
The opening example in [2]

Branko Ćurgus

1. Finding eigenvalues

Consider the following eigenvalue problem

−f ′′(x) = λ (sgn x)f(x), x ∈ [−1, 1], (1.1)

f ′(1) = λ f(−1), (1.2)

−f ′(−1) = λ f(1). (1.3)

With

b(f) =









f(−1)
f(1)

f ′(−1)
f ′(1)









.

and

M =

[

0 0 0 1

0 0 −1 0

]

, N =

[

1 0 0 0

0 1 0 0

]

,

the given eigenvalue problem can be written as

−f ′′(x) = λ (sgnx)f(x), x ∈ [−1, 1],

Mb(f) = λNb(f).

The matrix ∆ is calculated as

∆ := −i
(

MQ−1N∗
)

−1
=

[

0 1

1 0

]

.

It follows from [1, Remark 3.2] that the “corresponding positive definite” problem
(for the meaning of this see [1]) is

−f ′′(x) = λ f(x), x ∈ [−1, 1],

∆Mb(f) = λNb(f),
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that is

−f ′′(x) = λ f(x), x ∈ [−1, 1], (1.4)

−f ′(−1) = λ f(−1), (1.5)

f ′(1) = λ f(1). (1.6)

A non-negative operator in a Hilbert space L2[−1, 1]⊕ C2 can be associated with
the problem (1.4)-(1.6), see [1]. It follows from [1] that the operator associated
with the problem (1.1)-(1.3) in the Krein space L2,sgn[−1, 1]⊕C2

∆ is a nonnegative
definitizable operator. Hence it has real spectrum and Jordan chain can occur only
at 0.

To find eigenvalues of the problem (1.1)-(1.3) we define the following two
functions:

C(x) :=







cosh(x) for − 1 ≤ x < 0,

cos(x) for 0 ≤ x ≤ 1,
S(x) :=







sinh(x) for − 1 ≤ x < 0,

sin(x) for 0 ≤ x ≤ 1.

1.1. The positive eigenvalues

To determine positive eigenvalues we set λ = µ2, µ > 0. Then, the general solution
of the equation

−f ′′(x) = µ2 (sgn x)f(x), x ∈ [−1, 1],

is given by

a C(µ x) + b S(µ x), x ∈ [−1, 1],

where a and b are arbitrary complex numbers. Clearly

b
(

a C(µ ·) + b S(µ ·)
)

=









a cosh(µ) − b sinh(µ)
a cos(µ) + b sin(µ)

µ
(

−a sinh(µ) + b cosh(µ)
)

µ
(

−a sin(µ) + b cos(µ)
)

.









A positive number λ = µ2, µ > 0, is an eigenvalue of the given problem if
and only if the system

Mb
(

a C(µ ·) + b S(µ ·)
)

= µ2
Nb

(

a C(µ ·) + b S(µ ·)
)

has a nontrivial solution for a and b. We rewrite this system in expanded form as

−a µ
(

µ cosh(µ) + sin(µ)
)

+ b µ
(

cos(µ) + µ sinh(µ)
)

= 0

−a µ
(

µ cos(µ) − sinh(µ)
)

− b µ
(

cosh(µ) + µ sin(µ)
)

= 0.

The determinant of this system is

µ2
(

2µ +
(

µ2 + 1
)

cosh(µ) sin(µ) +
(

µ2
− 1

)

cos(µ) sinh(µ)
)

.
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Figure 1. µ-s for positive eigenvalues

Therefore, the positive eigenvalues λ = µ2, µ > 0, are determined from the positive
solutions µ of the equation

2µ
(

µ2 + 1
)

cosh(µ)
+ sin(µ) +

(

µ2 − 1
)

µ2 + 1
tanh(µ) cos(µ) = 0. (1.7)

A plot of this function is in Figure 1.

Approximate values for the first twelve solutions for µ are

2.59044, 5.52848, 8.65279, 11.7882,

14.9271, 18.0672, 21.208, 24.349,

27.4903, 30.6316, 33.773, 36.9144.

All positive eigenvalues are simple since the equality

Mb
(

S(µ ·)
)

= µ2 Nb
(

S(µ ·)
)

does not hold for any µ > 0. This is clear when written in the expended form and
simplified:

[

cos(µ)
− cosh(µ)

]

=

[

−µ sinh(µ)
µ sin(µ)

]

.
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Thus, S(µ ·) is not an eigenfunction. This implies that all positive eigenvalues are
simple.

