The Foundations:
Logic and Proof, Sets,
and Functions

his chapter reviews the foundations of discrete mathematics. Three important

topics are covered: logic, sets, and functions. The rules of logic specify the mean-

ing of mathematical statements. For instance, these rules help us understand
and reason with statements such as “There exists an integer that is not the sum of two
squares,” and “For every positive integer n the sum of the positive integers not exceeding
n is n{n + 1)/2.” Logic is the basis of all mathematical reasoning, and it has practical
applications to the design of computing machines, to system specifications, to artificial
intelligence, to computer programming, to programming languages, and to other areas of
computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathemat-
ical argument, that is, a proof. Moreover, to learn mathematics, a person needs to actively
construct mathematical arguments and not just read exposition. In this chapler, we ex-
plain what makes up a correct mathematical argument and introduce tools to construct
these arguments. Proofs are important not only in mathematics, but also in many parts
of computer science, including program verification, algorithm correctness, and system
security. Furthermore, automated reasoning systems have been constructed that allow
computers to construct their own proofs.

Much of discrete mathematics is devoted to the study of discrete structures, which
are used to represent discrete objects. Many important discrete structures are built using
sets, which are collections of objects. Among the discrete structures built from sets are
combinations, which are unordered collections of objects used extensively in counting;
relations, which are sets of ordered pairs that represent relationships between objects;
graphs, which consist of sets of vertices and of edges that connect vertices; and finite state
machines, which are used to model computing machines.

The concept of a function is extremely important in discrete mathematics., A func-
tion assigns to each element of a set precisely one element of a set. Useful structures
such as sequences and strings are special types of functions. Functions play important
roles throughout discrete mathematics. They are used to represent the computational
complexity of algorithms, to study the size of sets. to count objects of different kinds, and
in a myriad of other ways.

INTRODUCTION

The rules of logic give precise meaning to mathematical statements. These rules are used to
distinguish between valid and invalid mathematical arguments. Since a major goal of this
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book is to teach the reader how to understand and how (o construct correct mathematical
arguments, we begin our study of discrete mathematics with an introduction to logic.

In addition to its importance in understanding mathematical reasoning, logic has
numerous applications in computer science. These rules are used in the design of computer
circuits, the construction of compuler programs, the verification of the correctness of
programs, and in many other ways. We will discuss each of these applications in the
upcoming chapters.

PROPOSITIONS

Our discussion begins with an introduction to the basic building blocks of logic—
propositions. A proposition is a declarative sentence that is either true or lalse, but not
both.

All the following declarative scntences are propositions.

1. Washington, D.C., is the capital of the United States of America.

2. Toronto is the capital of Canada.
3. 141 =2
4. 242=13.
Propositions 1 and 3 are true, whereas 2 and 4 are false. -

Some sentences that are not propositions are given in the next example.

Consider the following sentences.

1. What time is it?
2. Read this carefully.

ARISTOTLE (384 B.C.E~-322 B.C.E) Aristotle was harn in Stargirus in northern Greece. His father
was the personal physician of the King of Macedonia. Because his father died when Aristotle was young,
Aristotle could not follow the custom of following his father's profession. Aristotle became an orphan
at a young age when his mother also died. His guardian who raised hint taught him poetry, rhetoric. and
Greek. At the age of 17, his guardian sent him 1o Athens to further his education. Aristotle joined Plato’s
Academy where for 20 vears he attended Plalo’s lectures. later presenting his own lectures on rheloric.
When Plato died in 347 8.CE., Aristotle was nol chosen 1o suecced him because his views dilfercd too
much from those of Plato. Instead, Aristotle joined the court of King Hermeas where he remained lor
three years, and married the uiece of the King. When the Persians defeated Hermcas, Aristoile moved
to Mytilenc and, at the invitatiou of King Philip of Macedonia, he tutered Alexandcr, Philip's son. who
later became Alexander the Great. Arnistotle tutored Alexander for five years and after the death of King
Philip, he rcturned 10 Athens and set up his own school, called the Lyceum,

Aristotle’s followers were called the peripatetics. which means “to walk about,” because Aristotle
often walked around as he discussed philosophical questions. Aristotle taught at the Lyceum for 13 years
where he lectured to his advanced students in the morning and gave popular lectures 1y a broad audience in
the evening. When Alexander the Great died in 323 B.C.E.,a backlash against anyLhing related to Alexander
led to trumped-up charges of impiety against Aristotle. Aristotle fled 10 Chaleis to avoid prosecution. He
only lived one year in Chalcis. dying of a stomach aiiment in 322 R k.

Avristotle wrote three types of works: these written for a popular audience. compilations of scieatific
facts, and systematic Lreatiscs. The systematic treatises included works on logie, philosophy. psychology.
physics, and natural history. Aristotle’s writings were preserved by a student and were hidden in a vanlt
where a wealthy book collector discovered them about 200 years later. They were taken to Rome, wherc
they were studied by scholars and issued in new editions, preserving them for posterity.
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Iox4+1=2
4, x+y=2z.

Sentences 1 and 2 arc not propositions because they are not declarative sentences. Sen-
tences 3 and 4 are not propositions because they are neither true nor false, since the
variables in these sentences have not been assigned values. Various ways to form propo-
sitions from sentences of this type will be discussed in Section L.3. <

Letters are used to denote propositions. just as letters are used to denote variables.
The conventional letters used for this purpose are p, g, r, s, .... The truth value of a
proposition is true, denoted by T.if it 1s a true proposition and false, denoted by F, if it is
a false proposition.

The area of logic that deals with propositions is called the propositional calculus
or propositional logic. [t was first developed systematically by the Greek philosopher
Aristotle more than 2300 vears ago.

We now turn our attention to methods for producing new propositions from those that
we already have. These methods were discussed by the English mathematician George
Boole in 1854 in his book The Laws of Thought. Many mathematical statements are
constructed by combining one or more propositions. New propositions, called compound
propositions, are formed from existing propositions using logical operators.

‘Links -

DEFINITION 1 Let p be a proposition. The statement
“It is not the case that p”

is another proposition, called the negation of p. The negation of g is denoted by
—p. The proposition —p is read “not p.”

EXAMPLE 3 Find the negaticn of the proposition
“Today is Friday.”

Extra and express this in simple English.
Examples

Solution: The negation is
“Tt 1s not the case Lhat today is Friday.”
This negation can be more simply expressed by
“Today is not Friday,”

or

“Itis not Friday today.” «
TABLE 1 The

Teutb Table for Remark: Strictly speaking, sentences involving variable times such as those in
the Negation Example 3 are not propositions unless a fixed time is assumed. The same holds for vari-
ofa able places unless a fixed place is assumed and for pronouns unless a particular person is

Proposition. assumed.
r -p A truth table displays the relationships between the truth values of propositions. Truth
T F tables are especially valuable m the determination of the truth values of propositions
F T constructed from simpler propositions. Table 1 displays the two possible truth values of

a proposition p and the corresponding truth values of its negation —p.
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The negation of a proposition can also be considered the resull of the operation of the
negation operator on a proposition. The negation operalor constructs a new proposition
from a single existing proposition. We will now introduce the logical operators that are
used to form new propositions from two or more existing propositions. These logical
operators are also called eonnectives.

Let p and g be propositions. The propasition “p and q,” denoted p A g. is the
proposition that is true when both p and g are true and is false otherwise. The
proposition p A g is called the conjunction of p and g.

The truth table for p A g is shown in Table 2. Note that there are four rows in this
truth table, one row [or each possible combinalion of truth values for the propositions p
and g.

Find the conjunction of the propositions p and g where p is the proposition “Today is
Friday” and g is the proposition “It is raining today.”

Solution: The conjunction of these propositions, p A g. is the proposition “Today is Fri-
day and it is raining today.” This proposition is true on rainy Fridays and 15 false on
any day that is not a Friday and on Fridays when it does not rain. <

Let p and g be propositions. The proposition “p or ¢,” denoted p V g,1s the propo-
sition that is false when p and g are both false and true otherwise. The proposition
p Vv g iscalled the disjunction of p and g.

The truth table for p v g is shown in Table 3.

The use of the connective or in a disjunction corresponds to one of the two ways
the word or is used in English, namely, in an inclusive way. A disjunction is true when at
least one of the two propositions is true. For instance, the inclusive or is being used in the
statement

“Students who have taken calculus or computer science can take this class.”

GEORGE BOOLE (1815-1864) Gceorge Boole, the sor af a cobbler. was born in Lincoln, England,
in November 1815. Because of his family’s difficult financial situation, Beole had to struggic w cducate
himself while supporting his lamily. Nevertheless, he became one of the most important mathematicians of
the 1800s. Although he considered a carecr as a clergyman. he decided instead to go into teaching and soon
afterward opencd a school of his own. In his preparation for teaching mathematics, Bovle—unsatisfied
with texthooks af his dav—dccided to read the works of the greal mathematicians While reading papers
of the great French mathematician Lugrange, Boole madc discoveries in the calculus of variations, the
branch of analysis dealing with finding curves and surtaces optimizing certain parameters.

In 1848 Boole published The Mathermatical Analysis of Logic, the first of his contributions to symbolic
fogic. In 1849 he was appointed professor of mathematics at Quecn's Collepe in Cork. Ireland. In 1854
he published The Lows of Theught, his most famous work. In this book Boole introduced whal is now
cilled Boolean algebra in his hapor. Boole wrole textbooks on differential equations and on difference
cquations that were used in Great Biitain until the end of the nineteenth century. Boole martried in 1855,
his wite was the niece of the professor of Greek at Queen's College. In 1864 Boole dicd from pneumonia,
which he contracied as a result of keeping a leclure engagement even though he was soaking wet from a
rainstorm.




EXAMPLE 5

E;tfa
Examples

DEFINITION 4

1.1 Logic 5

- -
TABLE 2 The Truth Table TABLE 3 The Truth Table
for the Conjunction of Two for the Disjunction of Two
Propositions. Propositions.
7 9 | pnrg 4 q pvq
T T J T T T T
T F F T F T
F T ' F F T T
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Herc, we mean that students who have taken both calculus and computer science can
take the class, as well as the students who have taken only one of the two subjects. On
the other hand. we are using the exclusive or when we say

“Students who have taken caiculus or computer science, but not both, can enroll
in this class.”

Here, we mean that students who have taken both calculus and a computer science couise
cannot take the class. Only those who have taken exactly one of the two courses can take
the class.

Stmilarly, when a menu at a restaurant states,“Soup or salad comes with an entrée,’
the restaurant almost always means that customers can have either soup or salad, but not
both. Hence, this is an exclusive, rather than an inclusive, or.

>

What is the disjunction of the propositions p and ¢ where p and ¢ are Lthe same propo-
sitions as in Example 47

Solution: The disjunction of p and ¢, p V ¢, Is the proposition
“Today is Friday or it is raining today.”

This proposition is truc on any day that is either a Friday or a rainy day (including rainy
Fridays). [t is only false on days that are not Fridays when it also does not rain. <

Aswas previously remarked, the use of the connective or in a disjunction corresponds
to one of the twa ways the word or is used in English, namely, in an inclusive way. Thus, a
disjunction is frue when at least one of the two propositions in it is (rue. Sometimes, we
use or in an exclusive sense. When the cxclusive or is used to connect the propositions
p and ¢, the proposition *p or g (but not both)” is obtained. This proposition is true
when pis true and q is false, and when p is false and g is true. Tt is false when both p and g
are false and when both are true.

Let p and g be propositions The exclusive or of p and g, denoted by p @ q,is the
proposition thal is true when exactly one of p and g is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed in Table 4.
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TABLE 4 The Truth Table TABLE 5 The Truth Table |
for the Exclnsive Or of Two for the Implication p — g.
Propositions.
p q | P—q

4 q pPeq T T T

T T F T F F

T F T F T T

F T T F F T

F F F -

IMPLICATIONS

We will discuss several other important ways in which propositions can be combined.

Let p and g be propositions. The implication p — g 15 the proposition that is
false when p is true and g is false, and true otherwise. In this implication p is
called the hypothesis (or antecedent or premise) and g is called the conclusion (or
consequence).

The truth table for the implication p — g is showninTable 5. Animplication is sometimes
called a conditional statement.

Because implications play such an essential role in mathematical reasoning, a variety
of terminology is used 1o express p — g. You will encounter most if not all of the fol-
lowing ways to express this implication:

“if p.theng” ~p implies g~

“ifpg” “ponlyifg”

" p is sufficient for g™ “a sufficient condition for g is p”
“gif p” “g whenever p”

“g when p” “g is necessary for p”

“a necessary condition for pis¢”  “g follows [rom p~

The implication p — ¢ is false only in the case thal p is true, but g is false. It is true when
both p and g are true, and when p is false (no maltter what truth value g has).

A useful way to understand the truth value of an implication is to think of an obli-
gation or a contract, For example, the pledge many paliticians make when running for
office is:

“If I am clected. then I will lower taxes.”

If the politician is elccted, voters would expect this politician to lower taxes. Furthermore,
if the politician is not elected, then voters will not have any expectation that this person
will lower taxes, although the person may have sufficient influence to cause those in power
to lower taxes. It is only when the politician is elected but does not lower taxes that voters
can say that the politician has broken the campaign pledge. This last scenario corresponds
to the case when p is true, but g is false in p — g.
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Similarly, consider a statement that a professor might make:

“If you get 100% on the final, then you will get an A.”

If you manage to get a 100% on the final, then you would expect to receive an A. If you
do not get 130% you may or may not receive an A depending on other factors. However,
if you do get 100%, but the professor does not give you an A, vou will feel cheated.

Many people find it confusing that “p only if g expresses the same thing as “if p
then g.” To rcmember this, note that “p only if g” says thal p cannot be true when g 1s
not truc. That is, the statement is false if p is true, but g is false. When p is false, ¢ may
be either true or false, because the statement says nothing about the truth value of ¢. A
common error is for people to think that “q only if p” is a way of expressing p — g.
However, these statements have different truth values when p and g have different truth
values.

The way we have defined implications is more general than the meaning attached to
implications in the English language. For instance, the implication

“If it is sunny today, then we will go to the beach.”

is an implication used in normal language, since there is a relationship between the hy-
pothesis and the conclusion. Further, this implication is considered valid unless it is indeed
sunny today, but we do not go to the beach. On the other hand, the implication

“If today is Friday, then 2+ 3 = 5.7

is truc from the definition of implication, since its cenclusion is true. (The truth value of
the hypothesis does not matter then.) The implication

“If today is Friday, then 2 +3 = 6."

is true every day cxcept Friday, even though 2 + 3 = 6 is false.

We would not use these last two implications in natural language {except perhaps
in sarcasm), since there is no relationship between the hypothesis and the conclusion in
either implication. In mathematical reasoning we consider implications of a more general
sort than we use in English. The mathematical concept of an implication is independent
of a cause-and-eftcet relationship between hypothesis and conclusion. Our definition of
an implication specifies its truth valucs; it is not based on English usage.

The if-then construction used in many programming languages is different from that
used in logic. Most programming languages contain statements such as if p then §,
where p is a proposition and § is a program segment (one or more statements to be
execuled). When execution of a program encounters such a statement, § is executed if p
is true, but § is not executed it p is false. as illustrated in Example 6.

What is the value of the variable x aficr the statement
if2+2=4thenx =x+1

tf x = 0 before this statement is encountered? (The symbol := stands for assignment.
The statement x := x + ! means the assignment of the value of x + 1 to x.)

Solution: Since 2 + 2 = 4 is true, the assignment statemenl x = x + | 15 executed.
Hence, x has the value ¥ + 1 = 1 after this statement is encountered. -
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CONVERSE, CONTRAPOSITIVE, AND INVERSE There are some related im-
plications that can be formed from p — g.The proposition g — p is called the converse
of p — q. The contrapositive of p — ¢ is the proposition —g -» —p. The proposition
—p — g is called the inverse of p — g.

The contrapositive, ~g — —p, of an implication p — ¢ has the same truth value
as p — g.To sce this, note that the contrapositive is false only when —p is false and
—g is true, that is, only when g is true and ¢ is false. On the other hand. neither the
converse, g — p,nor the inverse. —p — -g, has the same truth value as p — g for
alf possible truth values of p and g. To see this, note that when p is true and g is false,
the original implication is false, but the converse and the inverse are both true. When
two compound propositions always have the same truth value we cail them equivalenf,
so that an implication and its contrapositive are equivalent. The converse and the inverse
of an implication arc also equivalent. as the reader can verify, (We will study equivalent
propositions in Scction 1.2.) One of the most common Jogical errors is Lo assume that the
converse or the inverse of an implication is equivalent to this implication.

We illustrate the use of implications in Exampie 7.

What are the contrapositive. the converse, and the inverse of the implication

~The home team wins whenever it is raining.™?

Solution: Because “g whenever p” is onc of the ways to express the implication p — g,
the original statement can be rewriticn as

“If it is raining, then the home team wins.”
Conscquently, the contrapositive of this implication is

“if the home team does not win, then it is not raining.”
The converse is

“1f the home team wins, then it is raining.”
The inverse is

“If it is not raining, then the home team does not win.”

Only the contrapositive is cquivalent to the original statement. <

We now introduce another way to combine propositions.

Let p and g be propositions. The biconditional p <> ¢ is the proposition that is
true when p and g have the same truth values, and is false otherwise.

The truth table for p <> g is shown in Table 6. Note that the biconditional p «» g is true
precisely when both the implications p — ¢ and ¢ — p are true. Because of this, the
terminology

“pifand onlyif g™

is used for this biconditional and it is symbolically written by combining the symbols —
and <. There are some other common ways to express p < g:
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TABLE 6 The Truth Table for
the Biconditional p «~ q.

P q pPe=q
T T T
T F F
F T F
F F T

" p is necessary and sufficient for g7

“il p then ¢, and conversely”

“pifgr.
The last way of expressing the biconditional uses the abbreviation “iff” for *if and only
if.” Note that p <> g has exactly the same truth value as (p — g) A (g —> p).

Let p be the statement “You can take the flight” and let ¢ be the statement “You buy a
ticket.” Then p < g is the statement

“You can take the flight il and only if you buy a tickct.”

This statement is true if p and g are cither both true or both false, that is, if you buy a
ticket and can take the flight or if you do not buy a ticket and you cannot take the fight.
It is false when p and ¢ have opposite truth values, that is, when vou do not buy a ticket,
but you can take the flight {such as when you get a free trip) and when you buy a ticket
and cannot take the flight (such as when the airline bumps you). -

The *“if and only if” construction used in biconditionals is rarely used in common
language. Instead, biconditionals are olten expressed using an “if, then” or an “only if”
construction. The other part of the “if and only if” is implicit. For example, consider the
statement in English “}f you finish your meal, then you can have dessert.” What is really
meant is “You can have dessert if and only if you finish your meal.” This last statement
is logically equivalent to the two slatements “If you finish your meal, then you can have
dessert” and *You can have dessert, only if vou finish vour meal.” Because of this im-
preciston in natural language, we need to make an assumption whether a conditional
statement in natural language implicitly includes its converse. Because precision is es-
sential in mathematics and in logic, we will always distingoish between the conditional
statcment p — g and the biconditional statement p + g.

PRECEDENCE OF LOGICAL OPERATORS

We can construct compound propositions using the negation operator and the logical op-
erators defined so far. We will generally use parentheses to specify the order in which log-
ical operators in a compound propaosition are to be applied. For instance, (p v ¢} A (—r)
is the conjunction of p v ¢ and —r. However, to reduce the number of parentheses, we
specify that the negation operator is applied betore all other logical operators. This means
that —p A g is the conjunction of —p and ¢, namely, {(—p} A g, not the negation of the
conjunction of p and g, namely =(p A g).
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Another general rule of precedence is that the conjunction operator takes precedence
over the disjunction operator, so that p Ag v r means {(p Ag) Vr ratherthan pA{gVr}.
Because this rule may be difficult to remember, we will continue to use parentheses so
that the order of the disjunction and conjunction operators is clear.

Finally, it is an accepted rule that the conditional and biconditional operators —
and <> have lower precedence than the conjunction and disjunction operators, A and V.
Consequently, p vV g — r is the same as (p v ¢) — r. We will use parentheses when
the order of the conditional operator and biconditivnal operator is at issue, although the
conditional operator has precedence over the biconditional operator. Table 7 displavs the
precedence levels of the logical operators, —. ALV, —, and <.

TRANSLATING ENGLISH SENTENCES
There are many reasons to translate English sentences into expressions involving propo-
sitional variables and logical connectives. In particular, English (and every other human
language) is often ambiguous. Translating sentences into [ogical expressions removes the
amtbiguity. Note that this may involve making a set of reasonable assumptions based on
the intended meaning of the sentence. Moreover., once we have translated sentences {from
English into logical expressions we can analyze these logical expressions to determine
their truth values, we can manipulate them, and we can vse rules of inference (which are
discussed in Section 1.5) to reason about them.

To illustrate the process of translating an English sentence into a logical expression,
constder Exampies 9 and 10.

How can this English sentence be translated into a logical expression?

“You can access the Internet from campus only if you are a computer science
major or you are not a freshman.”

Solution: Therc are many ways to translate this sentence into a logical expression. Al-
though it is possible to represent the sentence by a single propositional variable, such
as p, this would not be useful when analyzing its meaning or rcasoning with it. Instead,
we will usc propositional variables to represent each sentence part and determine the
appropriate logical connectives between them. In particular, we let a, ¢, and f represent
“You can access the Internet from campus,” “You are a computer science major,” and
“You are a freshman,” respectively. Noting that “only if” is one way an implication can
be expressed, this sentence can be represented as

a-—lev-of) -«

How can this English sentencc be translated into a logical expression?

“You cannot ride the roller coaster if you are under 4 feet tall uniess you are
older than 16 years old.”

Solution: There are many ways to translate this sentence into a logical expression. The
simplest but least uselul way is simply to represent the septence by a single propcsitional
variable, say, p. Although this is not wrong, doing this would not assist us when we try
to analyze the sentence or reason using it. More appropriately, what we can do is lo
use propositional variables to represent cach of the sentence parts and to decide on the
appropriate logical connectives between them. In particular, we let g.r, and s represent
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“You can ride the roller coaster,” “You are under 4 teet tall,” and *““You are older than 16
years old,” respectivcly. Then the sentence can be translated to
(r A—s) — —g.

