
to co(A,JA) for any A ⊂ S containing xi.

Proof. If xi is an extreme point of S with respect to co(S,JS), then

xi /∈ co(S î,JS î
).

If for some A ⊂ S containing xi, the vector xi were not an extreme point of A with
respect to co(A,JA), then by Definition 3.5 and Lemma 2.11 we would have

xi ∈ co(A,JA) ⊂ co(S î,JS î
),

a contradiction.

In the following examples we examine relationships between the sets E(S) and
Eco(S).

Example 3.7. Let S = {x1, x2, x3} ⊂ R, where x1 = 0, x2 = 1, x3 = 4 and let
I1 = [0.5, 2.5], I2 = [−1.5, 0.5], I3 = [0.5, 2.5]. Obviously, co(S 1̂,JS1̂) = [2.5, 8.5],
co(S 2̂,JS2̂) = {2}, co(S 3̂,JS3̂) = [−1.5, 0.5] and co(S,JS) = [0.5, 6.5].

Thus xi 6∈ co(S î,JS î
) for i ∈ {1, 2, 3}

and therefore Eco(S) = S. Notice that here x2 ∈ Eco(S) \ E(S).

Example 3.8. Consider S = {x1, x2, x3, x4} ⊂ R2, where x1 = (0, 0), x2 = (1, 0),
x3 = (1, 1), x4 = (0, 1) and let I1 = (−∞, 1], I2 = I3 = I4 = [0,∞]. By Theorem
2.8 co(S,JS) is the first quadrant. Clearly, co(S 1̂,JS1̂) is the triangle with vertices
x2, x3, x4. Again using Theorem 2.8 we get that co(S 2̂,JS2̂) is the region bounded
by the non-negative y-axis and the line y = x, co(S 3̂,JS3̂) is the first quadrant and
co(S 4̂,JS4̂) is the region bounded by the non-negative x-axis and the line y = x.
Thus, in this example we have Eco(S) = S 3̂ and x3 ∈ E(S) \ Eco(S).
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Example 3.9. Let S = {x1, x2, x3, x4} ⊂ R2, where x1 = (−1, 0), x2 = (1, 0),
x3 = (0,

√
3), x4 = (0,

√
3
3
) and let I1 = I2 = I3 = [0, 1] and I4 = [

√
3−3
2

, 1]. The set
co(S,JS) is the nonagon shown in Figure 2. Obviously co(S 4̂,JS4̂) = conv(S 4̂) and
x4 ∈ co(S 4̂,JS4̂). It is easy to check that xi /∈ co(S î,JS î

) for i = 1, 2, 3. Clearly
Eco(S,JS) = E(S) = S 4̂. This example shows that it is possible to have

co(S,JS) 6= co
(
Eco(S),JEco(S)

)
.

Figure 2: The set co(S,JS) from Example 3.9

Example 3.10. Let S = {x1, x2, x3, x4} ⊂ R2, where x1 = (−1,−1), x2 = (1,−1),
x3 = (1, 1), x4 = (−1, 1) and let I1 = I2 = I3 = I4 = R. Obviously we have
xi ∈ co(S î,JS î

) = R2 for i = 1, 2, 3, 4 and therefore Eco(S) = ∅.

Let S be a finite set in L and JS be a family of intervals. We will say that the convex
interval hull co(S,JS) is absorbing if for any A ⊂ S the following implication is true

∀a ∈ A
(
a ∈ co(A \ {a},JA\{a}) =⇒ co(A \ {a},JA\{a}) = co(A,JA)

)
.

One can easily check that the operators: conv and co(S,JS) in Examples 3.7, 3.8
and 3.10 are absorbing but co(S,JS) in Example 3.9 is not.

Theorem 3.11. Let S = {x1, ..., xm} ⊂ L and JS = {I1, . . . , Im} be a family of
intervals such that {0, 1} ⊂ Ij for j = 1, . . . ,m. Assume that co(S,JS) is absorbing,
then

Eco(S) =
∩

{A ⊂ S : co(A,JA) = co(S,JS)}, (28)

where Ij ∈ JA if and only if xj ∈ A.

Proof. To show (28) we start with checking if Eco(S) is contained in the intersec-
tion. Obviously the inclusion is true when Eco(S) = ∅. If Eco(S) 6= ∅ take any
xk ∈ Eco(S). If for some B ⊂ S satisfying co(B,JB) = co(S,JS) we would have
xk /∈ B then B would be a subset of S k̂. By Lemma 2.11 we would get

co(S,JS) = co(B,JB) ⊂ co(S k̂,JSk̂
) ⊂ co(S,JS). (29)
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Now, by (29) we would have xk ∈ co(S,JS) = co(S k̂,JSk̂
). On the other hand, since

xk is an extreme point with respect to co(S,JS) we would have

xk /∈ co(S k̂,JSk̂
),

a contradiction.
Denote A = {A ⊂ S : co(A,JA) = co(S,JS)} and M =

∩
A. To prove the converse

inclusion take any xi ∈ M . If xi /∈ Eco(S) then xi would not be an extreme point
with respect to co(S,JS) and therefore xi ∈ co(S î,JS î

). The assumption that {0, 1}
is in every interval Ij ∈ JS ensures that xi ∈ co(S,JS). Since co(S,JS) is absorbing
we would have co(S î,JS î

) = co(S,JS) and therefore S î ∈ A. Because the point xi

belongs to every set in family A we would have xi ∈ S î, a contradiction.