1.2. The eigenvalue 0

It is easy to see that 0 is the eigenvalue of this system and its geometric multiplicity
is 1. Also, a nontrivial Jordan chain cannot exist. To justify this statement think
of the given eigenvalue problem as the eigenvalue problem for the operator

[

f(x)
Nb(f)

]

7→

[

−(sgnx)f ′′(x)
Mb(f)

]

.

Clearly the constant function 1 is an eigenfunction corresponding to 0 eigenvalue
and

Nb(1) =

[

1
1

]

.

To find a Jordan chain we have to find a function g(x) such that

[

−(sgnx)g′′(x)
Mb(g)

]

=





1
1
1



 .

Since

Mb(g) =

[

g′(1)
−g′(−1)

]

,

we have to find a function g such that g′′(x) = − sgnx and g′(1) = 1 and g′(−1) =
−1. As g′′ is odd, g′ must be even. Therefore g′(1) = 1 and g′(−1) = −1 is not
possible. This proves that 0 is a simple eigenvalue.

Notice that in an earlier version (arXiv:0705.4157v2)
of [2] we made a wrong statement that the algebraic
multiplicity of 0 is 2.

1.3. The negative eigenvalues

To determine negative eigenvalues we set λ = −µ2, µ > 0. Then, the general
solution of the equation

−f ′′(x) = −µ2 (sgnx)f(x), x ∈ [−1, 1],

is given by

a C(−µ x) + b S(−µ x), x ∈ [−1, 1],

where a and b are arbitrary complex numbers. Clearly

b
(

a C(−µ ·) + b S(−µ ·)
)

=









a cos(µ) + b sin(µ)
a cosh(µ) − b sinh(µ)
µ
(

a sin(µ) − b cos(µ)
)

µ
(

a sinh(µ) − b cosh(µ)
)

.








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Figure 2. µ-s for negative eigenvalues

A negative number λ = −µ2, µ > 0, is an eigenvalue of the given problem if
and only if the system

Mb
(

a C(−µ ·) + b S(−µ ·)
)

= −µ2 Nb
(

a C(−µ ·) + b S(−µ ·)
)

has a nontrivial solution for a and b. We rewrite this system in expanded form as

a µ
(

µ cos(µ) + sinh(µ)
)

+ b µ
(

− cosh(µ) + µ sin(µ)
)

= 0

a µ
(

µ cosh(µ) − sin(µ)
)

+ b µ
(

cos(µ) − µ sinh(µ)
)

= 0

The determinant of this system is

−µ2
(

−2µ +
(

µ2 + 1
)

cosh(µ) sin(µ) +
(

µ2
− 1

)

cos(µ) sinh(µ)
)

.

Therefore, the negative eigenvalues λ = −µ2, µ > 0, are determined from the
positive solutions µ of the equation

−
2µ

(

µ2 + 1
)

cosh(µ)
+ sin(µ) +

(

µ2 − 1
)

µ2 + 1
tanh(µ) cos(µ) = 0. (1.8)

A plot of this function is in Figure 2.
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Approximate values for the first twelve solutions for µ are

0.872674, 2.43031, 5.53248, 8.65268,

11.7882, 14.9271, 18.0672, 21.208,

24.349, 27.4903, 30.6316, 33.773.

All negative eigenvalues are simple since the equality

Mb
(

S(−µ ·)
)

= −µ2
Nb

(

− S(µ ·)
)

does not hold for any µ > 0. This is clear when written in the expended form and
simplified:

[

− cosh(µ)
cos(µ)

]

=

[

−µ sin(µ)
µ sinh(µ)

]

.

Thus, S(−µ ·) is not an eigenfunction. This implies that all negative eigenvalues
are simple.

2. Eigenfunctions

The eigenfunctions corresponding to positive eigenvalues are obtained when the
positive solutions of (1.7) are substituted in

C(µ x)

(

µ tanh(µ) +
cos(µ)

cosh(µ)

)

+ S(µ x)

(

µ +
sin(µ)

cosh(µ)

)

.

Using the approximate values for µ we give plots of eigenfunctions corresponding
to the first 12 positive eigenvalues in Table 1.

The eigenfunctions corresponding to negative eigenvalues are obtained when
the positive solutions of (1.8) are substituted in

C(−µ x)

(

1 −
µ sin(µ)

cosh(µ)

)

+ S(−µ x)

(

tanh(µ) +
µ cos(µ)

cosh(µ)

)

Using the approximate values for µ we give plots of eigenfunctions corresponding
to the first 12 negative eigenvalues in Table 2.

3. Eigenfunction expansions

This section will be added later.
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Table 1. Eigenfunctions corresponding to the first 12 positive
eigenvalues
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Table 2. Eigenfunctions corresponding to the first 12 negative
eigenvalues
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