Of coursc, there are other ways to represent the original sentence as a logical expres-
sion, but the one we have used should meet our needs. L

SYSTEM SPECIFICATIONS

Translating sentences in natural language (such as English) into logical expressions is an
essential part of specifying both hardwarc and softwarc systems. System and software
cngincers take requirements in natural language and produce precise and unambiguous
specifications that can be uscd as the basis for system development. Example 11 shows
how propositional expressions can be used in this process.

Express the specification “The automated reply cannot be sent when the file system is
full” using logical connectives.

Solittion: One way to translate this is to let p denote “The automated reply can be sent”
and g denote “The file system is full.” Then —p represents “It is not the case that the
automated reply can be sent,” which can also be expressed as “The automated reply
cannot be senl.” Consequently, our specification can be represented by the implication
q— —p. «

System specilications should not contain conflicting requirements. 1f they did there
would be no way to develop a system that satisfies all specifications, Consequently, propo-
sitional expressions representing these specifications nced to be consistent. Thal is, there
must be an assignment of truth values to the variables in the exprcssions thal makes all
the expressions true.

Determine whether these system specificalions are consistent:

“The diagnostic message is stored in the buffer or it is retransmitted.”
“The diagnostic message is not stored in the buffer.”
“If the diagnostic message is stored in the butfer, then it is retransmitted.”

Solurion: To determine whether these specifications are consistent, we first express them
using logical expressions. Let p denate “The diagnostic message is stored in the buffer”
and let g denote “The diagnostic message is retransmitted.” The specifications can then
be written as p V ¢, —p,and p — ¢. An assignment of truth values that makes all three
specifications true must have p false to make —p true. Since we want p Vv ¢ to be true
but p must be false, g must be true. Because p — g is truc when p is false and g is true,
we conclude that thesc specifications are consistent since they are all truc when p is false
and g is true. We could come to the same conclusion by use of a truth table to examine
the four possible assignments of truth values to ;2 and gq. 4

Do the system specifications in Example 12 remain consistent if the specification “The
diagnostic message is not retransmitted” is added?
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Solution: By the reasoning in Example 12, the three specifications from that example are
true only in the case when p is false and ¢ is true. However. this new specification is —g,
which is false when ¢ is true. Consequently, these four specifications arc inconsistent.

BOOLEAN SEARCHES

Logical connectives are used extensively in searches of large collections of information,
such as indexes of Web pages. Because these searches employ techniques from proposi-
tional logic, they are called Boolean searches.

In Boolean searches, the connective AND is used 1o match records that contain both
of two search tcrms, the connective OR is used to match one or both of two search
terms, and the connective NOT (sometimes written as AND NOT) is used to exclude
a particular search term. Careful planning of how logical connectives are used is often
required when Boolean searches are used to locate information of potential interest.
Example 14 illustrates how Boolean searches are carried oult.

Weh Page Searching. Most Web search engines support Boolean searching techniques,
which usually can help find Web pages about particular subjects. For instance, using
Boolean searching to find Web pages about universitics in New Mexico, we can look
for pages matching NEW AND MEXICO AND UNIVERSITIES. The results of this
search will include those pages that contain the three words NEW, MEXICO, and UNI-
VERSITIES. This will include all of the pages of interest, together with others such as
a page about new universities in Mexico. Next, to Fnd pages that deal with universities
in New Mexico or Arizona, we can search for pages matching (NEW AND MEXICO
OR ARIZONA) AND UNIVERSITIES. (Nore: Here the AND operator takes prece-
dence over the OR operator.) The resuits of this search will include all pages that contain
the word UNIVERSITIES and either both the words NEW and MEXICO or the word
ARIZONA. Again, pages besides thosc of interest will be listed. Finally, to iind Web
pages that denl with universities in Mexico (and not New Mexico), we might first look
for pages matching MEXICO AND UNIVERSITIES, but since the results of this search
will include pages about universities in New Mexico, as well as universities in Mexico, it
might be better to search for pages matching (MEXICO AN} UNIVERSITIES) NOT
NEW. The results of this search include pages thal contain both the words MEXICO and
UNIVERSITIES but do not contain the word NEW. «

LOGIC PUZZLES

Puzzles that can be solved using logical reasoning are known as logic puzzles. Solving logic
puzzles is an excellent way to practice working with the rules of logic. Also, computer
programs designed to carry out logical reasoning often use well-known logic puzzles to
illustrate their capabilities. Many people enjoy solving logic puzzles, which are published
in books and periodicals as a recreational activity.

We will discuss two logic puzzles herc. We begin with a puzzle that was originally
posed by Raymond Smullyan, a master of logic puzzles, who has published more than a
dozen books containing challenging puzzles that involve logical reasoning,

In [Sm78] Smullyan posed many puzzles about an island that has two kinds of inhabi-
tants, knights, who always tell the truth, and their oppusites, knaves, who always lic. You
encounter two people A and B. What are A and B if A says “B is a knight™ and B says
“The two of us are opposite types™?
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Solution: Let p and g be the statements that A is a knight and B is a knight, respectively,
sothat —p and —q are the statements that A is a knave and that B is a knave, respectively.

We first consider the possibility that A is a knight; this is the statement that p is true.
If A is a knight, then he is telling the truth when he says that B is a knight, so that g is
true, and A and B are the same type. However, if B is a knight, then B’s statement that
A and B are of opposite types, the statement (p A —g) vV (—p A g), would have to be
true, which it is not, because A and B are both knights. Consequently, we can conclude
that A is not a knight, that is, that p is false.

If A is a knave, then because everything a knave says is false, A’s statement that B is
a knight, that is, that ¢ is true, is a lie, which means that ¢ is false and B is also a knave.
Furthermore, if B is a knave, then B’s statement that A and B are opposite types is a lie,
which is consistent with both A and B being knaves. We can conclude that both A and B
are knaves. «

We pose more of Smullyan’s puzzles about knights and knaves in Exercises 51-55 at
the end of this section. Next, we pose a puzzle known as the muddy children puzzle for
the case of two children.

A father tells his two children, a boy and a girl, to play in their backyard without geltting
dirty. However, while playing, both children get mud on their foreheads. When the children
slop playing, the father says “At least one of you has a muddy forehead,” and then asks
the children to answer “Yes” or “No™ o the question: “Do you know whether you have a
muddy forehead?” The father asks this question twice. What will the children answer each
time this question is asked, assuming that a child can see whether his or her sibling has
a muddy forehead, but cannot see his or her own forehead? Assume that both children
are honest and that the children answer each question simultaneously.

Solution: Let s be the statement that the son has a muddy forehead and let 4 be the
statement that the daughter has a muddy forehead. When the father says that at least

RAYMOND SMULLYAN (BORN 1919) Raymond Smullyan dropped ont of high scbool. He wanted
to study what he was really interested in and not standard high school material. After jumping from one
university to tbe next, he earned an undergraduate degree in mathematics at the University of Chicago
in 1955. He paid his college expenscs by performing magic tricks at parties and clubs. He obtained a
Ph.D. in logic in 1952 at Princeton, studying under Alonzo Church. After graduating from Princelon, he
taught mathematics and logic at Darimouth College, Princeton University, Yeshiva University, and the
City University of New York. He joined the philosophy department at Indiana University in 1981 where
he is now an cmcritus professor.

Smullvan has written many books on recreational logic and mathematics, including Satan, Cantor,
and Infinity; What Is the Name of This Book?; The Lady or the Tiger?; Alice in Puzzleland; To Mock a
Mockingbird; Forever Undecided; and The Riddle of Scheherazade: Amazing Logic Puzzles, Ancient and
Modern. Because his logic puzzles are challenging, entertaining, and thought-provoking, he is considercd
to be a modern-day Lewis Carrell. Smullyan has also written several books about the application of
deductive logic to chess, three collcctions of philosophical essays and aphorisms. and several advanced
books on mathematical logic and set theory, He is particularly interested in self-referenee and has worked
on extending some of Godel’s results that show that it is impossible to writc a computcr program that can
solve all mathematical problems. He is also particularly intcrested in cxplaining ideas from mathematical
logic to the public.

Smullyan is a talented musician and often plays piano with his wife, who is a concert-level pianist.
Making telescopes is one of his hobbies. He is also interested in optics and sterec photography. He states
“I’ve never had a conflict between teaching and research as some people do because when I'm teaching,
I'm doing rescarch.”
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TABLE 8 Table for the Bit Operators Ok,
AND, and XOR.

T

one of the two children has a muddy forehead he is stating that the disjunction s v d is
true. Both children will answer “No” the first time the question is asked beecause each
sees mud on the other child’s forehead. That is, the son knows that d is true, but does
not know whether s is true, and the daughter knows that s is true, but does not know
whether d is true.

After the son has answered “No" to the first question, the daughter can determine
that d must be true. This follows because when the first question is asked, the son knows
that s v d is true, but cannot determine whether s is true. Using this information, the
daughter can conclude that d must be true, for if  were false, the son could have reasoned
that because § Vv d is true, then § must be true, and he would have answered “Yes™ to the
first question. The son can reason in a similar way to detcrmine that s must be true. Tt
follows that both children answer “Yes” the second time the question is asked. 4

LOGIC AND BIT OPERATIONS

Computers represent information using bits. A bit has two possible values, namely, (}
{zero)} and 1 (onc). This meaning of the word bit comes from binary digit, since zeros and
ones are the digits used in binary representations of numbers. The well-known statistician
John Tukey introduced this terminology in 1946. A bit can be used to represent a truth
value, since there are two truth values, namely, true and false. As is customarily done, we
will use a 1 bit to represent true and a 0 bit to represent false. That is, 1 represents T (true),
O represents F (false). A variable is called a Boolean variable if its value is either true or
false. Consequently. a Boolean variable can be represented using a bit,

Computer bit operations correspond to the logical connectives. By replacing true by
aone and false by a zero in the truth tables for the operators A, V,and &, the tablesshown
in Table 8 for the corresponding bit operations are obtained. We wili also use the notation
OR, AND, and XOR for the operators v, A, and 9, as is done in various programming
languages.

Information is often represented using bit strings, which are sequences of zeros and
ones. When this is done. operations on the bit strings can be used to manipulate this
information.

A bit string is a sequence of zero or more bits. The length of this string is the number
of bits m the string.

101010011 is a bit string of length nine. L

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND,
and bitwise XOR of two strings of the same length to be the strings that have as their bits
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the OR, AND, and XOR of the corresponding bits in the two strings, respectively. We use
the symbols v, A, and @ to represent the bitwise OR, bitwise AND, and bitwise XOR
operations, respectively. We illusirate bitwise operations on bit strings with Example 18.

EXAMPLE 18 Kind the bitwise OR, bitwise AND, and bitwise XYOR of the bit strings 01 1011 0110 and
11 0001 1101. (Here, and throughout this book, bit strings will be split into blocks of four
bits to make them easier to read.)

Selution: The bitwise OR, bitwise AND, and bitwise XQR of these strings are obtained
by taking the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1110

111011 1111 bitwise OR
(1 0001 0100 bitwise AND

16 1010 1011 bitwise XOR «
Exercises
1. Which of these sentences are propositions? Whal are 2. Which of these are propositions? What are the truth
the truth values of those thar are propositions? vilues of those that are propositions?
a) Boston is the capital of Massachusetts. a) Do not pass go. b) What time is it?
b) Miami is the capital of Florida. ¢) There are no black flies in Maine.
¢ 2+3=5. d) 5+7=10. d) 4+x=5.
€ x+2=IL f) Answer this question. e) x+1l=5ifr=1,
g) r+ vy = y+ x for every pair of real numbers x 0 x+y=ytzifr=z
and y. .

JOHN WILDER TUKEY (1915-2000) Tukey,bornin New Bedford, Massachusetts, was an only child.
His parents, both teachers, decided home schooling would best develop his potential. His formal education
began at Brown University, where he studied mathematics and chemistry, He received a master’s degree
in ehemistry from Brown and continued his studies at Prineeton University, changing his field of study
tfrom chemistry to mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when
he was appointed an instructor in matfiematies at Princeton. With the start of World War T1, he joined
the Fire Control Research Office, wbere he began working in statistics Tukey found statistieal research
ta his liking and impressed several leading statisticians with his skills. In 1945, at the conelusion of the
war, Tukey returned to the mathematies department at Princeton as a professor of statistics, and he also
took a position at AT&T Bell Laboratories. Tukey founded the Statistics Department at Princeton in
1966 and was its Hirst chairman. Tukey made significant contributions to many areas of statisties, including
the analysis of variance, the estimation of spectra of time series, inferences about the values of a set of
parameters from a single experiment. and the philosophy of statistics. However. he is best known for his
invention, with J. W. Cooley. of the fast Fourier transform.

Tukey contributed his insight and expertise by serving on the President’s Science Advisory Commit-
tee. He chaired several important committees dealing with the environment, education. and chemicals
and health. He also served on committees working on nuclear disarmament. Tukey received many awards,
including the National Meda! of Science.

Links

HISTORICAL NOTE There were several other supgested words for a binary digit, including binit
and bigir, that never were widely accepted. The adoption of the word bir may be due to its meaning as
a common English word. For an account of Tukey’s coining of the word bit, see the April 1984 issue of
Annals of the History of Computing.
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What is the negation of each of these propositions?

a) Today is Thursday.

b) There is no pollution in New Jerseyv.

¢ 2+1=13

d) The summer in Maine is hot and sunny.

Let p and g be the propusitions

p . I bought a lottery ticket this week.
¢ + T won the million dollar jackpot on Friday.

Express each of these propositions as an English sen-
tence.

a) —p b) pvg ) p—>g
&) prqg e) per g B =p——g
gl pr—g Wy —-pvipag)

. Let p and ¢ be the propositions “Swimming at the

New Jersey shore is allowed™ and “Sharks have been
spotted near the shore,” respectively. Express each of
these compound propositions as an English sentence.

a) —g b) prg c) ~pvyg
d)p—>—y¢ € —~g—p B —p—> g
gl pe—g ) —pA(pY—g)

. Let p and ¢ be the propositions “The election is de-

cided” and “The votes have been counted,” respec-
tively. Express each of these compound propositions
as an English sentence.

ay —p b) pvg ) —pAg
dg—p e) ~g — —p ) -p— g
g p+g h) =gvi~pAg)

. Let p and ¢ be the propositions

p 1t is below freezing.

g o It is snowing,
Write thesc propositions using p and ¢ and logical
connectives.

a) Itis below freezing and snowing.

by 1t is below freezing but not snowing.

¢) Ttis not below freezing and it is not snowing.

d) It is either snowing or beiow freezing (or both).

e) Ifitis below freezing, it is also snowing.

) 1t is either below freezing or it is snowing, but it
is not snowing if it is below freezing,

g) Thatitisbelow freezingis neccssary and sufficient
fur it to be snowing.

Let p, g, and r be the propositions

P You have the fiu,
g - You miss the final examination.
r : You pass the course.

Lxpress cach of these propositions as an English sen-
tence.

a) p—yg b) ~g & r

¢) g ——r d) pvgvr

e) (p— —ryvig—> —-r)

) (pAgyvi—gnrr)

9. Let p and ¢ be the propositions

10.

11.

p : You drive over 65 miles per hour.
g : You get a speeding ticket.

Wrile these propositions using p and ¢ and logical

connectives.

a) You do not drive over 85 miles per hour,

b) You drive over 63 miles per hour, but you do not
gel a speeding ticket.

¢} You will get a specding ticket if you drive over 65
miles per hour.

d) If you do not drive over 65 miles per hour, then
you will not get a speeding ticket.

e) Driving over 65 miles per hour is sufficient for
getting a speeding ticket.

f) You get a speeding ticket, but you do not drive
over 65 miles per hour.

g) Whenever vou get a speeding ticket, you are driv-
ing over 65 miles per hour.

Let p, g. and r be the propositions

£ You get an A on the final exam.
g : You do every exercise in this book,
r : You get an A in this class.

Write these propositions using p. 4, and r and logical
connectives,

a) You get an A in this class,but you do not do every
exercise in this book.

b) You get an A on the final, you do every cxercise
in this book, and you get an A in this class,

¢) To get an A in this class, it is necessary for you to
get an A on the final.

d} You gel an A on the final. but vou don’t do every
cxercise in this book: nevertheless, you get an A
in this ¢lass,

¢) Getting an A on the final and doing every exercise
in this book is sufficicnt tor getting an A in this
class,

b You will get an A in this class if and only if you
cither do every excrcise tn this book or you gel
an A on the final.

Let p.g.and r be the propositions

p : Grizzly bears have been seen in the arca.
4 : Hiking is safc on the trail.
r : Berries arc ripe along the trail.

Write these prapositions using g, ¢, and r and logical

connectives.

a) Berries are ripe along the trail, but grizzly bears
havc not been seen in the area.

b) Grizzly bears have not been seen in the area and
hiking on the trail is safe,but berries are ripe along
the trail.

¢) If berries are ripe along the trail, hiking is safe if
and only if grizzly bears have not been seen inthe
area.
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d) Itis not safe to hike on the trail. but grizzly bears
have not bcen seen in the area and the berries
along the trail are ripe.

e) For hiking on the (rail to be safe, it is necessary
but not sufficient that berres not be ripe along the
trail and for grizzly bears not to have been seen
in the area.

f) Hiking is not sate on the trail whenever grizzly
bears have been scen in the area and berries are
ripe along the trail.

. Deiermine whether these biconditionals are true or

false.

a) 2+2=4ifandonlyifl1 +1=2.

b) 1+1=2ifandonlyif2+3=4.

¢) Itis winter if and only if it is not spring, summer,
or fall.

d) | +1 =3iland only if pigs can fy.

e) 0> lifandonlyif2 > 1.

Determine whether each of these implications is true

or false.

a) If14+1=2then2+2=3.

b) If 1 +1=3then2+4+2 =4,

¢y I14+i=3then242 =35

d) I pigscanfily then 1 +1=23.

ej ILf 1 +1 = 3, then God exists.

N If1 41 =3, then pigs can fly.

g) If | + 1 =2 then pigs can fly.

h) If2+2=4,thenl4+2=3.

For each of these sentences, determine whether an

inclusive or an ¢xclusive or is intended. Explain your

ANSwWer.

a} Expcrience with C++ or Java is required.

b) Lunch includes soup or salad.

¢) To enter the country vou nced a passport or a
voter registration card.

d) Publish or perish.

. For each of these sentences, state what the sentence

means if the or is an inclusive or (that is,a disjunction))

versus an exclusive or. Which of these meanings of or

do you think is intended?

a) To take discrete mathematics, you must have
taken calculus or a course in computcr science.

b) When you buy a new car rom Acme Motor Com-
pany, you get $2000 back in cash or a 2% car loan.

¢) Dinner for two includes two items from column
A or three itcms from column B.

d) School is closed if more than 2 feet of snow falls
or if the wind chill is below —100.

Write each of these statements in the form “if p, then

¢ in English. (Hint: Refertothe list ol common ways

to express implications provided in this section.)

a) It is necessary to wash the boss’s car to get pro-
moted.

b) Winds from the south imply a spring thaw.

¢) A sufficient condition for the warranty to be good

17
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is that vou bought the computer less than a year
aga.

d) Willy gets caught whenever he cheats.

e} You cap access the website only if you pay a sub-
scription fee.

I} Geuting elected follows from knowing the right
people.

g} Carol gets seasick whencver she is on a boat.

Write cach of these statements in the form “if p,

then ¢” in English. (Hint: Refer to the list of com-

mon ways (o express implications provided in this

section.)

a) Itsnows whenever the wind blows from the north-
east,

b) The apple trees will bloom if it stays warm for a
week.

¢) That the Pistons win the championship implies
that they beat the Lakers.

d) T1is necessary to walk 8 miles to get to the top of
Long's Peak.

¢} To get tenure as a professor, it is sufficient to be
world-famous.

£y If vou drive more than 400 miles, vou will need to
buy zasoline.

g) Your guarantee is good only if you bought your
CD player less than 90 days ago.

18. Write each of these statements in the form “if p,

19.

then ¢ in English. (Hinr: Refer to the list of com-

mon ways to cxpress implications provided in this

section.)

a) 1 will remember to send vou the address only if
you send me an e-mail message,

b) To be a cilizen of this country, it is sufficient that
you were born in the United States.

¢} If vou kccp your textbook, it will be a useful ref-
erence in your future courses.

d) The Red Wings will win the Stanley Cup if their
goalie plays well.

€) Thatyou get the job implies that you had the best
credentials.

f) The becach erodes whenever there 1§ a storm.

g) Itis necessary to have a valid password to log on
to the server.

Wrile each of these propositions in the form * p if and

only if ¢~ in English.

a) Ifitis hot outside you buy an ice cream cone, and
if you buy an ice cream cone it is hot outside.

b) For you to win the contest it is necessary and sul-
ficient that you have the only winning ticket.

¢) You get promoted only if you have connections,
and you have conneclions only if you get pro-

moted.
d) If you walch television your mind will decay, and
conversely.

e) The trains run late on exactly those days when 1
take it.
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a) p— g b} -p < ¢
o (p—giviop—g)
d) (p—g)r(-p—>gq)

20, Write each of these propositions in the form* p if and

only if ¢” in English.

a) For vou fo get an A in this course, it is nccessary
and sufficient that you learn how to solve discrete e) (prq)Vvi{~pq)
mathematics problems. £} 1=p < —g) > (pgl

b) If you read the newspaper every day, vou will be 28. Construct a truth table for each of these compound
informed, and conversely. propositions.

¢} Ttrains if 1t is a weekend dav, and it is a2 weekend
day if it rains.

d) You cansee the wizard only if the wizard is not in,
and the wizard is not in only if you can sce him,

by ipvyg)nr
) (prgyvr d) (pAgrr
e){pvgir—r £) (prg)v—r

29. Construct a truth table for each of these compound

Aipvegivr

21. State thc converse, contrapositive, and inverse of

o propositions.
each of these implications.
. . . ay p—= (—~gwvn

a) I it snows today, [ will ski tomorrow. b) —p— (g —>r)
b) T come to class whenever there is going to be a Q) (p gy i=p )

qwz. - L . A (p=a@)A(-p=7)
¢} A positive integer is a prime only if it has no divi- &) (pog)vimg <)

sors other than 1 and itself. f) (—po —g) +» (g © 1)

22. State the comverse, contraposilive, and inversc of 30. Construct a truth table for ((p — g) —» 7} — s.

cach of these implications. 31. Construct a truth table for (p «» g) < (r + 5).

a) IFit snows tonight, then [ will stay at home. 32. Whatis the value of x after each of these statcments is

L

¥

b) 1 go to the beach whenever it is a sunny summer
day.