Remark 3.12. The inclusion Eco(S) ⊂
∩
{A ⊂ S : co(A,JA) = co(S,JS)} was

proved without using the absorbing assumption of co(S,JS). This assumption was
only used to show that the converse inclusion in (28) holds true. Notice that without
this assumption equality (28) is not guaranteed. For instance, in Example 3.9 the
only subset A of S for which we have co(A,JA) = co(S,JS) is S itself, but we
have Eco(S) = S 4̂ 6= S. Note that the convex interval hull co(S,JS) considered in
Example 3.9 is not absorbing and this is the only assumption which is not satisfied
there. Thus, the absorbing assumption in Theorem 3.11 is essential and becomes
natural in our next theorem.

As a consequence of Theorem 3.11 we have the following Minkowski-Krein-Milman-
type theorem.

Theorem 3.13. Let S = {x1, ..., xm} ⊂ L and JS = {I1, . . . , Im} be a family of
intervals such that {0, 1} ⊂ Ij for j = 1, . . . ,m. Assume that co(S,JS) is absorbing
and Eco(S) 6= ∅, then

co(S,JS) = co
(
Eco(S),JEco(S)

)
. (30)

Proof. Let A be the family defined in the proof of Theorem 3.11. By Theorem 3.11
we know that Eco(S) ⊂ A for every A ∈ A. We plan to show that Eco(S) is equal
to some set in A and this will be done in several steps.
Step 1: Of course A 6= ∅ because S ∈ A. If Eco(S) = S we are done. If not, there
exists a point in S, say x1, which is not an extreme point with respect to co(S,JS).
Therefore for x1 we have

x1 ∈ co(S 1̂,JS1̂)

which with the assumption that co(S,JS) is absorbing gives us

co(S 1̂,JS1̂) = co(S,JS). (31)

From (31) and (28) we get

S 1̂ ∈ A and Eco(S) ⊂ S 1̂. (32)

Step 2: If Eco(S) = S 1̂ ∈ A we are done. If not, in S 1̂ there is a point, say x2,
such that x2 ∈ S 1̂ \ Eco(S). The same reasoning as was used for x1 gives

x2 ∈ co(S 2̂,JS2̂) (33)
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and co(S 2̂,JS2̂) = co(S,JS) (34)

and also S 2̂ ∈ A and Eco(S) ⊂ S 2̂. (35)

Condition (33) allows us to write

x2 = a1x1 +
m∑
i=3

aixi ∈ co(S 2̂,JS2̂),

where ai ∈ Ii, i ∈ 1, 3, . . . ,m and a1 +
∑m

i=3 ai = 1.
By (31) and (34) we have co(S 1̂,JS1̂) = co(S 2̂,JS2̂). Thus

x2 = a1x1 +
m∑
i=3

aixi ∈ co(S 1̂,JS1̂).

Observe that the vector x2 and the corresponding interval I2 make no contribution
to the linear combination a1x1+

∑m
i=3 aixi belonging to co(S 1̂,JS1̂). For that reason

this linear combination also belongs to co(S 1̂2̂,JS1̂2̂). Hence

x2 ∈ co(S 1̂2̂,JS1̂2̂). (36)

From (36) together with the absorbing assumption and the fact that S 1̂ ∈ A we
conclude

x2 ∈ co(S 1̂2̂,JS1̂2̂) =⇒ co(S 1̂2̂,JS1̂2̂) = co(S 1̂,JS1̂) = co(S,JS). (37)

Hence S 1̂2̂ ∈ A. Now the observations in (32) and (35) together with (28) allow us
to summarize Step 2 in the following way

Eco(S) ⊂ S 1̂ ∩ S 2̂ = S 1̂2̂ ∈ A.

Step 3: If Eco(S) = S 1̂2̂ ∈ A we are done. If not, in S 1̂2̂ there is a point, say x3,
such that x3 ∈ S 1̂2̂ \ Eco(S). In a very similar way as in Step 2 we obtain

x3 = c1x1 + c2x2 +
m∑
i=4

cixi ∈ co(S 3̂,JS3̂) = co(S 1̂2̂,JS1̂2̂) (38)

for some numbers ci ∈ Ii, i ∈ 1, 2, 4, . . . ,m such that c1+c2+
∑m

i=4 ci = 1. The linear
combination from (38) belongs to co(S 1̂2̂,JS1̂2̂) and x3 and I3 make no contribution
to it. Therefore this combination also belongs to co(S 1̂2̂3̂,JS1̂2̂3̂). Acting similarly
as in (37) we can conclude Step 3 with

Eco(S) ⊂ S 1̂2̂ ∩ S 3̂ = S 1̂2̂3̂ ∈ A.

The assumption that Eco(S) 6= ∅ guarantees that a continuation of the procedure
described in Steps 1–3 leads to a conclusion that Eco(S) ∈ A and proves equality
(30). The proof is complete.
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