¢} When 1 stay up late, it is necessary that I sleep
until noon.

Construct a truth table for each of these compound

propositions.

a pA-p by pv-—p

o) (pvyg)—>g d) (pvyg)— (prg)

e) (p>g) (g~ —p)

Hh (p—=gi—>@—p

Construct a truth table for cach of these compound

propositions.

a) p—>-p b) p < —p

A pDpvy) d) (prg) > pvg)

e) g > —~pler{poy)

) (p=g)®(pe—q)

Construct a ¢ruth table for each of these compound

propositions.

) (pvg)—{(pdgy
by (p®q) > (pAg

]

h

cncountered in a compuler program, if x = | before
the statement is reached?

ay fl+2=3themx:=x+ 1

b) if(l+1=3)0OR((2+2=3thenx:=x 1

¢) f(24+3=5)AND 3 +4 =T thenx :=x+1
dy if(l+1=2)XOR(1+2=3thenx:=x+1
e) ifr «2thenx :=x + 1

Find the bitwise OR, bitwisc AND, and bitwise XOR
of each of these pairs of bit strings.

a) 1011110, 010 0001

by 11110000, 1010 1010

¢} 0001110001, 100100 1000
d) 11111 1111, 00 0040 0000

Evaluate each of these expressions.

a) 11000 ~ (01011 v 1 1011)
b) (01111 A 10101) v 0 LODO
¢} 0 1010@ 1 1011) &0 1000
d) (11011 v 01010} A (10001 v 11011

Fuzzy logic s used in artificial iutelligence. In fuzzy logic,

a proposition has a truth value that is a number between
0 and 1, inclusive. A proposition with a truth value of (!
is false and one with a truth value of 1 is true. Truth val-
ucs that are betwecn () and | indicate varying deprees of
truth. For instance, the truth value 0.8 can be assigned to
the statement “Frcd is happy.” sincc Fred is happy most
of the time, and the truth value 0.4 can be assigned 1o the
statement “John is happy,” since John is happy slightly
less than half the time.

o v Bpag)
d) (pog)B(—poq)
e) (peog)d(—p+——r)
D (p®g) = pd—g
26. Constrnct a truth table for cach of these compound
propositions.

a) pdbp b) p&—p
) pe—y d) ~p® g
e) (pdyg)vp&d-yg)
0 (pDg) A (pD—g)
27. Construct a truth table for each of these compound
propositions.

35. The truth value of the negation of a proposition in
fuzzy logic is | minus the truth value of the propo-
sition. What are the truth values of the statements
“Fred is not happy” and *John is not happy™?
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*39

The truth value of the conjunction of two propositions
in fuzzy logic is the minimum of the truth values of
the two propositions. What are the truth values of the
stalements “Fred and John are happy” and ~Neither
Frcd nor John is happy™?

The truth value of the disjunction of two propositions
in fuzzy logic is the maximum of the truth values of
the two propositions. What are the truth values of
the statements “Fred is happy. or John is happy” and
“Fred is not happy, or John is not happy™?

Is the assertion “This statement s false™ a proposi-
tion?

The nth statcment in a list of 100 statemenis is “Ex-
actly » of the statements in this list are false.”

a) What conclusions can you draw from these state-
ments?

b) Answer part (a) if the #th statement is “At least »
of the statcments in this list are false.”

¢) Amnswer part (b) assuming that the list contains 99
statements.

40. An ancient Sicilian legend says that the barher in a

41

42,

43

v

remote town who can be reached only by traveling
a dangerous mountain road shaves those people, and
only those people, who do not shave themselves. Can
there be such a barber?
Each inhabitant of a remotc village always tells the
truth or always lies, A villager will only give a*Yes” or
a“No” response 10 a question a lourist asks. Suppose
you are a tourist visiting this arca and come to a fork
in the road. One branch leads to the ruins you want
to visit; the other branch Jeads deep into the jungle. A
villager is standing at the fork in the road. What one
question can you ask the villager 1o determine which
branch to take?
Anexploreris captured by a group of cannibals. There
are two types of cannibals—those who always tell the
truth and those who always lie. The cannibals will bar-
becue the explorer unless he can determine whether
a particular cannibal always lies or always tells the
truth, He is allowed to ask the cannibal exactly one
question.
a) Explain why the question "Are you a liar?” does
not work.
b) Find a question that the cxplorer can use to deter-
mine whether the cannibal always lies or always
tells the truth,

Express these svstem specifications using the propo-
sitions p “The message is scanncd for viruses™ and ¢
“The message wus sent from an unknown system” to-
gether with logical connectives.

a) “The messuge is scanned for viruses whenever the
message was sent from an unknown system.”

h) “The message was scat from an unknown system
but it was not scanned for viruses.”

E

45

46.

47,

48.

50.
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¢} “It is necessary to scan the message for viruses
whencver it was scnt from an unknown system.”

d) “When a message is not sent from an unknown
system it is not scanned for viruses.”

Express these system specifications using the propo-

is granted,” and r “The user has paid the subscription
fee™ and logical connectives.

a) “The user has paid the subscription fee, but does
not ¢nter a valid password.”

b) “Access is granted whenever the user has paid the
subscription fee and enters a valid password.”

¢) “Access is denied if the uscr has not paid the sub-
scription fee.”

d) “If the user has not entered a valid password
but has paid the subscription fee, then access is
granted.”

Are these system specitications consistent? “The sys-
tem is in multiuser state if and only if it is operating
normally, If the system is operating normally, the ker-
nel is functioning. The kernel is not functioning or the
syslem isininterrupt mode. If the system is notin mul-
tiuser state, then it is in interrupt mode. The system
is nol in interrupt mode.”

Are these system specifications consistent? “When-
ever the svstem softwarc is being upgraded, users can-
not access the file system. If users can access the file
systerm, then they can save new files. If users cannot
save new files, then the system softwarc is not being
upgraded.”

Are these system specilications consistent? “The
router can send packets to the cdge system only if
it supporls the new address space, For the router to
support the new address space it is necessary that the
latest software release be installed, The router can
send packets to the edge system if the latest software
release is installed. The router does not support the
new address space.”

Are these system specifications consistent? “If the
tile system is not locked, then new messages will be
queued. If the file svstem is not locked, then the sys-
tem is functioning normally, and conversely. If new
messages are not quened, then they will be sent to the
message buffer. If the file system is not locked, then
new messages will be sent to the message buffer. New
messages will not be sent to the message buffer.”

49, What Boolean search would you use 1o look for Web

pages about beaches in New Jersey? What if you
wanted to find Wcb pages about beaches on the isle
of Jersey {in the English Channel)?

What Boolean search would you use to look for Web
pages about hiking in West Virginia? What if you
wanted to find Web pages about hiking in Virginia,
but not in Wcst Virginia?
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Exercises 51-55 relate to inhabitants of the island of
knights and knaves created by Smullyan, where knights
always tell the truth and knaves always lie. You encounter
two people, A and B. Determine, if possible.what 4 and B
are if they address you in the ways described. Tf you can-
not determine what these two people are, can you draw
any conclusions?

51. A says "At least one ol us is a knave” and B says
nothing.

52, A says “The two of us are both knights” and B says
“4is a knave.”

53. A says “I am a knave or B is a knight” and B says
uothing,

54. Both A and B say “I am a knight.”

55. A says“We are both knaves” and B says nothing,

Exercises 5661 are puzzles that can be solved by trans-
lating statements into logical expressions and rcasoning
from these expressions using truth tables,

56. The police have three suspects for the murder of
Mr. Cooper; Mr, Smith, Mr. Jones, and Mr. Williams.
Smith. Jones, and Williams each declare that they did
not kill Cooper. Smith also statcs that Cooper was a
friend of Jones and that Williams disliked him. Jones
also states that he did not know Cooper and that he
was out of town the day Cooper was killed. Williams
also states that he saw both Smith and Joues with
Cooper the day of the killing and that either Smith
or Jones must have killed him. Can vou determine
who the murderer was if

a) one of the three men is guilty, the two innocent
men are telling the truth, but the statements of
the guilty man may or may not be true?

b) innocent men do not lic?

. Steve would like to determine the relative salaries of
three coworkers using two facts. First, he knows that
if Fred isnol the highest paid of the three, then Janice
is. Second, he knows that if Jauice is not the lowest
paid, then Maggie is paid the most. Is it possible to
determine the relative salaries of Fred. Maggie. and
Janice from what Steve knows? If so, who is paid the
most and who the least? Explain your reasoning.

. Five friends have access to a chat room. Is it pos-
sible to determine who is chatting if the following
information is known? Either Kevin or Heather, or
both, are chatting. Either Randy or Vijay, but not
both, are chatting. It Abby is chatting, so is Randy.

59.

60

*61.
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Vijay and Kevin are either both chatting or neither is.
If Heather is chatting, then so are Abby and Kevin.
Explain your reasoning.

A detective has interviewed four witnesses 10 a crime.
From the stories of the wituesses the detective has
concluded that if the butler is telling the truth then so
is the cook:the cook and the gardener cannot both be
telling the truth; the gardener and the handyman are
notboth lying: and if the handyman is telling the truth
then the cook is lying. For each of the four witnesses,
can the detective determine whether that person is
telting the truth or tylng? Explain your reasoning.
Four friends have been identified as suspects for an
unauthorized access into a computer system. They
have made statcments to the investigating authori-
tics, Alice said ~Carlos did it.” John said “T did not
do it.” Carlos said “Diana did it.” Diana said “Carlos
lied when he said that T did it.”

a) If the authorities also know that exactly one of
the four suspects is telling the truth, who did it?
Explain your reasoning,

b) If the authorities also know that exactly one is
lying, who did it? Explain your reasoning.

Solve this famous logic puzzle, attributed to Albert
Einstein, aud known as the zebra puzzle. Five men
with different nationalities and with different jobs
live in consecutive houses on a street. These houses
are painted different colors. The men have different
pets and have different favorite drinks. Deternune
who owns a zebra and whosc favorite drink is min-
eral water (which is one of the favorite drirks) given
these clues: The Englishman lives in the red house.
The Spaniard owns a dog. The Japanese man is a
painter. The Italian drinks tea. The Norwegian lives
iu the first house on the left. The green house is on
the right of the white one. The photographer breeds
snails. The diplomat lives in the vellow house. Milk is
drunk in the middle house. The owner of the green
house drinks coffee. The Norwegian’s house is next lo
the blue onc. The violinist drinks orange juice, The fox
is in a house next to that of the physician. The horse is
in a house next 1o that of the diplomat. (Hint: Make a
table where the rows represent the men and columns
represent the color of their houses, their jobs, their
pets, and their favorite drinks and nse logical reason-
ing to determine the correct entries in the table.)

INTRODUCTION

An important type of step used in a mathemalical argument is the replacement of a
statement with another statement with the same truth value. Beeause of this, methods
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that produce propositions with the same truth value as a given compound proposition
are uscd extensively in the construction of mathematical arguments.

We begin our discussion with a classification of compound propositions according to
thejr possible truth values.

A compound proposition that is always true, no matter what the truth values of the
propositions that occur in it, is called a mutology. A compound proposition that is
always false is called a contradiction. Finally,a proposition that is neither a tautology
nor a contradiction is called a contingency.

Tautologics and contradictions are often important in mathematical reasoning. The fol-
lowing example illustrates these types of propositions.

We can construct exampies of tautologies and contradictions using just one proposition.
Consider the truth tables of p v —p and p A —p, shown in Table 1. Since p v —p is
always true, it is a tautology. Since p A —p is always false, it is a contradiction. -«

LOGICAL EQUIVALENCES

Compound propositions that have the same truth values in all possible cases arc called
logically equivalent. We can also definc this notion as follows.

The propositions p and g are called logically equivalent il p < g is a tautology.
The notation p = g denotes that p and g are logically equivalent.

Remark: The symbol = is not a logical connective since p = ¢ is not a compound
proposition, but rather is the statement that p < g is a tautology. The symbol < is
sometimes used instead of = to denote logical equivalence.

One way to determine whether two propositions are equivalent is to use a truth table.
In particular, the propositions p and g are equivalent if and only if the columns giving
their truth values agree. The following example illustrates this method.

Show that —=(p Vv ¢) and —p A —g are logically equivalent. This equivalence is one of
De Morgan’s laws for propositions, named after the English mathematician Augustus
De Morgan, of the mid-nineteenth century.

TABLE 1 Examples of a Tautology
and a Contradiction.

P -p pvY-p pA—p
T F T F
F T T F
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EXAMPLE 3

EXAMPLE 4

TABLE 2 Truth Tables for —~(p v ¢) and = p A —g.
P q AN PA—g
T T /‘ T F
T F T F
F T T F
F F 13 T
TABLE 3 Truth Tables for —-p v ¢ and
P —=9q.
|
| p~q
’ T
F
[ T
T

Sofution: The truth tables for these propositions are displayed in Table 2. Since the truth
values of the propositions —(p v q) and —p A —g agree for all possible combinations of
the truth values of p and g, it follows that —(p V g) < (—p A —g) is a tautology and
that these propositions are logically equivalent. -«

Show that the propositions p — g and —p Vv g are logically equivalent,

Solution: We construct the truth table for these propositions in Table 3. Since the truth
values of —p Vv g and p — g agree, these propositions are fogically equivalent. «

Show that the propositions p v (g Ar) and (p Vv g) A (p v r) are logically cquivalent.
This is the distributive law of disjunction over conjunction.

Solution: We construct the truth table for these propositions in Table 4. Since the truth
values of p v (g A7) and (p Vv g) A (p v r) agree, these propositions are logically
equivalent. «

Remark: A truth table of a compound proposition involving three different proposi-
tions requires eight rows, one for each possible combination of truth values of the three
propusitions. In general, 2” rows are required if a compound proposition involves n
propositions.

Table 5 contains some important equivalences™® In these equivalences, T denotes any
proposition that is always true and F denotes any proposition that is always false. We also
display some useful equivalences for compound propositions involving implications and
biconditionalsin Tables6 and 7, respectively. The reader is asked to verify the equivalences
in Tables 5-7 in the exercises at the end of the section.

*These idcatities are a special case of identities that hold for any Boolean algebra. Compare them with
sct ideptities in Table 1 ip Section 1.7 and with Boolean identities in Table 5 in Section 11,1,
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TABLE 4 A Demonstration That p v (g Ar) and (p v g} A (p v r) Are Logically

Equivalent.
‘ P q r gAar PVYigAr) Pvq pvr (pvqglaipvr)

T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F | F T T T T
F T T T T T T T
F T F F F T F | F
F F T F F F T F
F F F F F F F F

Liﬁks

The associative law for disjunction shows that the expression pv g v r is well defined,
in the sense that it does not matter whether we first take the disjunction of p and g and
then the disjunction of p v g with r, or if we first take the disjunction of ¢ and r and then
take the disjunction of p and g Vv r. Similarly, the expression p A g A r is well defined.
By extending this reasoning, it follows that py v po v -V pypand p) A pa A -+ A Py
are well defined whenever py, pa, ..., p, are propositions. Furthermore, note that De
Morgan’s laws extend to

~pyV PV NV p)=(CpLATPI A ATy

and

S(PLAPLA AP =E(CpIV TPV V opy).

{Methods for proving these identities will be given in Section 3.3.)

AUGUSTUS DE MORGAN (1806-1871) Augustus De Morgan was born in India, where his father
was a colonel in the Indian army. De Morgan's family moved to England when he was 7 months old.
He attended private schools, where he developed a strong interest in mathematics in his early teens.
De Morgan studied at Trinity College, Cambridge, graduating in 1827. Although he considered entering
medicine or law, he decided on a career in mathematics. He won a position at University Coltege, London,
in 1828, bue resigned when the college dismissed a fellow professor without giving reasons. However, he
resumed this position in 1836 wheu his successor died, staying there until 1866.

De Morgan was a noted teacher who stressed principles over techniques, His students included
many famous mathematicians, ineluding Ada Augusta. Countess of Lovelace, who was Charles Babbage’s
collaborator in his work on computing machines (see page 23 for hiographical notes on Ada Augusta).
{De Morgan caulioned the countess against studying teo much mathematies, sinee it might interfere with
her childbearing abilities!)

De Morgan was an extremely prolific writer. He wrote more than 1000 artieles tor more than 15
periodicals. De Morgan alse wrote texthooks on many subjects, including logic, probahility, ealeulus, and
algebra. 1n 1838 he presented what was perhaps the first clear explanation of an important proof technique
known as mathematical induction (discussed in Section 3.3 of this text), a term he coined. In the 1840s
De Morgan made fundamental contributions to the development of symbolic Jogic. He invented notations
that helped him prove propositional equivalences, such as the laws that are named after him. [n 1842
De Morean presented what was perhaps the first precise definition of a limit and developed some tests
for convergence of infinite series. De Morgan was also interested in the history of mathematics and wrote
biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882, De Morgan'’s research,
writing, and teaching left littie tire for his family or social life. Nevertheless, he was noted for his kindness,
humor, and wide range of knowledge.
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TABLE 5 Logical Eqnivalences.

Name

.

Eguivalence
prnT=p
nvF=p

] Identity laws

Domination laws
ldempotent laws

T Double negation law

~(~p)=p
pvg=gqvp
pAg=qAp

(pvgyvr=pvigvr)
(prg)yrr=parlgar)

pvi(gArry=(pvg)alpvr)
pA@Vr)=(pAgIVIPAF)
~(pAg)=-pV—g

Commutative Jaws

Assoclative laws

Distributive laws

De Morgan’s laws

Absorption laws

Negation laws

FTABLE 6 Logical Equivalences
Involving Implications.

p>qg=—pVyg
P g="g > p
pPYG=-p g
pAG=—(p— —q)
“{p > gl=pAi—g

(p—=ag)r(p—r)=p—>gArr
(p—=rinilg—-ri=(pvag)—>r
(po>q)viporj=p—>{gvr)

(p—>ryvig—ri=(prg) —>r

TABLE 7 Logical Equivalences
Involving Biconditionats.

24

pog=(p—>g)rig— p)
peg=-po g
peg=(prg)V(opr—g)
“(peoqg)=pe—g

‘The logical equivalences in Table 5, as well as any others that have been established
(such as those shown in Tables 6 and 7)., can be used to construct additional logical

. Extra .
" Examples

equivaleaces. The reason for this is that a proposition in a compound proposition can be

replaced by one that is logically equivalent to it without changing the truth value of the




1-25

EXAMPLE 5

EXAMPLE 6

. Links

1.2 Propositional Equivalences 2§

compound proposition. This technique is illustrated in Examples 5 and 6, where we also
use the facl that if p and g are logically equivalent and g and r are logically equivalent,
then p and r are logically equivalent (see Exercise 50).

Show that —=(p vV {(—p A g)) and = p A —g are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are
cquivalent. Instead. we will establish this equivalence by developing a series of logical
equivalences, using one of the equivalences s Table 5 at a time, starting with
—(p Vv (—p A q)) and ending with = p A —g. We have the following equivalences.

—(pvi{mpArg))=—-pAr-(=pAg) from the second De Morgan's law
=-—p A= {—p)V —g] from the first De Morgan's law
=—-pAlpv-oy) from the double nepation law
=(—pAp)VI(opA—-g) fromthe second distributive law
=FVv(—pAr—q) since =p A p=F
=(—-pAr—-g}vF from the commutative law

for disjunction
=-p Ay from the identity law for F
Consequently —(p v (—p A ¢)) and = p A -y are logically cquivalent. «

Show that {p A g) — (p Vv q) is a tautology.

Solution: To show that this statemenlt is a tautology, we will use logical equivalences to
demonstrate that it is logically equivalent to T. (Note: This could also be done using a
truth table.)

—(prgIvipvag) bv Example 3

(PAgy—> (pVvq)
{(—p v —g)v(pvg) bythefirst De Morgan's law

=(—pVv pyVv (g Vvg) Dbythe associative and commutative
laws for disjunction

=TvT bv Example 1 and the commutative
law for disjunction
=T by the domination law <

A truth table can be used to determine whether a compound proposition is a tautol-
ogy. This can be done by hand for a proposition with a small number of vartables, but when
the number of variables grows, this becomes impractical. For instance, there are 2% =
1,048,576 rows in the truth value tablc for a proposition with 20 variables. Clearly, you
nced a computer to help you determine, in this way, whether a compound proposition in

ADA AUGUSTA, COUNTESS OF LOVELACE (1815-1852) Ada Augusta was the only child from
the marriage of the famous poct Lord Byron and Annabella Millbunke. who separated when Ada was 1
month old. She was raised by her mother. who encouraged her intellectual talents. She was taught by the
mathematicians William Frend and Augustus De Morgan. In 1838 she married Lord King, later clevated
to Earl of Lovelace. Together they had three children.

Ada Augusla continued her mathematical studies after her marriage, assisting Charles Babbage in
his work on an early computing machine, called the Analytic Engine. The most complete accounts of this
machine are found in her writings. After 1845 she and Babbage worked toward the development of a
system to prediet horse races. Unfortunately, their system did not work well. leaving Ada heavily in debt
at the time of her death. The programming language Ada is uamed in honer of the Counltess of Lovelace.
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20 variables is a tautology. But when therc are 1000 variables, can even a computer de-
termine in a reasonable amount of time whether a compound proposition is a tautology?
Checking every one of the 2:°% (a number with more than 300 decimal digits) possible
combinations of truth values simply cannot be done by a computer in even trillions of
years. Furthermore, no other procedures are known that a computer can follow to deter-
mine in a reasonable amount of time whether a compound proposition in such a large
number ol variables is a tautology. We will study questions such as this in Chapter 2, when
we study the complexity of aigorithms.

Exercises

1. Use truth tables to verify these equivalences. e) ~p—(p—q) dy (prg)y— (p—q)

aypaT=p b) pvF=p €) ~(p—gq) > p N —-lp—>q ——q
c) pr¥=F dy pvT=T 8. Show that each of these implications is a tautology by
ey pvp=p D pap=p using truth tables.

2
3. Use truth tables to verify the commutative laws
a) pvg=qvp
b} prg=gnrp
4. Use truth tables to verify the associative laws
) (pyglvr=pvigvr)
by (prg)nrs=palgar)
5. Use a trnth tahle to verily the distributive law

H

Show that —=(—p) and p are logically equivalent.

a) [~pAripvg]-—>g

b) [(p>qinlg—r]—>(p—>r)

o [prip—gll—gq

d) lpvg)nip—=rintg =>ril—r

Show that each implication in Exercise 7 is a tautol-
ogy without using truth tables,

Show that each implication in Exercise 8 is a tautol-
ogy without using truth tables.

Use truth tables to verify the absorplion laws,
wpvipngi=p bypnrpvg)=p

pAalgvrysiprgyv(par). 11
6. Use a truth table to verify the equivalence

—(pAg)=-pV—g. 12. Determine whether (—p A (p — ¢)} — —g is a tau-
7. Show that each of these implicationsis a tautology by tology.
using truth tables. 13. Determine whether (—¢ A (p — ¢)) — —pis a tau-

a){pngl—p b) p— (pvq) tology.

HENRY MAURICE SHEFFER (1883-1964) Hecnry Maurice Sheffer. born to Jewish parents in the
western Ukraine. emigraled to the United States in ]892 with his pareats and six siblings. He studicd at
the Boston Latin School before enteriug Harvard. where he completed his undergraduate degree in 195,
his master’s in 1907, and his Ph.D. in philosophy in 1908, After holding a postdoctoral position at Harvard.
Hcnry traveled to Europe on a fellowship. Upon returning to the United States. he becume an academic
nemad, spending one year cach al the University of Washington. Cornell. the University of Minncsota,
the University of Missouri, and City Collcge in New York. In 1916 he rcturned to Harvard as a faculty
member i the philosophy department. He remained at Harvard until his retirement in 1952

Sheffer introduced what is now known as the Sheffer stroke in 1913 it became well known only after
its use in the 1925 ediuon of Whitehcad and Russcll's Principia Mathematica. In this same edition Russell
Linke wrote that Sheffer had invented a powerful method that could he used to simplify the Principia. Because
ol this comment, Shelfer was somcthing of a mystery man to legicians, especially hecause Shefter, who
published little in his career, never published the details of this method, only describing it in mimeographed
notes and in a bricf published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not
like auditors. When strangers appeared in his classroom, Sheffer would order them to leave, even his
collcagues or distinguished guests visiting Harvard. Sheffer was barely [ive Icet tall; he was noted for his
wit and vigor, as well as for his nervousness and irritability. Although widely liked, he wus quite lonely.
He is noted for a quip be spoke at his retirement: “Old professors never die, they just become emeriti,”
Sheffer is also credited with coining the term “Boolean algebra” (the subject of Chapter 10 of this text).
Sheffer was briefly married ard lived most of his later life in small rooms af a hotel packed with his logie
hooks and vast files of slips of paper he used 10 jot down his ideas. Unfortunately, Sheffer suffered from
severe depression during the last two deeades of his life.
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14. Show that p « g and (p Ag) v (—p A —g) aTe equiv-

alent.

15. Show that (p — ¢) — rand p — (¢ — r) are not

equivalent.

16. Show that p — ¢ and ~g — —p are logically eqniv-

alent.

17. Show that =p < ¢ and p — —g are logicatly equiv-

alent.

18. Show that —(p @ g) and p < ¢ are logically equiva-

lent.

19. Show that =(p < ¢) and —p < ¢ are logically eqniv-

alent.

20. Show that (p = g¢) A{p — r)and p — (g A1) are

logically equivalent.

21. Showthat (p > r) Alg — r)and (p v g) — r are

logically equivalent.

22. Showthat (p — ¢)vi{p — r)and p — (g v r) are

logically equivalent.

23, Show that (p — r) v (g — r)and (p A g} — r are

logically equivalent.

24. Show that =p — (4 = ryand g — (p v r) are logi-

cally equivalent.

25. Show that p - ¢ and (p — ¢g) A (g — p) arc logi-

cally equivalent.

26. Show that p < ¢ and —p < —g¢ are logically equiv-

alent.

27. Show that —=(p < ¢) and p < —g arelogically equiv-

alent.

28. Show that (p v g) A (mp v r) = (g Vv r)is a lantol-

ogy.

29. Show that (p > g) Alg — r) — (p — r)isatautol-

ogy.

The dual of a compound proposition that contains only

the logical operators v, A, and — is the proposition ob-

tained by replacing each v by A, cach » by v, each T by

F, and each F by T. The dual of proposition s is denoted

by s*.

30. Find the dual of each of these propositions.

a) pA—og AT b) (pArgAarivy
) (pvFPawvD

31. Show thal (sM)* = s.

32. Show that the logical cquivalences in Table 3, except
for the double negation law, come in pairs, where
each pair contains propositions that are duals of each
other,

*#33, Why are the duals of two equivalent compound
propositions also equivalent, where these compound
proposilions contain anly the operators ~, v/, and =7

3. Find a compound propasition involving the proposi-
tions p. g, and r that is true when p and g are true
and r is false, but is talse otherwise. (Hint: Use 4 con-
junction of each proposition or its negation.)

35. Find a compound propasition involving the proposi-
tions p, g.and r that is true when exactly twoof p. g,

1.2 Exercises 27

and r are true and is false otherwise. (Hinr: Form a
disjunction of conjunctions. Include a conjunction for
each combination of values for which the proposition
is true. Each conjunction should include each of the
three propositions or their negations.}

Suppose that a truth table in # propositional vari-
ables is specified. Show that a compound proposi-
tion with this truth table can be formed by taking the
disjunction of conjunctions of the variables or their
negations, with one conjunction included for each
combination of values for which the compound
proposition is true, The resulting compound proposi-
tion is said to be in disjunctive normal form.

J6

A collection of logical operators is called functionally
complete if every compound proposition is logically
eqnivalent 10 a componnd proposition involving only
these logical operators.

37. Show that —, A, and v form a lunctionally complete
collection of logical operators. (Hint: Use the fact
that every proposition is logically equivalent to one
in disjunctive normal form, as shown in Exercise 36,)

*38, Show that — and A form a functionally com-
plete collection of logical operators. (Hint: First use
De Morgan’s law to show that p ‘v ¢ is equivalent to
=(=p An—g).)

*39, Show that — and +/ form a functionally complete
collection of logical operators.

The following cxcicises involve the logical operators
NAND and NOR. The proposition p NAND ¢ is true
when either p or g, of both, are false: and it is false when
both p and g are true. The proposition p NOR q is truc
when both p and g are false, and it is false otherwise. The
propositions p NAND ¢ and p NOR q are denoted by
p | gand p | ¢, respectively. (The operators | and | are
called the Sheffer stroke and the Peirce arrow atter H. M.
Sheffer and C. S. Peirce, respectively.)

40, Construct a truth table for the logical operator
NAND.
41. Show that p | ¢ is logically equivalent to —=(p A g).
42, Conslruct a truth table for the logical operator NOR.
43, Show that p | ¢ is logically equivalent to —(p v q).
44. In this exercise we will show that {1} is a functionally
complete collection of logical operators.
a) Show that p | p is logically equivalent to —p.
b) Show that (p | ¢) | (p | ¢) is logically equiva-
lentto p v q.
¢) Conclude from parts (a) and (b}, and Exercise 39,
that {}} is a functionally complete collection of
logical opcrators.
*45, Find a proposition equivalent to p — ¢ using only
the logical operator |.
46. Show that {|} is a functionally complete collection of
logical operators.

47. Show that p | g and ¢ | p are equivalent,

by
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48. Showthatp | (g | r)and(p | ¢) | r are not equivalent, gV orvVos, TPV oGNS, pNVEVS, pYrv s
so that the logical operator | is not associative. can be made simultanecusly true by an assignment

*49. How many different truth tables of compound prope- of truth values to p, ¢, r, and s?

siti i h that involve th itions e - . .

:nléms,? are there hat tnvolve the propositions p A compound proposition is satisfiable it therc is an assign-
A . - ment of truth values to the variables in the proposition
50. Show that if p, g, and r are compourd propositions "
. . that makes the compound proposition truc.
such that p and ¢ are logically cquivatentand ¢ and r
are logically equivalent, then p and r are logically 54. Which of thesc compound propositions are satisfi-
equivalent. able?

51. The following sentence is taken from the specifica- A (pVvgVorA(py gV os)A(pYorv—s)a
tion of a telephone system:“If the directory database (mpv gV osiAlp VgV —s)
is opened, l‘hen the ‘m(?ni'tf)r is put in a'closeq §1al?. if b) (=pV =g v riA(=py gV =s)A(py —gV—s)A
.the system is not in its m‘lual ?ta"e‘" This spec1hca§zon (mpv r V=) APV g Vo) A (p VoV s)
is hard to understand since it involves two implica-

. . . . e {pvagvrIaipvy gV —-s)AlgyV —orvsra
tions. Find an cquivalent, easier-to-understand spec- (=p VN ) A =DV g v —5) AP Y g v —r) A
ification that involves disjunctions and negations but f AN y P i ’

T : (—pv—gvVvs)r(—pV—orv-os)
not implieations.

52. How many of the disjunctions pv —g,—~pvyg.gVvr, 55. Explain how an algorithm for determining whether
g v —r,—g v —r can be made simultaneously truc by a compound proposition is satisfiable can be vscd to
an assignment ot truth values to p.g,and r? determine whether a eompound proposition is a tau-

53. How many of the disjunctions p v —¢ v 5, =p Vv tology. (Hint: Look at —p, where p is the proposition

—rvy, SpVorvos, —opNgveos, gvrY s, that is being examined.)

Predicates and Quantifiers

INTRODUCTIOl\I

Statements involving variables, such as

t.sx > 3,13 .Lx — y +3’u Emd ".I + )‘ — Z.,”

are often found in mathematical assertions and in computer programs. These statements
are neither true nor false when the values of the variables are not specified. In this section
we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3 has two parts. The first part, the variable x,is the
subject of the statement. The second part—the predicate, “is greater than 3" —refers to
a property that the subject of the statement can have. We can denote the statement “x is
greater than 3”7 by P(x), where P denoles the predicate “is greater than 3” and x is the
variable. The statement P{x) is also said 10 be the value of the propositional function P
at x. Once a value has been assigned to the variable x, the statement P(x) becomes a
proposition and has a truth value, Consider Example 1.

EXAMPLE 1 Let P{x) denote the statement “x > 3.” What are the truth values of P(4) and P(2)?

Sofution: We obtain the slatement £(4) by setting x = 4 in the statement “x > 3.7
Hence, P{4), which is the statement "4 > 3.7 is true. However, P{2). which is the state-
ment 2 > 37 is false. «

We can also have statements that involve more than one variable. For instance, con-
sider the statement “x = v + 3.” We can denote this statement by Q(x, y), where x
and y are variables and {J is the predicate. When values are assigned to the variables x
and vy, the statement Q(x, v) has a truth value.
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let Q(x, v) denote the statement “x = y + 3.” What are the truth values of the
propositions Q(1.2) and Q(3,0)?

Solution: To obtain ((1, 2),set x = 1 and y = 2 in the statement Q(x, v). Hence,
Q(1.2) is the stalement “1 = 2 + 3" which is false. The statement Q(3, 0) is the

proposition “3 = 0 + 3. which is true. 4

Similarly, we can let R(x, y, 7) denote Lhe statement “x + y = z.” When values are
assigned to the variables x, y, and z, this statement has a truth value,

What are the truth values of the propositions R(!, 2, 3) and R(0, 0, 1)?

Soluiion: The proposition R(1, 2, 3) is obtained by settingx = 1, y = 2.,and z = 3 in
the statement R (x, y, 7). We see that R(1, 2, 3) is the statement 1 + 2 = 3,” which is

true. Also note that R(0. 0, 1), which is the statement “0 4+ 0 = 1,” is false. |
In general, a statement involving the # variables x|, x2, ..., x, can be denoted by
P(xlv Xa. ... vxn)-

A staiement of the form P (x|, x>, ..., x,) 15 the value of the propositional function P
at the n-tople (xy(, x2..... xy),and P is also called a predicate.

CHARLES SANDERS PEIRCE (1839-1914) Mauy consider Charles Peirce the most original and
versatile intellect rom the United States; he was born in Cambnidge, Massachusetts. His father, Benjamin
Peirce, was a professor of mathematics and natural philosophy at Harvard. Peirce attended Harvard
(1835-1859) and received a Harvard master of arts degree (1867) and an advauced degree in chemistry
from the Lawrence Sciensific School (1863). His father encouraged him 10 pursue a career in scicncee, but
mnstead he chose to study logic and scientific methodology.

[u 1861, Peirce became an aide in the United States Coast Survey, with the goal of better nuder-
standing scicntific methodology. His service for the Survey cxempted him from military service during the
Civil War. While working for the Survey, Peirce carried ont astronomical and geedesic work, He made
fundamental contributions o the design of pendulums und © map projections, applying new mathematical
developments iu the theory of clliptic functions. He was the first person to use the wavelength of light asa
unit of measuremncnt. Peirce rosc Lo the position of Assistant for the Survey, a position he held until he was
forced 1o resign in 1891 wheu he disagreed with the divection taken by the Survey's new adwninistration,

Although making his living from work in the physical sciences, Peirce developed a hierarchy of
sciences, with mathematics at the top rung, in which the methods of one science could he adapted for use
by those scieuces under it in the hierarchy. He was also the founder of the American philasophical theory
of pragmatism.

The only academic position Peirce ever held wax as a Jecturer in logic at Johns Ilopkins University
in Baltimore from 1879 to 1884, His mathematical work duving this time jucluded contributions to logic,
sel Lheory. abstract algehra, and the philosophy of mathematics. His work is still refevant today; some
ol his work on logic has been recently applicd to artificial intelligence. Peirce believed that the study of
mathewmatics could develop the mind’s powers of imagination, abstraction, and generalization. His diverse
activities afier retiring from the Survey included writing for newspapers and jowrnals, contributing 10
scholarly dictionaries, translating scientific papers, guest lecturing. and textbook writing. Unfortunately,
the income from these pursuits was insufficient to protect him and his second wife from abject poverty.
He was supported in his later years by a fund created by his many admirers and administcred by the
philosopher William James, his lifetong friend. Although Peirce wrote and published voluminously in a
vast range of subjects, he left more than 100,000 pages of unpublished manuscripts. Because of the dilficully
of studying his unpublishcd writings, scholars have only recently started to understand some of his varicd
contribulions. A group of peoplc is devotcd to making his work available over the Internet to hring a
hetter appreciation of Peirce’s accomplishments to the world.
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Propositional functions occur in computer programs, as Example 4 demonstrates.

Consider the statement
ifx > Othenx :=x + 1.

When this statement is encountered i a program, the value of the variable x at that point
in the execution of the program is inserted into P (x), which is “x > 0.” If P(x) is true
for this value of x, the assignment statement x := x + 1 is executed, so the value of x
is increased by 1. If P(x) is false for this value of x, the assignment statement is not
executed, so the value of x is not changed. -«

QUANTIFIERS

When all the variables in a propositional function are assigned values, the resulting state-
ment becomes a proposition with a certain truth value. However, there is another im-
portant way, called quantification, to create a proposition from a propositional function.
Two types of quantification will be discussed here, namely, universal quantification and
existential quantification. The area of logic that deals with predicates and quantifiers is
called the predicate calculys.

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a
property is true for all values of a variable in a particular domain, called the universe
of discourse or the domain. Such a statement is expressed using a universal quantifi-
cation. The universal quantification of a propositional function is the proposition that
asserls that P(x) is true for all values of x in the universe of discourse. The universe of
discourse specifies the possible values of the variable x.

The universal quantification of P(x) is the proposition

“P(x) is true for all values of x in the universe of discourse.”

The notation
YxP(x)

denates the universal quantification of £(x). Here V is called the universal quantifier.
The proposition ¥x P(x} is read as

“forall x P(x)” or *“foreveryx?P(x).”
Remark: It 1s best to avoid using “for any x” since it is often ambiguous as to whether
“any” means “every” or “some.” In some cases, “any” is unambiguous, such as when it is

used in negatives, for example, “there is not any reason to aveid studying.”

We illustrate the use of the universal quantifier in Examples 5-10.

Let P(x) be the statement “x 4+ 1 > x.” What is the truth value of the quantification
Vx P{x), where the universe of discourse consists of all real numbers?
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Solution: Since P(x) is true for all real numbers x, the quantification
Yx P(x)
1s true. .|

Let Q@ (x) be the staterment “x < 2.”What is the truth value of the quantification ¥x @ (x),
where the universe of discourse consists of all real numbers?

Solution: Q(x) is not true for every real number 1 .since, for instance, (2(3) is false. Thus

YxQx)
1s false. «
When all the elements in the universe of discourse can be listed—say, xp, xa, ...,

xp—iL follows that the universal quantification ¥x P (x) is the same as the conjunction
Plx) A PQxa) neoo AP (xph

since this conjunction is true if and only if P(x|), P{x3}, ..., P(x,) are all true.

What is the truth value of ¥x P(x), where P(x) is the statement “x* < 10" and the
universe of discourse consists of the positive integers not exceeding 47

Solution: The statement ¥.x P(x) is the same as the conjunction
P(MHAP2YA PG AP,

since the universe of discourse consists of the integers 1,2, 3, and 4. Since P(4), which is
the statement “4” < 10, is false, it follows that ¥x P (x) is false. -«

What does the statement Yx7'(x) mean if 7(x) is “x has two parents” and the universe
of discourse consists of all people?

Solution: The statement ¥x 7T (x) means that for every person x, that person has two
parents. This statement can be expressed in English as “Every person has two parents.”
This statement ts true (except for clones). <

Specifying the universe of discourse is important when quantifiers are used. The truth
value of a quantified statement often depends on which elements are in this universe of
discourse, as Example 9 shows.

What is the truth value of ¥Yx(x% > x) if the universe of discourse consists of all real
numbers and what is its truth value if the universe of discourse consists of all integers?

Solution: Note that x* > xifand onlyif x> —x = x(x — 1} > 0. Consequenlly..r?‘ >x
ifandonlyifx < Oorx > 1.1t follows thatVx (x2 > x)}isfalseif the universe of discourse
consists of all real numbers (since the inequality is false for all real numbers x with
0 < x < 1}. However. if the universe of discourse consists of the integers, Ya(x? > x)is
true, since there are no integers x with 0 < x < 1. «

To show that a statement of the form ¥Yx P (x) is false, where P(x) is a propositional
function, we need only find one value of x in the universe of discourse for which P(x) is
false. Such a value of x is called a counterexample to the statement Vx P(x).
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Suppose that P{x) is “x? > 0.” To show the statement Yx P(x) is false where the uni-
verse of discourse consists of all integers, we give a counterexample. We see that
x = (s a counterexample since x2 = () when x = 0 so that x* is not greater than 0
when x = 0. «

Looking for counterexamples to universally quantified statements is an important
activity in the study of mathematics, as we will see in subsequent sections of this book.

THE EXISTENTIAL QUANTIFIER Many mathematical statemcnts assert that
there is an clement with a certain property. Such statcments are expressed using exis-
tential quantification. With existential quantification, we form a proposition that is true
if and only if P{x) is true for at least one value of x in the universe of discourse.

The existentigl quantification of P (x) is the proposition

“There exists an element x in the universe of discourse such that P(x) is true.”

‘We use the notation
Ix P{x)

for the cxistential quantification of P{x). Here 3 is called the existential quantifier. The
existential quantification 3x P{x) is read as

“There is an x such that P{x),”
“There is at least one x such that P(x),”

or
“For some x P(x).”
We illustrate the usc of the cxistential quantifier in Examples 11-13.

Let P(x) denote the stalement “x > 3.” What is the truth valuc of the quantification
Ix P(x). where the universe of discourse consists of all real numbcrs?

Solution: Since *x > 3"istruc—for instance, when x = 4—the existential quantification
of P(x),whichis Ix P(x),Iis true. -

Let O(x) denote the statement “x = x + 1.” What is the truth value of the quantification
Jx 0 (x), where the universe of discourse consists of all real numbers?

Soliution: Since ({(x) is false for every real number x. the existential quantification
of Q(x), which is Ix Q(x), is false, «

When all clements in the universe of discourse can be listed—say, 1y, x2...., X-—
the existential quantification 3x P (x) is the same as the disjunction

P(XI)VP(-"Z)V"'V P(.T”),

since this disjunction is true if and only if at least one of P{x1}. P{x2)}, ..., P{x,) istrue.
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TABLE 1 Quantifiers.

Statement When True? When False?
Y P(x) P(x) is true for cvery x. There is an x for which P(x) is false.
dx P(x) There is an x for which P(x) is true. P(x}) is false for every x.

EXAMPLE 13  What is the truth value of 3x P{x) where P(x) is the statement “x° > 10” and the uni-
verse of discourse consists of the positive integers not cxcceding 47

Solution: Since the universe of discourse is {1, 2, 3, 4}, the proposition 3x P (x) is the
sarne as the disjunction

P(Yv P2 v P(3) v PA).

Since P(4), which is the statement “4% > 10," is true, it follows that 3x P(x)} is true.

Table 1 summarizes the meaning of the universal and the existential quantifiers.

It is sometimes helpful to think in terms of looping and searching when determining
the truth value of a quantification. Suppose that there are s objects in the universe of
discourse for the variable x. To determine whether ¥x P {x) is true, we can loop through
all 7 values of x to see if P(x)is always true. If we encounter a value x for which P(x)is
false, then we have shown that Vx P{x) is false. Otherwisc, ¥x P(x) is true. To see whether
Jdx P(x} is true, we loop through the 11 values of x searching for a value for which P(x) is
true. If we (ind one, then 3x P(x} is true. [f we never find such an x, we have determined
that 3x P(x) is false. {(Note that this searching procedure does not apply if there are
infinitcly many values in the universe of discourse. However, it is still a useful way of
thinking about the truth values of quantifications.)

BINDING VARIABLES

‘When a quantifier is used on the variable v or when we assign a valuc to this variable, we
say that this occurrence of the variable is bound. An occurrence of a variable that is not
bound by a quantiflicr or set equal 1o a particular value is said to be free. All the variables
that occur in a propositional function must be bound to turn it into a propositton. This
can be done using a combination of universal quantifiers, existential quantifiers, and value
assignments.

The part of a logical expression 1o which a quantifier is applied is called the scope of
this quantifier. Consequently, a variable is free if it is oviside the scope of all quantifiers
in the formula that specifies this variable.

EXAMPLE 14 In the statement 3x 2(x, ¥). the variable x is bound by the existential quantification 3x,
but the variable y is free because it 1s not bound by a quantifier and no value is assigned
to this variable.

In the statement Ix(P(x) A @(x)) Vv Yx R(x}, all variables are bound. The scope
of the first quantifier, 3x, 1s the expression P(x)} A O(x) because Jx is applied only to
P(x) ~ Q(x), and not to the rest of the statement. Similarly, the scope of the second
quantifier, ¥x, is the expression R(x)}. That is, the existential quantifier binds the variable
xin P(x) ~ @Q(x)}and the universal quantificr ¥x binds the variable x in R(x). Observe
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that we could have written our statement using two different variables x and v, as
dx(Pix) A Qx)) v YyR(y), because the scapes of the two quantifiers do not over-
lap. The reader should be aware that in common usage, the same lctter is often used to
represent variables bound by different quantifiers with scopes that do not overlap.

NEGATIONS

We will often want to consider the negation of a quantified expression. For instance,
consider the negation of the stafcment

“Every student in the class has taken a course in calculus.”

This statement is a universal quantification, namely,
YxP(x),

where P(x} is the statement “x has taken a course in calculus.” The negation of this
statement is “It is not the case that every student in the class has taken a course in
calculus.” This is equivalent to “There is a student in the class who has not taken a course
in calculus.” And this is simply the existential quantification of the negation of the original
propositional function, namely,

Ix ~P(x).

This example illustrates the following equivalence:
=VYxP(x) =3x -P(x).

Suppose we wish to negate an existential quantification. For instance, consider the
proposition “There is a student in this class who has taken a course in calculus,” This is
the existential quantification

xrQ(x),

where {}(x) is the statement “x has taken a course in calculus.” The negation of this
statement is the proposition “It is not the case that there is a student in this class who
has taken a course in calculus.” This is equivalent to “Every student in this class has not
taken caleulus,” which is just the universal quantification ol the negation of the original
propositional function, ar, phrased in the language of quantifiers,

¥x —Q(x).

This example illustrates the equivalence
—3x0(x) = ¥x = Q(x).
Negations of quantifiers arc summarized in Table 2.

Remark: When the universe of discourse of a predicate P (x} consists of n elements,
where n is a pesitive integer. the rules for negating quantitied statements are exactly the
same as De Morgan's laws discussed in Section 1.2. This follows because —¥x P(x) is the
same as (P (x1) A Plxz) A -+ A P(x,)), which is equivalent to ~Px;} V = Plxz) v
---v=P(x,) by De Morgan’s laws, and this is the same as 3x— P (x}. Similarly, —3x P(x)
is the same as — (P (x1} Vv P(x2) vV - - - P(x,))}, which by De Morgan’s laws is equivalent
to 2 P{x ) A-P(x2) A--- A P(xy,), and this is the same as Yx— P (x).

We illustrate the negation of quantified statements in Examples 15 and 16.
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TABLE 2 Negating Quantifiers.

Negation

Equivalent Statement fWhen Is Negation True? rWhen False?

—dx Px)

=¥y P(x)

Yx—P(x) For every x, P(x} is false. There is an x for which
P (x)is true.
Ax—P(x) There is an x {or which P{x) is true for every x.
‘ F(x) is false.

EXAMPLE 15

Extra
Examples

EXAMPLE 16

What arc the negations of the statements “There is an honest politician” and “All Amer-
icans eat cheeseburgers™?

Solution: Let H{x) denote “x is honest.” Then the statement “There is an honest politi-
cian”is represented by 3x H (x), where the universe of diseourse consists of all politicians.
The negation of this statement is —=3x H (x), which is equivalent to Yx—H {x ). This nega-
tion can be expressed as “Every politician is dishonest.” (Note: In English the statement
“All politicians are not honest” is ambiguous. In common usage this statement often
means "Not all politicians are honest.” Consequently, we do not use this statement to
express this negation.)

Let C(x) denote “x eats cheeseburgers.” Then the statement “All Americans eat
cheeseburgers” is represented by ¥xC(x), where the universe of discourse consists of
all Americans. The negation of this statement is —¥xC(x), which is equivalent to
dx—C(x). This negation can be cxpressed in several different ways, including “Some
American does not cat cheeseburgers™ and “There is an American who does not eat
cheeseburgers.” -

What are the negations of the statements Yx (x> > x) and Jx(x® = 2)?

Solution: The negation of Vx (12 > x) 18 the statement —Vx (x2 > x), which is equi-
valent to 3x—(x” > x). This can be rewritien as Jx{x? < x). The negation of
3x(x? = 2) is the statement —3x(x? = 2), which is equivalent to ¥x—(x? = 2). This
can be rewritten as Yx(x® # 2). The truth values of these statements depend on the
universe of discourse, «

TRANSLATING FROM ENGLISH
INTO LOGICAL EXPRESSIONS

Translating sentences in English (or other natural languages) into logical expressions is a
crucial task in mathematics, logic programming. artificial intelligence, software engineer-
ing, and many other disciplincs. We began studying this topic in Section 1.1, where we used
propositions to express sentences in logical expressions. In that discussion, we purposely
avoided sentences whose translations required predicates and guantifiers. Translating
{rom English 10 logical expressions becomes even more complex when quantifiers are
needed. Furthermore, there can be many ways to translate a particular sentence. {As a
consequence, there is no “cookbook™ approaeh that can be followed step by step.) We
will use some examples to illustrate how to translate sentences from English into logical
expressions. The goal in this translation is to produce simple and useful logical expres-
sions. In this section, we restrict ourselves to sentences that can be translated into logical
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expressions using a single quantifier; in the next section, we will look at more complicated
senlences that require multiple guantifiers.

Express the statement “Every student in this class has studicd calculus” using predicates
and quantifiers.

Solution: First,we rewrite the statement so that we can clearly identify the appropriate
quantificrs to use. Doing so, we obtain:

“For every student in this class, that student has studied calculus.”
Next, we introduce a variable x so that our statement becomes
“For cvery student x in this ¢lass, x has studied calculus.”

Continuing, we introduce the predicate C(x), which is the statement “x fias studied cal-
culus.” Consequently, if the universe of discourse for x consists of the students in the class,
we ¢an translate our statement as VxC (x).

However, there are other correct approaches; different universes of discourse and
other predicates can be used. The approach we sclect depends on the subszquent reason-
ing we want to carry out. For examiple, we may be interested in a wider group of people
than only those in this class. 1f we change the universe of discourse 10 consist of all people,
we will need to exprress our statcment as

“For every person x,if person x is a student in this class then x has studied calcutus.”

If S{x) represemts the statement that person x is in this class, we see that our statement
can be expressed as Vx(S(x) — Cix)). [Caution! Our statement cannot be expressed
as Vx(S(x) A C(x)) since this statement says that all people are students in this class and
have studied calculus!)

Finally. when we are interested in the background of people in subjects besides calcu-
lus, we may prefer to use the two-variable quantifier ¢(x, y) for the statement “student x
has sludied subject y.” Then we would replace C(x) by O (x, calculus) in both approaches
we have followed to obtain ¥x O (x, caleulus) or ¥x(S(x) — Q(x, caleulus)). <

In Example 17 we displayed different approaches for expressing the same statement
using predicates and quantifiers. However, we should always adopt the simplest approach
that is adequate for use in subsequent reasoning,.

Express the statements “Some student in this class has visited Mexico™ and “Every student
in this class has visited either Canada or Mexico” using predicates and quantifiers.
Solution: The statement *Some student in this class has visited Mexico” means that
“There s a student in this class with the property that the student has visited Mexico.”
We can introduce a variable x, so that our statement becomes
“There 15 a student x in this class having the property x has visited Mexico.”

We introduce the predicate M (x), which is the statement “x has visited Mexico.” If the
universe of discourse {or x consists of the students in this class, we can translate this first
statement as Ix M (x).

However, it we are interested in people other than those in this class, we look at the
statement a little differently. Our statement can be expressed as




1-37

Links

1.3 Predicates and Quantifiers 37

“There is a person x having the properties that x is a student in this class and x has
visited Mexico.”

In this case, the universe ol discourse for the variable x consists of all people. We introduce
the predicate S(x),“x is a student in this class.” Qur solution becomes Ix(S(x) A M (x))
since Lthe statement is that there is a person x who is a student in this class and who has
visited Mexico. [Caution! Our statement cannot be expressed as Ix(S(x) - M(x)),
which is true when there is someone not in the class.]

Similarly, the second statement can be expressed as

“For every x in this class, x has the property that x has visited Mexico or x has visited
Canada.”

(Note that we are assuming the inclusive, rather than the exclusive, or here.) We let C(x)
be the statement “x has visited Canada.” Following our earlier reasoning, we see that
il the universe of discourse for x consists of the students in this class, this second state-
ment can be cxpressed as Yx{C(x) v M{x)). However, if the universe of discourse for x
consists of all people, our statement can be expressed as

“For every pcrson x, if x is a student in this class, then x has visited Mexico or x has
visited Canada.”

In this case, the statement can be expressed as Yx(S(x) — (C(x) v M(x))).

Instead of using the predicates M (x) and C (x) torepresent that x has visited Mexico
and x has visited Canada, respectively, we could use a two-place predicate V (x, v} to
represent “x has visited country y.” In this case, V (x, Mexico) and V (x, Canada) would
have the same meaning as M (x) and C(x) and could replace them in our answers. Tf
wc ure working with many statements that involve people visiting ditferent countries, we
might prefer Lo use this two-variable approach. Otherwise, for simplicity, we would stick
with the one-variable predicates M (x) and C(x). -4

EXAMPLES FROM LEWIS CARROLL

Lewis Carroll (really C. L. Dodgson writing under a pseudonym), the author of Alice
in Wonderland, is also the author of several works on symbolic logic. His books contain
many examples of reasoning using quaatifiers. Examples 19 and 20 come from his book

CHARLES LUTWIDGE DODGSON (1832-1898) We know Charles Dodgson as Lewis Carroll—
the pseudonym he used in his writings on logic. Dodgsen, the son of a clergyman, was the third of 11
children, all of whom stutiered. He was uncomfortable in the company of aduits and is said to have spoken
withoui stuttering ouly to young givls, many of whom he entertained, corresponded with.and photographed
{ofien in the nude). Although attracted to young girls, he was extremely puritanical and religious. His
friendship with the three young daughters of Dean Liddell led to his writing Alice in Wonderlund, which
brought him money and {ame,

Dodgson graduated from Oxtord in 1854 and obtained his master ol arts degree in 1857. He was
appointed leeturer in mathematics at Christ Church College, Oxford, in 1855. He was ordained in the
Church of England in 1861 but never practiced his ministry. Hig wrilings include articles and books on
geomelry, determinants, and the mathcmalics of tournaments and elections. (He also used the pseudonym
Lewis Carroll for his many works on recreational logic.)
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EXAMPLE 19

EXAMPLE 20

Symbolic Logic; other examples from that book are given in the exercise set at the end of
this section. These examples illustrate how quantifiers are used to express various types
of statements.

Consider these statements. The first two are called premises and the third is called the
conclusion. The entire set is called an argumen.

“All lions are fierce.”
“Some lions do not drink coffee.”
“Some fierce creatures do not drink coffee.”

(In Section 1.5 we will discuss the issue of determining whether the conclusion is a valid
consequence of the premises. In this example, it is.) Let P{x), @(x), and R(x) be the
statements “x s a lion.” “x is fierce,” and “x drinks coffee.” respectively. Assuming that
the universe of discourse is the set of all creatures, express the statements in the argument
using quantifiers and P(x), O{x),and R{x).

Solution: We can express these statements as:

Va(Px) — QOx)).
Jx(P{x) A - R(x)).
A (Qix} A =R(x)).

Notice that the second statement cannot be written as Ax(P{x) — —R(x)). The reason
is that P(x) — = R(x) is true whenever x is not a lion, so that Ix{(P(x) — —R{x)) is
true as long as there is at least one creature that is not a lion, even if every lion drinks
coffee. Similarly, the third statement cannot be written as

I (Qx) = ~R(x)). <

Consider these statements. of which the first three arc premises and the fourth is a valid
conclusion.

“All hummingbirds are richly colored.”

“No large birds live on honey.”

“Birds that do not live on honey are dull in color.”
“Hummingbirds are small.”

»

Let P(x), O(x), R{x), and S(x) bc the statements “x is a hummingbird,” “x is large,
“x lives on honey,” and "x is richly colored,” respectively. Assuming that the universc of
discourse is the set ot all birds, express the statements in the argument using quantifiers
and P{x), Q1) R(x).and S(x).

Solution: We can express the statements in the argument as

Yx(P{x) = S(x)).

—3x(Q(x) ~ R{x)).

Yx(—=R(x) = —~5(x)).

Vx(P(x) —> —Q(x)).
(Notc wc have assumed that “small” is the same as “not large” and that “dull in
color” is the same as “not richly colored.” To show that the fourth statement is a valid

conclusion of the first three, we need to use rules of inference that will be discussed in
Section 1.5.) «
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LOGIC PROGRAMMING

An important type of programming language is designed to reason using the rules of
predicate logic. Prolog (from Programming in Legic), developed in the 1970s by computer
scientists working in the area of artificial intelligence, is an example of such a language.
Prolog programs include aset of declarations consisting of two types of statements, Proleg
facts and Prolog rules, Prolog facts define predicates by specifying the elements that
satisfy these predicates. Prolog rules are used to define new predicates using those already
defined by Prolog facts. Example 21 illustrates these notions.

Consider a Prolog program given facts telling it the instructor of each class and in which
classes studenis are enrolied. The program uses these facts 10 answer queries concerning
the professors who teach particular students. Such a program could use the predicates
instructor(p. ¢) and enrolled(s, ¢) to represent that professor p is the instructor of course
¢ and that student s is enrolled in course ¢, respectively. For example, the Prolog facts in
such a program might include:

instructor (chan, mathz273)
instructor {patel,ee222)
ingtructor (grossman, cs301)
enrolled{kevin math273)
enrolled(juana,ee222)
enrclled(juana,cs301)
enrolled(kiko,mathz73)
enrolled(kiko,cs301;

(Lowercase letters have been used for entries because Prolog considers names beginning
with an uppercase letter to be variables.)

A new predicate reaches(p, 5), representing that professor p teaches student s, can
be defined using the Prolog rule

teaches (P,S) :- instructor(P,), enrolled(s,C)

which means that teaches( p, 5) 1S true if there exists a class ¢ such that professor p is the
instructor of class ¢ and student s is enrolled in class ¢. (Note that a comma is used to
represent a conjunction of predicates in Prolog. Similarly, a semicolon is used to represent
a disjunction of predicates.)

Prolog answers queries using the facts and rules it is given. For example, using the
facts and rules listed, the query

?enrolled (kevin, math273)

produces the response

yes

since the fact enroffed(kevin, math273) was provided as input. The query
?enrolled (X,math273)

produces the responsc

kevin
kiko
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To produce this response., Prolog determines all possible values of X for which
enrolled( X, math273) has been included as a Prolog fact. Similarly, to find all the pro-
fessors who are instructors in classes being taken by Juana, we use the query

?teaches (X, juana)
This query relurns

patel
grossman

Exercises

1.

i

6

T

:‘4

Let P(x) denote the statement “x < 4.” What are the
truth values?

a) P(0) by P(4) ¢) F(6)

Let P(x) be the statcmenl “the word x contains the
letter @.” What are the truth values?

a) P{orange) b) P(lemon)

¢) P(true) d) P{falsc)

. Let Q{x. v} denote the statement “x is the capital

of v.” What are these truth values?

a) Q(Denver, Colorado)
b) Q(Dctroit, Michigan)
¢) ({Massachuselts, Boston)
d) Q(New York, New York)

State the value of x after the statement if P(x)
then x := 1 is executed, where Pix) is the state-
ment “x > 1,7 if the value of x when this statement
is reached is

a) x =0. b) x =1.
Let P(x) be the statement “x spends more than five
hours every weekday in class,” where the universe of
discourse for x consists of all studenis. Express cach
of these quantifications in English.

a) 3x P{x) b) ¥x P(x}

¢) Ix—P(x) d) Yx—Px)

Let N{x) be the statemcent “x has visited North
Dakota,” where the universe ot discourse consists of
the students in vour school. Express each of these
quantifications in English.

a) JxN{x) b) YxN(x) ¢) ~3N(x)

d) Ix=N{x) e) =VaN{x) ) vx-N(x)

Translate these statements into English, where C(x)
is “x is a comedian™ and F(x) is “x is funny” and the
universe of discourse consists of all people.

a) Vx(Cix) — F{x)) b) ¥Vx(Clx) A F(x)}

€ Ix(Clxy— F(x)) d) Ix(C(xy A F(x)

¢) x=2.

. Translate these statements into English, where R(x}

is“x isarabbit” and H(x) is“x hops™and the universe

10

11

of discourse consists of all animals.

a) Ve(R(x} —» H(x)) b) ¥Yx{R(x) A H(x))
¢) Ix(R(x) = H(x))  d) 3x(R(x) A H(x))

. Let P(x) be the statement “x can speak Russian™and

lei @(x) be the statement “x knows the computer
language C++.” Express ¢ach of these sentences in
terms ol P(x), ((x), quantifiers, and logical connec-
tives. The universe of discourse for quantifiers con-
sists of all students at your school.

a) There is a student at your school who can speak
Russian and who knows C4+4.

b) There is a student at your school who can speak
Russiau but who doesn't know C++.

¢) Every student at your school either can speak
Russian or knows C++.

d) No student at your sechool can speak Russian or
knows C++.

Let C(x) be the statcment™x has acat,”let D(x) be the
statement “x has adog,” and let F(x) be the statement
“x has a ferret.” Express each of these statements in
terms of C(x), D(x), F (1), quaniifiers, and logical con-
nectives. Let the universe of discourse consist of all
students in vour class.

a) A studenlin your class has a cat, a dog, and a fer-
ret.

b) All students in your class have a cat, a dog, or a
ferret.

¢) Some student in your class has a cat und a ferret.
but not a dog.

d) No student in vour class has a cat, a dog. and a
ferret.

¢) For each of the three animals, cats, dogs, and fer-
rets, there is a student in your class who has one
of these animals as a pet.

Let P(v) be the statement “x = x2.” If the universe of
discourse consists of the integers, what are the truth
values?
a) P{0)
d) P{-1)

b) P{1)
e) IvFP(x)

¢) P2
f) YxPix)




12, Let Qix) be the statement “x + 1 = 2x.” If the uni-

13.

14.

15.

16.

17

18.

19.

20

verse of discourse consists of all integers, what arc
these truth values?

a) (0 b)) 2—1 c) O

d) A= O (x) e} Yy} B Ax—-Q(x)

g) Yx—Qlx)

Determine the truth value of cach of these statcments

if the universe of discourse consists of all intcgers.

a)v¥nin+1>n) b) 3n(2n = 3n)

©) Inin = —n) d) Vain® = n)

Determine the truth value of each of these statements
if the universe of discourse consists of all real num-
bers.

a) Axix? = -1) b) Ixix? < 1

¢) ¥x((—x)* =x¥) d) Vi {2x = x)

Determine the truth value of each of these statemeuts
if the universe of discourse for all variables consists
of all integers.
a) Ynin® > 0)
€} Yn(n® = n)

by In(n?=2)

d) Inn® <O

Determine the truth value of each of these statcments
if the uuiverse of discourse of cach variable conststs
of all real numbers,

a)Ir(x2=2) h) Jax? = -1

) Vx(x?+2 =1 d) Vr(x® #£x)

Suppose that the universe of discourse of the propo-
sitional function P(x) consists of the integers 0, 1.2,
3, aud 4. Write out each of these propositions using
disjunctious, conjunctions, and negations.

B) dx Pix) h)y ¥x P (x} ¢) Ax—-P(x)

d) Vi—P{x) e) =AxPix) [y —vxPx)
Suppose that the universe of discourse of the propo-
sitional funclion Q(x) consists of the integers —2, —1,
0.1,and 2. Write out each of these propositions using
disjunctions, conjunctions, and negations,

a) x P (x) b) ¥xP(x) ¢) Ar=P(x)
dyYx—P{x) e) -IxP(x) ) ~vYaPx)
Suppose that the universe of discourse of the propo-

sitional function P(x) consists of the integers [,2.3.4,
and 5. Express these statements without using quan-
tifiers, instcad using only negations, disjuuctions, and
conjunctions.

a) dx P(x) h) ¥xP(x)

¢) ~dx P(x) d) —¥xP(x)

e) Vx((x # 3~ Pix)) v r—P(x)

Suppose that the universe of discourse of the propo-
sitional function P{x) consists of —5. -3, -1, 1, 3,
and 5. Express thesc statements withoul using quan-
tifiers, instcad using only negations, disjunctions, and
conjunctions.

a) dx P (v}

o) Vrlx £ 11— Px)

b) ¥ P(x)

2zl

22

23.

24

25.
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dy dx((v =) A P(x))
e) dxi—=Plx) AVx((x <0y = P(x)

Translate in 1two ways each of these statcments into
logical expressions using predicates, quantifiers, and
logical connectives. First, let the universe of discourse
consist of the students in yonr class and second, let it
consist of all people.

a} Someoue in your class can speak Hindi.

b) Everyone in your class is friendly.

¢} There is a person in your class who was not horn
in California,

A studcnt in your class has becn in a movie,
Nostudent in vour classhas taken a course in logic
programmiug,

d)
e}

Translzle in two ways each of these statements into
logical cxpressions using predicates, quantifiers, and
logical connecltives. First, let the universe of discourse
consist of the students in your class and second, let it
consist of all people.

a) Everyone in your class has a cellular phone.

b} Somcbody in your class has secn a foreign movie,
¢) There is a person in your class who cannot swim.
d) All students in vour class can solve quadratic
cquations.

Some student in your class does not want to be
rich.

€)

Translate each of these statcments into logical ex-

pressions using predicates, quantifiers, and logical

connegetives.

a)} No one is perfect.

b) Not everyone is perfect.

¢) All your friends are perfect.

d) Oane of vour friends is perfect.

e) Everyone is vour friend and is perfect.

[y Not everybody is your friend or someone is not
perlect.

Trauslate each of these statements into logical expres-

sions in three different ways by varying the universe

of discourse and by using picdicates with one and

with two variables.

a) Someone in your school has visited Uzbekistan.

b) Everyone in your class has studied calculus and

C+4+.

No one in your school owns both a bicycle and a

motorcycle,

There is a person in your school who is not happy.

Everyone in your school was born in the twenti-

eth cenlury.

Translate each of these statements into logical expres-

sions in three differenl ways by varying the universe

of discourse and by using predieates with one and

with two variables.

)

d)
€)

a) A student in your school has lived in Vietnam.
b) There is a student in your school who cannot
speak Hindi.
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26.

27

28,

29.

30,

n

¢} A student in your sehool knows Java, Prolog, and
CH+.

d) Evervone in your class enjoys Thai food.

e} Someone in your class does not play hockey.

Translate each of these statements into logical expres-

sions using predicates, quantifiers, and logical connec-

tives.

a)

b)

Something is not in the correct place.

All tools arc in the correct place and are inexcel-
lent condition.

Everything is in the correct place and int excellent
condition.

Nothing is in the correct place and is in excellent
condition.

One of your tools is not in the correct place, but
it is in excellent condition.

Express each of these statements using logical oper-
ators. predicates, and guantifiers.

c)
d)

€)

a) Some propositions arc tautologies.

by The negation of 2 contradiction s a tautology.

¢) The disjunction of two contingencies can be a tau-
tology.

d) The conjunction of two tautologies is a {autology.

Suppose the universe of discourse of the proposi-

tional function P(x, y)consists of pairs x and y. where

xis1,2,0r3and vis 1,2, 0r 3. Write out these propo-

sitions using disjunctions and conjunctions.

a} 3x P(x,3) by ¥y P(1, )

¢) Ay-P2 ¥ d) Yx—=P{x,2)

Suppose that the universe of discourse of Q(x, v, z)

consists of triples x, vy, z,wherex =0, 1, or2,y = Gor

I,and z = 0 or 1. Write out these propositions using

disjunctions and conjunctions.

) Yy v. 0

by IxQ(x. 1. 1)

c) Jz—00,0. )

d) Ix-Q0(x,0, 1)

Express each of these statements using quantifiers.
Then form the negation of the statement so that no
negation is to the left of a quantifict. Next, express
the negation in simple English. (Do not simply use
the words “It (s not the case that.™)

a) All dogs have fleas.

b) There is a horse that can add.

¢} Every koala can climb,

d) No monkey can speak French.

¢) There exists a pig that can swim and catcb fish.

Express each of these statements using quantifiers,
Then form the negation of the statement, so that no
negation is to the left of a quantifier. Next. express
the negation in simple English. (Do not simply use
the words “It is not the case that.™)

a) Some old dogs can learn new tricks.
b} No rabbit knows calculus.

32
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34,
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¢} Every bird can fly.

d} There is no dog that can takk,

¢) There is no one in this class who knows French
and Russian.

Express the negation of these propositions using
quantifiers, and then express the negation in English.

) Some drivers do not obey the speed limit,

b) All Swedish movies are serious.

¢} No one can keep a secret.

d) There is someone in this class who does not have
a good attitude.

Find a counterexample, if possible, to these univer-
sally quantified staternents, where the universe of dis-
course for all variables consists of all integers.

a) Ya(x® > x) b) ¥x{x > 0vx <)

¢ Yir=1)

Find a counterexample, if possible, to these univer-

sally quantified staterments, where the universe of dis-

course for all variables consists of all real numbers.

a) Yr(x? # x) b) ¥x(x® #£2)

¢ Yailx' > O

Express zach ot these statements using predicates

and quantifiers.

m) A passcnger onan airline qualifies as an elite Ayer

if the passenger flies more than 25,000 miles in a

year or takes more than 25 flights during that year.

A man qualifies for the marathon if his best previ-

oustime is less than 3 hours and a woman qualifies

for the marathon if her best previous time is less

than 3.5 hours.

A student must take at lcast 60 course hours, or

at least 45 coursce hours and write a master’s Lhe-

sis, and receive a grade no lower than a B in all

required courses, to receive a master’s degree,

d) There is a student who has taken more than 21
credit hours in a semester and received all A's.

b)

9]

Exercises 3640 deal with the translation between sys-
tem specification and logical expressions involving quan-
tifiers.

36. Translate these system specifications inww English

k)

.

where the predicate S(x. v) is “x is in state ¥ and
where the universe of discourse for x and v consists
of all systems and all possibic states, respectively.

a) JxS(x, open)

b) ¥x(S(x. maltunctioning) v S{x. diagnostic))

¢} IxSix, open} v A S{x. diagnostic)

d) Ix—-S(x, available)

e) ¥x—S(x, working)

Translate these specifications into English where
F(p)is“Printer pis out of scrvice,” B{ p) is “Printer p
is busy.” L(j)is “Print job j is lost,” and Q) is *“Print
job jis queued.”

a) Ap(F(p) A B(p)y— 3fL(J)
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38.

3.

40.

41.

42,

43,

£

45

46

47.

by YpBip) — 3jQ()

o (@G~ L)) — IpF(p)

d) (YpB(py AV — djL{J)

Express each of these system specilications nsing

predicates, quantifiers, and logical connectives.

a) When therc is less than 30 megabytes free on the
hard disk, a warning message is sent to all users.

b) No dircctorics in the file system can be opened
and no files can be closed when system errors have
been detected.

¢) The file system cannot be backed up if there is a
user currently logged on.

d) Videoondemand canbe delivered when thereare
at least 8 megabytes of memory available and the
connection speed is at least 56 kilobits per second.

Express each of these system specifications using

predicates. quantificrs, and logical connectives.

a) At lcast onc mail message can be saved if there 13
a disk with more than 10 kilobytes of free space.

b) Whenever there is an active alert, all queued mes-
sages are transmitted.

¢) The diagnostic monitor tracks the status of all sys-
tems except the main console.

d) Each participant on the conference call whom the
host of the call did not put on a special list was
billed.

Express cach of these system specifications using

predicates, quantifiers, and logical conncctives.

a) Every user has access to an elcctronic mailbox.

b) The system mailbox can he accessed by everyone
in the group if the file system is locked.

¢) The firewall is in a diagnostic state only if the
PTOXY Server is in a diagnostic state,

d) At lcast one rouler is functioning nermally if the
throughput is between 100 kbps and 500 kbps and
the proxy server is not in diagnostic mode.

Determine whether Yy(P(x) — () and ¥y P(r)
— Yx ({x) have the same truth value.

Show that Yx(Pix) A Qix)) and YxPx) A Vx Qlx)
have the samc truth valuc,

Show that Ix(Pix) v 2¢x)) and Jx P(x) v AxQx)
have the same truth value.

Esiablish these logical equivalences, where A is a
proposition not involving any guantitiers.

a) (YxPix))vA=Vx(FPlx)vA)

b) (xP(x)}v A =3x(Plx}v A)

Establish these logical cquivalences. where A is a
proposttion not invelving any quantifiers.

) (Yx Pla)y)~ A =vVe(PyaA)

b) {3x Plx)i A A =qx(Plx)y A A)

Show thatVx Pix) v ¥y Q(x)and Y (P(x) v ((x)) are
not logically equivalent.

Show that 3x P{x) A dr Qr) and dx¢ PLx) A QX)) are
nat logieally cquivalent.

1.3 Exercises 43

48. The notation 3'x P(x) denotes the proposition
“There exists a nnique x such that P(x) is trne.”

If the universe of discourse consists of all integers,
what are the truth values?
a) Ax(x > 1) b It =1)
¢) 3x(x +3=2x) d) Ixr=x+D
49. What are the truth values of these statemenis?
a) IxPx)— 3xPx)
b) VxP(x) — 3x P(x)
¢} Fx—-Pix) - =¥xP(x)

50. Write out Ix P(x), where the umiverse of disconrse
consists of the integers 1, 2, and 3, in terms of nega-
tions, conjunctions, and disjunctions.

51. Given the Prolog facts in Example 21, what would
Prolog return given these queries?

a) ?instructor (chan,math273}
b) ?instructor({patel,cs301)
¢) ?enrolled(X,cs301)

d) ?enrolledi{kiko,¥)

e) ?teaches(grossman,Y)

52. Given Lhe Prolog facts in Example 21, what would
Prolog return when given these queries?

a) ?enrolled{kevin,ee222)
b) 7enrolled{kiko,math273)
¢) ?instructor{grossman,X)
d) ?instructor{¥,cs30l)

¢) ?teacheg (¥, kevin}

53

Suppose that Prolog facts are used to detine the pred-
icates mother(M, Y) and father(F, X), which repre-
sent that M is the mother of ¥ and F is the father of
X, respectively. Give a Prolog rule to define the pred-
wcate sébling (X, Y), which represents that X and ¥ are
siblings (that is, have the same mother and the same
father).

Suppose that Prolog facts are used to define the pred-
icates mother(M, Y) and father(F, X), which repre-
sent that M is the mother of Y and F is the fatherol X,
respectively. Give a Prolog rule to define the pred-
icate grandfather(X.Y), which represents that X is
the grandfather of Y. (Hint: You can write a disjunc-
tion in Prolog either by using a scmicolon to separate
predicates or by putting these predicates on separate
lincs.)

Exercises 55-58 arc based on questions found in the book
Symbolic Logic by Lewis Carroll.

§5, Let P(x), Q(x),and R(x) be the statements “xis a pro-
fessor,” “x is ignorant,” and “x is vain.” respectively.
Express each of these statements using quantifiers;
logical connectives; and P{x), ¢ (x),and R{x), where
the universe of discourse consists of all people.

th
=

a) No professors are ignorant.
b) Allignorant people are vain.
¢) No professors are vain.
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56.

d) Does (c) follow from (a)y and (b)? 1f not, is there
a correct conclusion?

Let P{x}, O(x).and R(r) be the stalements “x is a

clear explanation,” "r is satislaclory,” and “x is an ex-

cuse,” respectively. Suppose that the universe of dis-

course for x consists of all English text, Express cach

of these statements using quantitiers, logical connee-

tives, and P{x), Q(x), and R{x).

a) Allclear explanations are satistactory.

b) Some excuses arc unsatisfactory.

¢) Some excuses are not clear explanations.

144

logical connectives; and P(x), Q{x), R{(x), and 5(x).
a) Babies are illogical.

b) Nobody is despised who can manage a crocodile.
c) [Mogical persons are despised.

d) Babies cannot manage crocodiles.

*e) Does (d) follow from (a), (b). and (c)? If not, is

there a correct conclusion?

58. Let P(x), Qux), R(x), and 5(x) be the statements “x

is a duck,” 1 is one of my poultry,” “x is an officer.”
and “x is willing to waltz,” respectively. Express cach
of these statements using quantifiers; lugical connec-

*d) Does (o) follow from (a) and (b)? If not, is there
a correct conclusion?

57. Lat P(x), Qix), Rix}, and §(x) be the statements
“x is a baby,” “x is logical,” “x is able to manage a
crocadile,” and "¢ is despised,” respectively. Suppose
that the universe of discourse consists of all people.

Express each of these statements using quantifiers;

tives; and P{x), O(x). R(x),and $(x).
a) No ducks are willing to waltz.
b) No ofticers ever decline to waltz,
¢) Allmy poultry are ducks.
d) My pouliry are not officers,
*¢) Dues (d) follow from (a), (b), and (c)? If not, is
there a correct conclusion?

Nested Quantiﬁers

INTRODUCTION

In Section 1.3 we defined the cxistential and uuiversal quantifiers and showed how they
can be used torepresenl mathematical statements. We alsoexplained how they can be used
to transfate English sentences into logical expressions. In this section we will study nested
quantifiers, which are quantifiers that occur within the scope of other yuantifiers, such asin
the statement ¥x3y(x +y = 0). Nested quantifiers commonly occur tn mathematics and
computer sclence. Although nested quautifiers can sometimes be difficult to understand,
the rules we have already studied in Section 1.3 can help us use them.

TRANSLATING STATEMENTS INVOLVING NESTED
QUANTIFIERS

Complicated expressions invelving quantifiers arisc in many contexts. To understand
these statermnents involving many quantifiers, we need to unravel what the quantifiers and
predicates that appear mean. This is ilustrated in Example 1.

EXAMPLE 1 Assumc that the universe of discourse for the variables x and y consists of all real numbers.
The statement
Additional .
Stope. Vx¥y(x + v = v+x)

says that x + v = y + x for all real numbers x and y. This is the commutative law for
addition of real numbers. Likewise, the statement

Yidyr +y =0

says that for every real number x therc is a real number vy such that x 4 y = (), This s(ates
Extra that every real nomber has an additive inverse. Similarly, the statement

Examples
VavyVzlx +{y+zh=(x + y) +2)

is the associative law for addition of rcal numbers. -
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Translate into English the statcment
YiVy((x > ) A (v < 0) = (xy < 0)),

wherc the universe of discourse for both variables consists of all real numbers.

Solution: This statement says that for every real number x and for every real number v, if
x > 0and v < 0,then xy < (. That is, this statement says that for real numbers x and y,
if x is positive and y is negative, then xy is negative. This can be stated more succinctly
as "“The producl of a positivc real number and a negative real number is a nepative real
number.” 4

Expressions with nested quantitiers expressing statements in English can be quite
complicated. The first step in translating such an expression is to write out what the
quantifiers and predicates in the expression mean. The next step is to express this meaning
in a simpler scntence. This process is illustrated in Examples 3 and 4.

Translate the statcment
Yx{C(x) vIy(C(y) A Flx, y)))

into English, where C(x) 1s “x has a computer,” F(x, ¥) is“x and y are friends,” and the
universe of discourse for both x and y consists of all students in your school.

Solution: The statement says that for every student x in your school x has a computer or
there is a student y such that ¥ has a computer and x and y are friends. In other words,
every student in your school has a compuler or has a fricnd who has a computcr. S|

Translate the statcment
VYV (F(x, y) A Flx,2) Ay # 2)) > —F(y.2))

into English, where F(a,b) means « and b are friends and the universe of discourse for
x, v, and z consists of all students in your school.

Solution: We first examine the expression (F(x. y) A F(x,2) A (y £ 2)) = —F(y, 2).
This expression says that it students x and y are friends. and students ¥ and 7 are [riends,
and furthermore. if v and z are not the same student, then v and z are not friends. 1t
follows that the original statement, which is triply quantified, says that there is a student x
such that for all students y and all students z other than y, if x and y are friends and x
and z are friends. then y and £ are not friends. In other words, there is a student none of
whose friends are also friends with each other. -

TRANSLATING SENTENCES INTO LOGICAL
EXPRESSIONS

In Section 1.3 we showed how guantificrs can be used to translate sentences into logical
cxpressions. However, we avoided sentences whose translation into logical expressions
required the use of nested quantifiers. We now address the translation of such sentences.

Express the statement “If a person is female and is a parent, then this person is some-
one’s mother” as a logical expression involving predicates, quantifiers with a universe of
discoursc consisting of all people, and logical connectives,
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EXAMPLE 6

EXAMPLE 7

Solution: The statement “If a person is female and is a parent, then this person is some-
one’s mother” can be expressed as “For every person x, if person x is female and person
x is a parent, then there exists a person y such that person x is the mother of person y.”
We introduce the predicates F(x) to represent “x is female,” P(x) to represent “x is a
parent,” and M (x, y) to represent “x is the mother of ¥.” The original statement can be
represented as

Yx((F(x) A P(x)) = IyM(x, y)).

We can move 3y all the way to the left, because ¥ does not appear in F(x) A P(x), 10
obtain an equivalenl expression

Va3y((F(x) A P(x)) = M(x, y)). «

Express the statement “Evervone has exactly one best friend” as a logical expression
involving predicates, quantifiers with a universe of discourse consisting of all people, and
logical connectives,

Solution: The statement “Evervone has exactly one best friend” can be expressed as
*For every person x, person x has exactly one best friend.” Introducing the universal
quantifier, we see that this statement is the same as “¥Yx (person x has exactly one best
friend)” where the universe of discourse consists of all people.

To say that x has exactly one best friend means that there is a person ¥ who is the
best friend of x, and, furthermore, that for every person z, if person z is not person y,
then z is not the besl friend of x. When we introduce the predicate B(x, y) to be the
statement “y is the best friend of x,” the statement that x has exactly one best friend can
be represented as

B, y) AVzllz # ¥) > ~Bx, D).
Consequently, our original statement can be expressed as
Vx3y(B(x, y) nVzl(z # ¥) = —B(x, 2)).

(Note that we can write this statement as Yx3!yB(x, y), where 3! is the “uniqueness
quantifier” defined in Exercise 48 of Section 1.3. However, the “uniqueness quantifier” is
not really a quantifier; rather, it is a shorthand for expressing certain statements that can
be expressed using the quantifiers ¥ and 3. The “uniqueness quantifier” 3! can be thought
of as a macro.) -

Use quantifiers to express the statement “There is a woman who has taken a flight on
every airline in the world.”

Solution: Let P(w, f) be *w has taken f” and Q(f. @) be “f is a flight on a.” We can
express the statement as

Juvadf(P(w, f) A Q(f.a).

wherc the universes of discourse for w, f, and a consist of all the women in the world,
all airplane flights, and all airlines, respectively.
The statement could also be expressed as

Jw¥aIfR(uw, f, a),

where R(w, f, a) is “w has taken f on a.” Aithough this is more compact, it somewhat
obscures the relationships among the variables. Consequently, the first solution is usually
preferable. <
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Mathematical statements expressed in English can be translated into logical expres-
sions as Examples 8-10 show.

Translate the stalement “The sum of two positive integers is positive” into a logical ex-
pression.

Solution: To translate this statement into a logical expression, we first rewrite itso that the
implied quantifiers are shown: “For every two positive integers, the sum of these integers
is positive.” Nexi, we introduce the variables x and y to obtain “For all positive integers x
and y,x + y is positive.” Consequently, we can express this statement as

Yav¥y((x =D Ay >0 - (x+y=0)),
where the universe of discourse for both variables consists of all integers. 2|

Transiate the statement “Every real number except zero has a multiplicative inverse.”

Solution: We first rewrite this as “For every real number x except zero, ¥ has a multi-
plicative inverse.” We can rewrite this as “For every real number x,if x # 0. then there
exists a real number v such that xy = 1.” This can be rewrilten as

Vx((x #0) — 3y(xy = . <

One example that vou may be familiar with is the concept of limit, which is important
in caleulus.

(Calculus required) Express the definition of a limit using quantifiers.

Selution: Recall that the definition of the statement
lim f(x}) =1L
X—a

is: Foreveryrealnumbere > Othere existsarealnumber§ > Osuchthat| f(x) — L| < ¢

whenever 0 < |x —g| < §.Thisdefinition of a limit can be phrased in terms of quantifiers
by

YeddVx (D < |lx —al <8 — | f(x)— L| <€),

where the universe of discourse for the variables § and € consists of all positive real
numbers and for x consists of all real numbers.
This definition can alsc be expressed as

Vex0F=>0Vx(0 < lx—a| <d— [f(x)—L| <€)

when the universe of discourse for the variables € and 4 consists of all real numbers, rather
than just the positive real numbers. >

NEGATING NESTED QUANTIFIERS

Statements involving nested quantifiers can be negated by successively applying the rules
for negating statements involving a single quantifier. This isillustrated in Examples 11-13.
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EXAMPLE 11

Extra
Examples

EXAMPLE 12

EXAMPLE 13

Express the negation of the statement ¥xdy(xy = 1) so that no negation precedes a
quantifier,

Solution: By successively applying the rules for negating quantified statements given
in Table 2 of Scetion 1.3, we can move the negation in =Vxdy(xy = ) inside all the
quantifiers. We find that =¥x3Jy(xy = 1) is equivalent to Ix—Iy(xy = 1), which is
equivalent to IxVy—(xy = 1). Since —(xy = 1) can be expressed more simply as
xy # l.we conclude that our negated stalement can be expressed as xVy(xy # 1). o

Use quantifiers to cxpress the statement that “There does not exist a woman who has
taken a flight on every airline in the world.”

Solurion: This statement is the negation of the statlement “There is a woman who has taken
a flight on every airline in the world” from Example 7. By Example 7. our statement can
be expressed as —Iw¥a3 F (P (w, fIA Q(f, a)),where P(w, f}is“w hastaken f”and
Q(f, a}is™f is a flight on a.” By successively applying the rules for negating quantified
staterments from Table 2 of Scction 1.3 to move the negation inside successive quantifiers
and by applying De Morgan’s law in the last step, we find that our statement is equivalent
to each of this sequence of statements:

Vuw—Nad F(P(w, £} A QUF, a)) = Ywda-af(Plw, f) A O(f.a))
= YwIa¥ f-(P(w. f} A Q(f,a))
= YwIa¥f(-Plw, fYvQ(f, ).

This last statement states “For every woman there is an airline such that for all flights, this
woman has not taken that flight or that flight is not on this airline.” «

Use quantifiers and predicates to cxpress the fact that lim, ., f(x) does nol exist.
Solution: To say that im,_,, f(x) does not exist means that for all real numbers L,

lim, ., f(x) # L. By using Example 10, the statement lim,_, f(x} # L can be
expressed as

Ve >0 >0Vx(0<|x—a]l<d—=|f(x)—L] <€)

Successively applying the rules for negating quantified expressions, we construct this
sequence ol equivalent statements

Ve >0 >0Vx(0 < |x—a|<d—=>|flx)— L]l <¢€)
=de>0-FW >0V < lx—a|<d— (flx)— Ll <€)

= >0¥8>0-Vx(0 < |x—al<8—=|f(x)—L| <€)
=3 >0¥ >0 -0<|x—a|l<d = flx)—L| <€)

=Je > 0¥ >0qx(0 < Jx —af <=8 A |f(x)— L] > e).

We use the equivalence —(p — q) = p A —g,in the last step.
Because the statement lim, ,, f(x) docs not exist means for all real numbers 1.,
limy—, f(x) # L. This statement can be expressed as

VEAe»0¥i>03x(0 < [x —a| < A [ flx)— L] > €).

This last statement says that for every real number L there is a real number € > ( such
that for every real number 8 > 0. there exists a real number x such that 0 < [x —q| < §
and | f(x)— L] > €. «
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THE ORDER OF QUANTIFIERS

Many mathematical statements involve multiple quantifications of propositional fune-
tions involving more than one variable. It is important to note that the order of the
quantifiers is important, unless all the quantifiers are universal quantifiers or all are ex-
istential quantifiers. These remarks are illustrated by Examples 14-16. In each of these
examples the universe of discourse for each variable consists of all real numbers.

Let P{x. ¥) be the statement “x + y = y + x.” What is the truth value of the quantifica-
tion VxVyPlx. y)?

Solution: The quantification
YaxvvP(x, y)
denoles the proposition
“For all real numbers x and for all real numbers y,x +y =y + x.”

Since P(x, ¥) is true for atl real numbers x and y, the proposition Yx¥v P (x, y) is true.
«

Let Q(x.y) denote “x + v = 0." What are the truth values of the guantifications
yVx Q(x, ¥) and YxIy CGx, y)?

Solution: The quantification
AyVrQix, y)
denotes the proposition
“There is a real number y such that for every real number x, Qix. ¥).”

No matter what value of v is chosen, there is only one value of x tor which x + y = ().
Since there is no real number y such that x + ¥ = 0 for all real numbets x, the statement
Ay¥x C(x, ¥) is false.

The quantification

Yx3yQia. y)
denotes the proposition
“For every real number x there is a real number y such that Q(x, ¥).”

Given a real number x, there is a real number v such that x + vy = 0; namely, y = —x.
Hence, the statement Yx3dy O(x, y) is true, 4

Example 13 illusirates that the order in which quantifiers appear makes a difference.
The statements IyVx Plx, y) and Yx3y P{x, ¥) are not logically equivalent. The state-
ment 3yVx P(x, y) is true if and only if there is a y that makes P{x, y} true for every x.
So, for this statement to be true, there must be a particular value of y for which P(x, ¥)
is true regardless of the choice of x. On the other hand, Vx3y P(x, y) is true if and only if
for every valuc of x there is a value of y for which P(x, y) is true. So, for this stalement
to be true, no matter which x you choose, there must be a value of y (possibly depending
on the x vou choose) for which P (x, y) is true. In other words. in the second case v can
depend on x, whereas in the first case y is a constant independent of x.
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TABLE 1 Quantifications of Two Variabies.
‘ Statement When True? When False?
— - S S— N
\ YavyPlx. y) P(x. v)is true for cvery pair There is a pair x, v for |
| YyVxPix, y) T,y which P(x, y) is false. ‘
YxdvPix,y) For every x there is a y for There is an x such that |
which P(x, y)is true, P(x, y)is false for every y.
’_'El_x'V).’P(x, ¥) There is an x for which P(x. y) For every x thereis a y for
is true for every v, which P{x. v} is talse.
JxIAy P(x, v) There is a pair x, v for which P(x, y) is false for every
IyIxPlx,y) | FPlx.y)istrue. pair x, v.

EXAMPLE 16

From these observations, it follows that if 3yVx P (x, v is true, then Vxav Pix, v)
must also be true. However, if Yx3y P(x, ¥) is true. it is not necessary for yVx P(x, ¥)
to be true. (Sec Supplementary Exercises 14 and 16 at the end of this chapter.)

THINKING OF QUANTIFICATION AS LOOPS 1n working with quantifications
of more than onc variable, it is sometimes helpful to think in terms of nested loops. (Of
course, i there are infinitely many elements in the universe of discourse of some variable,
we cannot actually loop through all values. Nevertheless, this way of thinking is helpful
in understanding nested quantifiers.) For example. 10 see whether VxVv P (x, v) is true,
we loop through the values for x, and tor each x we loop through the values for v. If we
find that P(x, v)is truc {or all values for v and y, we have determined that Vx ¥y P(x, v)
is true. If we ever hit a value x for which we hit a value v for which P(x, y) is false, we
have shown that YxVy P(x, v} is falsc.

Similarly. to determine whether Yx3y P (x. y) is true, we loop through the values
for x. For each x we loap through the values for y until we find a y for which P(x, y) is
true. If for all x we hit such a v.then Yx3y P(x, ¥ is true;if for some x we never hit such
a ¥, then Vx3y Pix. v) is false.

To see whether 3xVy P(x, y) is truc, we loop through the values for x until we find
an x for which P(x, y) is always true when we loop through all values for v. Once we
find such an x, we know that xVy P(x, y) is true. If we never hit such an x, then we
know that IxVy P(x, y) is false.

Finally, to see whether 3x3y P{x, ¥) is true. we loop through the values for x. where
for cach x we loop through the values for v until we hit an x for which we hit a y for
which P(x. y)is truc. The statement Ix3y F(x, v} is falsc only if we never hit an x for
which we hit a v such that P{x. y) is true.

Table | summarizes the mcanings of the different possible quantifications involving
two variables,

Quantifications of more than two variables are also common, as Example 16 itlus-
trates.

Let @ (x. v, 2) be the statement “x 4 v = z.” What arc the truth values of the statements
VavyvIzQ(x, y, 2)and IZVxVyQ(x. v, 2)?
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Solution: Suppose that x and y are assigned values. Then, there exists a real number z
such that x 4+ 3 = z. Consequently, the quantification

VaV¥y3zQ(x, . 2),
which is the statement
“For all real numbecrs x and tor all teal numbers y there is a real number z such that
x+y=2z"
is truc. The order of the quantification here is important. since the quantification
AzVaVyQ(x, ¥, z),
which is the statcment
“There is a teal number z such thal for all real numbers x and for all reai numbers y
itistrue that v + y = 7,
is false. since there is no value of 7 that satisfies the equation x 4+ ¥ = 7 lor all values of
xand y. <
E 1
Xerclses
1. Translale thesc statements into English, wherc the for y consists of all websites. Express cach of these

universe of discourse fov cach variable consists of all
real numbers.

a) Vx3dy(x < v}

b) Yaxvy(((x =) A (2 0)) = (xy = 1)

¢} Vav¥ydz(xy=12z)

. Translatc these statements into English. where the

universe of discourse for cach variable consists of all
real nuinbers,

a) Aavviy =¥)

B) Yavy(({ix =M A (y <0)) = (x —y = 0))

) Yx¥ydzix =y 4+ 2)

Let ((x, y) be the statement “x has sent an e-mail
message to v,” where the universe of discourse for
both x and v consists of all students in your class.
Express each of these quantifications in English.

a) Axdy Qix, ¥) b) Yy Q(x, ¥}
) VxdyQix, y) d) IyVxQ(x, y)
¢) Vydxr Qix, v) 0 ¥YxvyQix.v)
Let P{x, v) be the statement “student x has taken
class v." where the universe ol discourse for x con-
sists of all students in your class and for ¥ consists of
all computer science courses al your school. Express
each of these quantificatious in English.
a) IxIyP(x, ) b) 3xV¥y FPlx. v)
¢) ¥x3y Pix, ) d) 3v¥x Pix,y)
¢) VyAx Pix, v) ) Va¥yPla.v)

. Let Wix. ¥) mean that student x has visited website y.

where the universe of discourse for x consists of all
students in your school and the universe of discoursc

statements by a simple English sentence.

a) W{Sarah Smith. www.att.com)

b) IxW(x, www.imdb.org)

¢} IyW(Jose Orez. y)

d) Jy(W(Ashok Puri. y) ~ W(Cindy Yoon. v})}

e) 3yvz(y # (David Belcher) A {W{(David Belcher,
)= W)

f) Lvl(x # ¥ AW, ) o WiH.on

. Let C(x,y) mean that student x is enrolled in class »,

wherc the universe of discourse for x consists of all
students in your school and the universe of discourse
for v is the sctof all classes being given at your school.
Express each of these statements by a simple English
sentence.

a) C(Randy Goldberg. CS 252)

by IxC(x, Math 695)

¢) JrC(Carol Sitea, v)

dy Ix(C{x,Math 222) A C{x, S 252))

e} 3xIyVillx # y) A (Ol z) > Oy )

f) JrdyV¥z(lx # v A Clx,2) © Clyzh)

. Let T{x, y} mean that studeni r likes cuisine y, where

the universe of discourse for x consists of all students
at your school und the universe of discourse for v con-
sists of all cuisines. Express cach of these statements
by a simple English sentence.

a) —~-T{Abdallah Hussein, Japanese)
b) IxT(x,Korean) A ¥x T (x. Mexican}
¢} dy(T(Monique Arsenault, y) v
T (Jay Johnson, y))
d) vxvzIy((x £z) = —(T(x,¥) ATz, 9
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+

e) TrIVyiT(x,v) o Tiz.¥v)
A YxVzAy(Tix, ) = Tz ¥

Let Q(x, y) be the statement “siudent x has been a
conteslanl on quiz show y.” Express each of these
sentcnces in terms of ((x, ¥}, quantificrs, and logi-
cal connectives, where the universe of discourse for x
consists of all students at your schoo! and for y con-
sists of all guiz shows on television.

a) There is a student at your school who has been a
contestant on a television quiz show.

b) No student at vour school has ever been a contes-
tant on a television quiz show.

¢) There is a student at your school who has been a
contestant on Jeopardy and on Whee! of Fortne.

d) Evcrytelevisionquizshow has had a student [rom
your school as a contestant.

e) At least two students from your school have been
contestants on Jeopardy.

Let L(x. y) be the statement “x loves »,” where the
universe of discoursc for both x and v consists of ali
people in the world. Use quantifiers to express each
of these statcments.

aj Evcrybody loves Jerry.

b) Everybody loves somebody.

¢} There is somebody whom everybody loves,

d) Nobwdy loves everybody.

e) There is somebody whom Lydia does not love.

f) There is somebody whom no onc loves.

g) There is exactly one persen whom cverybody
loves,

h) There are exactly two pcople whom Lynn loves,

i} Everyone loves himself or hersell.

j) There is someonc who loves no one besides him-
sell or herscll.

Let F(x, v) be the statement “x can fool y,” where
the universe of discourse consists of all people in the
world. Use quantifiers to express each of these state-
ments.

a) Everybody can feol Fred.

b) Evelyn can fool everybody.

¢) Everybody can fool somebody.

d} There is no one who can fool everyhody.

e) Everyone can be fooled by somebody.

) Noone can fool both Fred and Jerry.

g) Nancy can fool exactly two people.

h) There is cxactly one person whom everybody can
fool.

i) No one can fool himself or herself,

) Thereissomeone who can fool exactly one person
besidcs himself or herself.

Let S(x) be the predicate “x is a student,” F(x) the
predicate “x is a faculty member,” and A(x.yj the
predicate “x has asked y a question,” wherc the uni-
verse of discourse consists of all people associated

12

13.
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with your school. Use quantifiers to express each of
these statements,

a) Lois has asked Professor Michaels a qucstion.

b) Evcry student has asked Professor Gross a ques-
tion.

¢} Every faculty member has either asked Profes-
sor Miller a question or been asked a question by
Professor Miller.

d) Somc student has not asked any faculty member
a question.

€) There is a faculty member who has never been
asked a question by a student,

f) Some student has asked every laculty member a
question.

g) There is a faculty member who has asked cvery

other faculty member a question.

Some student has never been asked a question by

a faculty member,

h)

Let J{r) be the statement “x has an Internct con-
nection™ and Cix,y) be the statement “x and y have
chatted over the Internet,” where the universc of dis-
course for the variables x and y consists of all students
in your class. Use quantifiers to express each of these
statements,

a) Jerry docs not have an Tmernet connection,

h) Rachel has not chatted over the Internct with
Chelsea.

¢) Jan and Sharon have never chatted over the In-
ternct.

d) No one in the class has chatted with Bob.

e) Sanjay has chatted with everyone except Joseph.

f) Someonc in your class does not have an Internet
connection.

g) Nol everyone in your class has an Internel con-
nection.

h) Exactly onc student in your class has an Internet
conncction.

i) Evervone except one studcut in your class has an
Internet connection.

J» Evcryone in your class with an Tnternet connec-
lion has chatted over the Internet with at least
one other student in your class.

k) Someonc inyour class has an Internet connection
but has not chatted with anyone else in your class.

I) There are iwo students in your class who have not
chatted with each other over the Internet,

m) There is a student in your class who has chatted
with everyone in your class over the Internet.

n) There are at least twa students in your class who
have not chatted with the same person in your
class.

o) There are two students in the class who hetween
them have chatted with everyone else in the class.

Let M(x, v) he “x has sent y an e-mail message” and
T(x,y) be *x has telephoned v,” where the universe




14

15,

of discourse consists of all students in your class. Use
quantificrs to express cach of these statements. (As-
sume (hat ail e-mail messages that were sent are re-
ceived. which is not the way things often work.)

a) Chou has never sent an e-mail message to Koko.

b) Arlene has never sent an e-mail message to or
telephoned Sarah.

c) Jose has never received an e-mail message from
Deborah,

d) Everystudentinyourclass hassentane-mailmes-
sage lo ken.

e} No one in your class has telephoned Nina.

f) Evcryone in your class has either tclephoned Avi
or sent him an e-mail message.

g} There is a student in your class who has scnt ev-
eryone else in your class an e-mail message.

h) Thereis someone in your class who has eithersent
an c-mail message or telephoned everyone else in
your class.

i) Thereare twostudents in youy class who havesent
each other e-mail messages.

j) Thereis a student who has sent himself or herself
an e-mail messuge.

k) There is a student in your class who has not re-
ceived an e-mail message from anyone else in the
class and who has not been called by any other
student in the class.

I) Every student in the class has cither received an
e-mail message or received a telephone call from
anothcer student in the class.

m) There are at least two students in your class such
that one student has sent the other e-mail and the
second student has telephoned the frst student.

n) There arc two students in your class who between
them have sent an e-mail message to or tele-
phoned everyone else in the class.

Use gquantificrs and predicates with more than one

variable to express these statements,

a) There is a student in this class wheo can speak
Hindi.

b) Every student in this class plays some sport.

¢) Somc student in this class has visiled Alaska but
has not visited Hawail.

d) Allstudents in this class have lcarned at least onc
programming language.

e) There is a student in this class who has taken ev-
ery course offcred by one of the departments in
this school.

f} Some student in this class grew up in the same
town as exactly one other student in this class.

g) Everystudentinthisclasshaschatted with at least
one other student in at least onc chat group.
Use quantifiers and predicales with more than one

variable to express these statements.

a} Every computer science student needs a course
in discrete mathematics.
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b) There is a student in this class who owns a per-
sonal computer,

¢) Every student in this class has taken at least one
computer science course.

d)} There is a student in 1his class who has taken at
least one course in computer science.

e} Everystudentin thisclass has been in every build-
ing on campus.

) There is a student in this class who has been in
every room of at least one building on campus.

g} Everystudentin this class has been in at least one
room of every building on campus.

16. A discrete mathematics class contains 1 mathematics

major who is a freshman, 12 mathematics majors who

are sophomores, 15 computer science majors who are

sophomores, 2 mathematics majors who are juniors, 2

computer science majors who are juniors, and 1 com-

puter science major who is a senior. Express each of

these stalements in terms of quantifiers and then de-

termine its truth value.

a) There is u student in the class who is a junior.

b) Every student in the class is a computer science
major.

¢) There is a student in the class who is neither a
mathematics major nor a junior,

d) Every student in the class is either a sophomore
Orf a compuler science major.

e} Thereis a major such that there is a student in the
class in every year of study with that major.

17. Express each of thesc system specifications using

predicates, quantifiers, and logical connectives, if

necessary.

a) Every user has access lo exaclly one mailbox.

b) There is a process that continues to run during
all error conditions only it the kernel is working
correctly.

¢) All users on the campus network can access all
websites whose url has a .edu extension,

*d) There are cxactly two systems that monitor cvery
remote server.

18. Express each of these system specifications using

predicates, quantifiers, and logical connectives, if nec-

essary.

a) Al least one console must be accessible during
every fault condition.

b) The e-mail address of every user can be retrieved
whenever the archive contains at least onc mes-
sage sent by every user on the system.

¢} For every security breach there is at least one
mechanism that can detect that breach if and only
if there is a process that has not been compro-
mised.

d) There are at least lwo paths eonneeling every two
endpoints on the network.

e) No one knows the password of every user on the
system except for the system administrator.
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19. Express each of these statements using mathemati-

20

21,

22

H

23,

24,

25

cal and logical operators, predicates, and quantifiers,
where the universe of discourse consists of all inte-
gers.

a) The sum of two negative integers is negative.

b) The difference of two positive integers is not nec-
essarily positive.

¢) The sum of the squares of {wo integers is greater

than or equal to the square of their sum.

The absolute value of the product of two integers

is the product of their absolute values,

d)

Express cach of these statements using predicates,
quantifiers, logical connectives, and mathematical op-
erators where the universe of discourse consists of all
miegers.

a) The product of two negative integers is positive.
b) The average of two positive integers is positive.
¢) The difference of two negative integers is not nec-
essarily negative.

The absolute value of the sum of two integers
dues not exceed the sum of the absolule values
of these integers.

d)

Use predicaies, quantificrs, logical connectives, and
mathematical operators to express the statement that
every positive integer is the sum of the squares of four
integers.

Use predicates. quantifiers, logical connectives, and
mathematical operators to express the staternent that
there is a positive integer that is not the sum of three
squares.

Express each of these mathematical statements using
predicates, quantifiers, logical connectives. und math-
emafical operators.

a) The product of two negative real numbers is pos-
itive.

b) The difference of a real number and itself is zero.

¢) Every positive real number has exactly two

square Toots,

A negative real number does pot have a square

rool that is a real number.

d)

Translate each of these nested quantifications into an
English statement that expresses a mathematical fact,
The universe of discourse in each ¢ase consists of all
rcal numbers,

ay vy(x 4y =)

by Ya¥y(((x =0 A(y <O} — (x —v > 0D

¢ Iy(x<MWA=MAx—y=>10)

d) Yx¥y((r £ ) Ay #0) o (xy £0))

Translate each of these nested quantifications into an
English statement that expresses a mathe matical fact,
The universe of discourse in each case consists of all
real numbers.

a) AaVy(xv =)

b) Yavy{((x <M Ay <)) = ay>0)

26.

27

28

30

31

32
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¢} FxIy((x” > y) Al < 3))

&) va¥ydz{x —y =3)

Let O(x, y) be the statemeni “x + v =x — v.” If the
universe of discourse for both variables consists of all
integers. what are the truth values?

ay o,y by Q2,0 ¢} VyQ(L,y)

d) IxQx.2) e) IxTyQPx,¥) D YxIyOix y)

g IyvaQix. )

h) vyax QO(x.

iy VavyQix, v)

Determine the truth value of each of thesc statements
if the universe of discourse for all variables consists
of all integers.

a} Yn3mGn® < m) by Invmin <~ m)

) ¥admn+m =00 d) AnVm(nm = m)

e Indmn’ +m =5 b WImp>+m> =6

@ wImn4+m=drn-m=1)

hYy Indmn+m=4rn—m=12)

i) YVnVmdp(p ={m +n3/2)

Determine the truth value of each of these statements
if the universe of discourse of each variable consists
of all real numbers.

8) ¥x3Iy(x* = ¥) b) ¥axIy(x = y")

¢ Axvy(xy =0 dy Iedy(x +y #F y+x)

e) Yx(x # 0 — Jyiav =1))

D vy(x#0—xy=1

g) vxIv(x +y =1

h) Ixavix +2v =2 A2x + 4y =13)

i) vxdy(x4+y=2A2x—y=1)

Jy YxvyIzz = (x + ¥)/2)

Suppese the universe of discourse of the proposi-
tional function Pix, ¥) consistsof pairs x and y, where
xis 1,2, or3and yis 1.2, or 3. Write out these propo-
sitions using disjuaetions and conjunctions.

a) VxYvPx, y} b} Jx3y Pix. ¥)

€) IxYyP{x, y) d) Vydx Plx.y)

Rewrite each of these statements o that negations
appear unly within predicates (thatis,so thatno nega-
tion is outside a quantificr or an expression involving
logical connectives).

a) =3Iy Plx.v) b) —VxIy Pix,y)

¢ —Av(2() AVx-RI{x.y))

d) —3y3xRx.y) v ¥eSix, v

e) —Ay(VaIzTix, y, o) v vzl {x. ¥, 2

Express the ncgations of each of these statements
so that all negation symbols immediately precede
predicates.

a) YxIyweTi(x,y.z2)

by VxdyPlx, vy v ¥xIvQ{x, v}

€} Ya3y(P{x.y}~3cR{x, v. 2D

d) ¥ady(Px. y) - Qx, )

Express the negations of each of these statements so
that all negation symbeols immedialely precede pred-
icates.
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a) AzvyvxT(x,y, z)

b) AxIyP(x, ) AVIVYQix, y)

¢) AxIy(Q(x, ¥y}« Oy, x))

d) ¥y3x3z(T (x, y.2) V Q(x,¥)

Rewrile each of these statements so that negations
appear only within predicates (that is,so that no nega-
tion is outside a quantifier or an expression involving
logical connectives).

a) —Vav¥yP(x,y) b) —¥y3x P(x, ¥}

€) —VyVx(Pix, y) v Q(x, y))

d) —(FxIy—P{x, y} AVxVyO(x, ¥))

e) —Vx(3yVzP{x, y,2) n ¥y P(x, ¥, 2)}

. Express each of these statements using quantifiers.

35,

37

Then form the negation of the statement so that no
negation is to the left of a quantifier. Next, express
the negation in simple English. (Do not simply use
the words “Tt is not the case that.”)

a) No one has lost more than one thousand dollars

playing the lottery.

There is a student in this class who has chatted

with exactly one other student.

¢) No student in this class has sent e-mail to exactly

two other students in this class.

Some student has solved every exercise in this

book.

e) No student has solved at least one exercise in ev-
ery section of this book.

b)

d)

Express each of these statements using quantifiers.
Then form the negatiou of the statement so that no
negation is to the left of a quantifier. Next, express
the negation in simple English. (Do not simply use
the words “It is nol the case that.”)

a) Every student in this class has taken exactly two
mathematics classes at this school.

Someone has visited every country in the world
except Libya.

¢) No one has climbed every mountain in the Hi-
malayas.

Every movic actor has either beenin a movie with
Kevin Bacon or has becnin amovie withsomeone
who has been in a movie with Kevin Bacon,

b)

d)

Express the negations of these propositions using
quantifiers, and in English.

a) Every student in this class likes mathematics.

b) There is a student in this class who has never seen
a computer.

¢) Thereisastudent in this class who has taken every

mathematics course offered al this school.

There is a student in this class who has been in at

least one room of every building on campus.

Find a counterexample, if possible, to these univer-
sally quantified statemeuts, where the universe of dis-
course for all variables consists of all integers.

a) Vavy(xi=y > x=1y)
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b) vx3y(y* = x)
Find a counterexample, if possible, to these univer-

sally quantificd statements, where the universe of dis-
eourse for all variables consists of all integers.

a) Yxdy(x = 1/y) b) vx3y(y* —x < 100)

€) Vx¥y(x? # y7)

Use quantiliers to express the associative law for mul-
tiplication of real numbers.

Use quantifiers to express the distributive laws of
multiplication over addition for real numbers.
Determine the truth wvalue of the statement
Yx3v{xy = 1) if the universe of discourse for the vari-
ables consists of

€) VxVy{xy > x)

39.

40

41.

a) the nonzero real numbers,
b) the nonzero integers.
¢} the positive real numbers,

42. Determine the truth value of the statement
Ix¥y(x < y?) if the universe of discourse for the vari-

ables consists of

a) the positive real numbers.
b) the integers.
¢) the nonzero real numbers.

43. Show that the two statements —3x¥yP(x, y) and

Yx3y—P(x, y) have the same truth value.

Show that Vx P(x) v Vx Q(x) and YxV¥y(P(x) v Q(y))

are logically equivalent. (The new variable y is used

to combine the quantifications correctly.)

a) Show that Vx P(x) A 3xQ(x) is equivalent to
YxIy(P(x) A Q).

b) Show that vx P(x) v 3xQ(x) is equivalent Lo
VrIy(P () vV Q).

A statement is in prenex normal form (PNF) if and only
if it is of the form

O i Plx, x2, ... x4),

*44

*45,

where each @;,i = 1,2,...,k, is either the existential
quantifier or the universal quantifier, and P(x, ..., x;)
is a predicate involving no quantifiers. For example,
Ax¥y(P(x,y) »~ Q(¥)) is in prenex normal form, whereas
Jx P(x) v ¥x ((x) is not (since the quantifiers do not all
occur first).

Every statement formed from propositional vari-
ables, predicates, T, and F using logical connectives and
quantifiers is equivalent to a statemenl in prenex normal
form. Exercise 47 asks for a proof of this fact.

*46. Put these statements in prenex normal form.
{Hinr: Use logical equivalcnce from Tables 5 and 6
in Section 1.2, Table 2 in Section 1.3, Exercises 4245
in Section 1.3, and Excrcises 44 and 45 in this section.)

a) xP(x) v IxQ(x) v A, where A is a proposition
not involving any quantifiers.

b) = (¥xP(x) v ¥xQ(x))

¢) JxPx)—> IxQ(x)




56 1/The Foundations: Logic and Proof, Sets, and Funections

*#47. Show how to transform an arbitrary stalement to a

48.

*49

statement in prenex normal form that is equivalent

to the given statement.

A real number v is called an upper bound of a set §

of real numbers if x is greater thau or equal to every

mcmber of 5. The real number x is called the least

upper bound of a sct § of real numbers if x is an up-

per bound of § and v is less than or equal to every

upper bound of §; if the least upper bound of a set §

exists, it 1s unique.

a) Using quantifiers, express the fact that x is an up-
per bound of S.

b) Using quantifiers, express the fact that x is the
least upper bound of 3.

Express the quantification 3!x P (x) using universal

guantifications. existential quantifications, and logi-

cal operators.

The statement lim,, ., 4, = L means that for every posi-
tive real number ¢ there is a positive integer N such that
@, — L| < ¢ whenevern = N.

50. (Calculus required) Use quantifiers to express the
statement that lim, ., a, = L.
51. (Calculus required) Use quantifiers to express the
statement that lim,_, », @, does pot exist,
52. (Calculus required) Use quantifiers to express this
definition: A sequcnce [a,) is a Cauchy sequence if
for every real number € > 0 there cxists a positive
integer ¥ such that )a,, — a,! < € for every pair of
positive integers m and n withm > N andn > N.
(Calculus required) Use quantifiers and logical con-
nectives to express this definition: A number L is the
limitsuperior of a sequence {a,} it for every real num-
ber ¢ = 0. a, > L — ¢ for infinitely many »n and
a, > L + € for only finitely many ».

wn
il

Methods of Proof

!NTRODUCTION

Two important questions that arise in the study of mathematics are: (1) When is a math-
ematical argument correct? (2} What methods can be used to construct mathematical
arguments? This section helps answer these questions by describing various forms of
correcl and incorrect mathematical arguments.

A theorem is a statement that can be shown to be truc. (Theorems are sometimies
called propositions, facts, or results.) We demonstrate that a theorem is true with a se-
quence of statements that [orm an argument, called a proof, To construct proofs, methods
are necded to derive new statements from old oncs. The statements uscd in a proof can
include axioms or postulates, which are the underlying assumptions about mathematical
structures, the hypotheses of the theorem to be proved, and previously proved theorems.
The rules of inference, which are the means used to draw conclusions from other assertions,
tic together the steps of a prool.

In this section rules of inference will be discussed. This will help clarify what makes up
a correct proof, Some common forms of incorrect reasoning, called fallacies, will also be
described. Then various methods commonly used to prove thcorems will be introduced.

The terms lemma and corollary are used for certain types of theorems. A lemma
(plural lemmas or lemmata) is a simplc theorcm used in the proof of other theorems.
Complicated proots are usually easier to understand when they are proved using a se-
ries of lemmas, where each lemma is proved individually. A corollary is a proposition
that can be established directly from a theorem that has been proved. A conjecture is
a statement whose truth value is unknown. When a proof of a conjecture is found, the
conjecture becomes a theorem. Many times conjectures are shown to be false, so they are
not theorems.

The methods of proof discussed in this chapter are important not only because they
are used to prove mathiematical theorems, but also for their many applications to com-
puter science. These applications include verifying that computer programs are correct,
establishing that operating systems are secure, making inferences in the area of artificial

Links
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intelligence, showing that system specifications are consistent, and so on. Consequently,
understanding the techniques used in proofs is essential both in mathematics and in com-
puter scienge.

RULES OF INFERENCE

We will now introduce rules of inference for propositional logic. These rules provide the
justification of the steps used to show that a conclusion follows logically from a set of
hvpotheses. The tautology {(p A (P — ¢)) — g is the basis of the rule of inference called
modus ponens, or the law of detachment. This tautology is written in the following way:

p
pP—dq
g

Using this notation, the hypotheses are written in a column and the conclusion below a bar.
(The symbol .-, denotes “therefore.””) Modus ponens states that if both an implication
and its hypothesis are known to be true, then the conclusion of this implication is true.

Suppose that the implication “if it snows today, then we will go skiing” and its hypothesis,
“it is snowing today,” are true. Then, by modus ponens, it follows that the conclusion of
the implication, “we will go skiing,” is true. <
Assume that the implication “if » is greater than 3, then nis greater than 97 is true.

Consequently, it n is greater than 3, then, by modus ponens, it follows that n?is greater
than 9. =

Table 1 lists some important rules of inference. The verificabions of these rules of
inference can be found as execcises in Section 1.2, Here are some examples of arguments
using these rules of inference.

State which rule of inference is the basis of the following argument: “It is below freezing
now, Theretore, it is cither below freezing or raining uow,”

Sotution: Let p be the proposition “[t is below freezing now” and g the proposition “It
is raining now.” Then this argument is of the form
p
SLpNvg
This is an argument that uses the addition rule. <4

State which rule of inference is the basis of the following argument: “It is below freczing
and raining now. Therefore, it is below freezing now.”

Solution: Let p be the proposition “It is below freezing now,” and let g be the proposition
“It is raining now.” This argument is of the form

pPAqg
" p
This argument uses the simplification rule. <

State which rulc of inference is used in the argument:

If it rains today, then we will not have a barbecue today. It we do not have a barbecue
today. then we will have a barbecue tomorrow. Therefore, if it rains today, then we
will have a barbecue tomorrow.
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TABLE 1 Rules of lnfereuce. ‘

Rule of Inference Tautology I Name
r p—>(pvqg) Addition
SLopvVyg

%—

prq (pAg)—p Simplification

{{p) ~nigny — (prg) Conjunction

Ilpr{p—>q)] > g Modus ponens

|I—g ~(p—qg)|— —p Modus tollens

Hypothetical syllogism

(p— @) Alg— )] — (p—71)

[((pvg)n—pl—gq Disjunctive syllogism

[pvg)n(—pvr)]—(gvr) Resolution

Solurion: Let p be the proposition “It is raining today,” let ¢ be the proposition “We
will not have a barbecue today,” and let r be the proposition “We will have a barbecue
tomorrow,” Then this argument 1s of the form

p—yq
q—r
op o>

Hence, this argument is a hypothetical syllogism. «

VALID ARGUMENTS

An argument form is called valid if whenever all the hypotheses are true, the conclu-
sion is also true. Conscquently, showing that g logically follows from the hypotheses
Pis Pav ..., Py isthe same as showing that the implication

(prAapan---Ap—g

is true. When all propositions used in a valid argument are true, it lcads to a correct
conclusion. However. a valid argument can lead (o an incorrect conclusion if one or more
false propositions arc used within the argument. For example,
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R
.then (ﬁ)k > (%)Z.Wc know that /2 > % Conscyucnlly,

“If A2 >
(V2 =

ta ro—
v
—
[RSIEWE]
e
=
I
(S~

is a valid arpument form based on modus ponens. However, the conclusion of this ar-
gument is false, because 2 < %. The false proposition “/2 > %” has been uscd in the
argument, which means that the conelusion of the argument ma)-' be false.

When there are many premises, several rules of iuference are often needed to show
that an argument is valid. This is illustrated by the following examples, where the steps of
arguments are displaycd step by step, with the reason for each step explicitly stated. These
examples also show how arguments in English can be analyzed using rules of inference.

Show that the hypotheses "It is not sunny this afternoon and it is colder than vesterday,”
“We will go swimming only if it is sunny,” “If we do not go swimming, then we will take
a canoe trip,” and “If we take a canoe trip, then we will be home by sunset” lead 1o the
conclusion “We will be home by sunset.”

Solution: Let p be the proposition “It is sunny this aflcrnoon,” g the proposition “11 is
colder than yesterday,” r the proposition “We will go swimming,” s the proposition “We
will take a canoe trip,” and ¢ the proposition “We will be home by sunset.” Then the
hypotheses become —=p A g, r — p.—r — 5, and § — . The conclusion is simply £.

We construct an argument to show that our hypotheses lead to the desired conclusion
as follows.

Step Reason

1. =pArg Hypothesis

2. —p Simplification using Step 1

Lr—=p Hypothesis

4. —r Modus tollens using Steps 2 and 3

5.r =5 Hypothesis

6. s Modus ponens using Steps 4 and 5

7.8 — 1 Hypothesis

8t Modus ponens using Steps 6 and 7 «

Show that the hypothescs “If you send me an e-mail message, then I will finish writing
the program,” “If you do not send me an e-mail message, then [ will go to sleep early,”
and “If I go to sleep early, then I will wake up feeling refreshed™ lead to the conclusion
“I{ T do not finish writing the program, then I will wake up feeling refreshed.”

Solution: Let p be the proposition *“You send me an e-mail message,” ¢ the proposition
“I will finish writing the program.” r the proposition *1 will go to sleep carly,” and s the
proposition [ will wake up feeling refreshed.” Then the hypothesesare p — g.—p — r.
andr — s. The desired conclusion is ~g — .

This argument form shows that our hypotheses lead to the desired conclusion.

Step Reason

1. p—>g Hypothesis

2. g — —p Contrapositive of Step 1

3. op—r Hypothesis

4. g > r Hypothetical syllogism using Steps 2 and 3

5.r—=s Hypothesis

6.~ — 5 Hypothetical syllogism using Steps 4 and § «
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RESOLUTION

Computer programs have heen developed to automate the task of reasoning and proving
theorems. Many of these programs make use of a rule of infercnce known as resolation.
This rule of inference is based on the tautology

{pvg)nl=pVvr)—(gVvr).

{The verification that this is a tautology was addressed in Exercise 28 in Scction 1.2.) The
final disjunction in the resolution rule, g Vv r, is called 1he resolvent. When we let g = 7
in this tautology, we obtain (p v @) A (—pV g) ~ g. Furthermore, when we let r = F,
we obtain (p vV g) A {=p) = g (because g v F = g}, which is the tautology on which
the rule of disjunctive syllogism is bascd.

Use resclution to show that the hypothescs “Jasmine is skiing or it is not snowing”™ and
“It is snowing or Bart is playing hockey™ imply that “Jasmine is skiing or Bart is playing
hockey.”

Sofution: Lel p be the proposition “It is snowing,” ¢ the proposition “Jasmine is ski-
ing,” and r the proposition “Bart is playing hockey.” We can represent the hypotheses as
—p v g and p Vv r,respectively. Using resolution, the proposition g v r,“Jasmine is ski-
ing or Bart is playing hockey,” follows. L

Resolution plays an important role in programming languages based on the rules
of logic, such as Prolog {where resolution rules for quantified statements are applied).
Furthermore, it can be used to build automatic thearem proving systems. To construct
prools in propositiona] logic using resolution as the only rule of inference, the hypothescs
and the conclusion must be expressed as clauses, where aclause is a disjunction of variables
or negations of these variables. We can replace a statement in propositional logic that is
not a clause by one or more equivalent statements that are clagses, For example, suppose
we have a statement of the form p v (g A r). Because pv g Aar)y = (pvg)rlpvr),
we can replace the single statement p v {g A r) by two statements p vV g and p Vv r,
cach of which is a clause. We can replace a statement of the form —(p v g) by the two
statements — pr and —g because De Morgan’s law tells us that —(p Vv g) = —=p A —g. We
can also replace an implication p — g with the eguivalent disjunction —p V g.

Show that the hypotheses (p A g} vV r and r —— s imply the conclusion p Vv .

Solution: We can rewrite the hypothesis {p A g) Vv r as two clauses, p Vrand g v r. We
can also replace r — s by the equivalent clause —r v s. Using the two clauses p v » and
—r V §, we can use resolution to conelude p v os. <

FALLACIES

Several common fallacies arise in incorrect arguments. These {allacies resemble rules of
inference but are based on contingencies rather than tautologies. These are discussed
here to show the distinction between correct and incorrect reasoning.

The proposition [(p — g) ~ g| — p is not a tautology. since it is false when p is
false and ¢ is true. However, there are many incorrect arguments that treat this as a
tautology. This type ol incorrect reasoning is called the fallacy of affirming the conclusion.
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Is the following argument valid?

If you do cvery problem in this book, then you will learn discrete mathematics. You
learned discrete mathematics.

Theretore, you did every problem in this book.

Solution: Let p be the proposition “You did every problem in this book.” Let g be the
proposition “You learned discrete mathematics.” Then this argument is of the form: if
p — g and g, then p. This is an example of an incorrect argument using the fallacy
of affirming the conclusion. Indeed, it is possible for you to learn discrete mathematics
in some way other than by doing every problem in this book. (You may learn discrete
mathematics by reading, listening to lectures, doing some but not all the problems in this
book, and so on.) L

The proposition [{p — g) A —p] — —g is not a tautology, since it is false when p
is false and g is true. Many incorrect arguments use this incorrectly as a rule of inference.
This type ol incorrect reasoning is called the fallacy of denying the hypothesis.

Let p and g be as in Example 10. If the implication p — ¢ is true, and —p is true, is it
correct to conclude that —g is true? In other words, is it correct to assume that you did
not learn discrete mathematics if you did not do every problem in the book, assuming
that if you do every problem in this book, then you will learn discrete mathematics?

Solution: Itispossible that you learned discrete mathematics even if you did not do every

problem in this book. This incorrect argument is of the form p — ¢ and —p imply —gq,
which is an example of the fallacy of denying the hypothesis. -«

RULES OF INFERENCE FOR QUANTIFIED STATEMENTS

We discussed rules of inference for propositions. We will now describe some important
rules of inference for statcments involving quantifiers. These rules of inference are used
cxtensively in mathematical arguments, often without being explicitly mentioned.

Universal instantiation is the rule of inference used to conclude that P{c) is true,
where ¢ is a particular member of the universe of discourse, given the premise ¥x P (x).
Universal instantiation is used when we conclude from the statement “All women are
wise” that “Lisa is wise,” where Lisa is a member of the universe of discourse of all
women.

Universal generalization is the rule of inference that states that ¥x P (x) is true, given
the premise that P(¢) is true for all elements ¢ in the universe of discourse. Universal
generalization is used when we show that Vx P (x) is true by taking an arbitrary element ¢
from the universe of discourse and showing that P{c) is true. The element ¢ that we select
must be an arbitrary, and not a specific, element of the universe of discourse. Universal
generalization is used implicitly in many proofs in mathematics and is seldom mentioned
explicitly.

Existential instantiation is the rule that allows us to conclude that there is an element ¢
in the universe of discourse for which P(¢) is true if we know that 3x P(x) is true. We
cannot select an arbitrary value of ¢ here, but rather it must be a ¢ for which P(c) is true.
Usually we have no knowledge of what ¢ is, only that it exists. Since it exists, we may give
it a name (¢) and continue our argument.
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TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference Name
Yx P(x . . .
—() Universal instantiation
PO

P(c) for an arbitrary ¢
LV P(x)

Universal generalization

Ix P(x)
. P(c) for some element ¢

Existential instantiation

P(c) for some element ¢

I P(x)

Existential generalization

Existential generalization is the rule of inference thatis used to conelude that 3x P(x)
is true when a particular element c with P () true isknown. That is, if we know one element
¢ in the universe of discourse for which P (c) is true, then we know that 3x P(x) 15 true,

We smmmarize these rules of inference in Tabie 2. We will illustrate how one of these
rules of inference for quantified statements is used in Example 12.

Show that the premises “Everyone in this discrete mathemalics class has taken a course
in computer science” and “Marla is a student in this class” imply the conclusion “Marla
has taken a course in computer science.”

Solution: Let D{x) denote “x is in this discretc mathematics class,” and let C(x) denote
“x has taken a course in computer science.” Then the premises are ¥x(D(x) — C(x))
and D(Marla). The conclusion is C(Marla).

The following steps can be used to establish the conclusion from the premises.

Step Reason

1. ¥x(D{(x) —> C(x) Premise

2. D(Marla) — C(Marla) Universal instantiation from (1)

3. D(Marla) Premise

4. C(Marla) Modus ponens from (2) and (3) «

Show that the premises “A student in this class has not read the book.” and “Everyone
in this class passed the first exam” imply the conclusion “Someone who passed the first
exam has not read the book.”

Solurion: Let C(x) be “x is in this ¢lass,” B(x) be "x has read the book,” and P(x) be
“x passed the first exam.” The premises are Ix(C{x) A = B(x)) and Vx(C(x) — P(x)).
The conclusion is 3x (P (x) A =B({x)). These steps can be used to establish the conclusion
from the premises.

Step Reason

I, IxC(xy A -B(x)) Premisc

2. C(a) A —B(a) Existential instantiation from (1}
3. Cla) Simplification from (2)

4. ¥Vx(Ci{x) = P(x)) Premise
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Step Reason

5. Cl@) — Pla) Universal instantiation from (4)

6. P{a) Modus ponens from (3) and (5)

7. —B(a) Simplification from (2)

8. P{a) ~ —B(a) Conjunction from (6) and (7)

9. Ax(P(x) A 0B(x)) Existential generalization from (8) «

Remark: Mathematical arguments often include steps where both a rule of inference
for propositions and a rule of inference for quantifiers are used. For example, universal
instantiation and modus ponens are often used together. When these rules of inference
are combined, the hypothesis Vx( P(x) — Q(x)) and P{c), where c is a member of the
universe of discourse, show that the conclusion Q(¢) is true.

Remark: Many theorems in mathematics slate that a property holds for all elements
in a particular set, such as the set of integers or the set of real numbers. Although the
precise statement of such theorcms needs to include a universal quantifier, the standard
convention in mathematics is to omit it. For example, the statement “If x > v, where
x and y are positive real numbers, then x* > 2" really means “For all positive real
numbers x and ¥, it x > y, then x° > y°.” Furthermore, when theorems of this type
are proved, the law of universal generalizalion is often used without explicit mention.
The first step of the proof usually involves selecting a general element of the universe of
discourse. Subsequent steps show that this element has the property in question. Universal
gencralization implies that the theorem holds for all members of the universe of discourse.

In our subsequent discussions, we will follow the usual conventions and not explicitly
mention the use of universal quantification and universal generalization. However, you
should always understand when this rule of inference is being implicitly applied.

METHODS OF PROVING THEOREMS

Proving theorems can be difficult. We need all the ammunition that is available to help
us prove different results. We now introduce a battery of different proof methods. These
methods should become part of your repertoire for proving theorems. Because many
theorems are implications, the techniques for proving implications are important. Recall
that p —> g is true unless p is true but g is false. Note that when the statement p — ¢
is proved, it need only be shown that g is true if p 1s true; it is nof usually the case that g
is proved to be true. The following discussion will give the most common techniques for
proving implications.

DIRECT PROOFS The implication p — ¢ can be proved by showing that if p is true,
then g must also be true. This shows that the combination p true and g false never occurs.
A proof of this kind is called a direct proof. To carry out such a proof, assume that p is
true and use rules of inference and theorems already proved Lo show that g must also be
true.

Before we give an example of a direct proof, we need a definition.

The integer n is even if there exists an integer & such that # = 2k and it is odd if
there exists an integer k such that n = 2k 4 1. (Note that an integer is either even
or odd.)
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Solution: Assume that the hypothesis of this implication is true, namely, suppose that
nis odd. Then n = 2k + 1, where & is an integer. It follows that 22 = (2k + 1)2 =
A2 + 4k + 1 = 2(2k% + 2k) + 1. Therefore, n” is an odd integer (it is one more than
twice an integer). <

INDIRECT PROOFS Since the implication p — ¢ isequivalent to its contrapositive,
—g — —p, the implication p — g can be proved by showing that its contrapositive,
—~g — =—p,is true. This related implication is usually proved directly, but any proof
technique can be used. An argument of this type is called an indirect proef.

Give an indirect proof of the theorem “If 3r + 2 is odd, then » is odd.”

Solution: Assume that the conclusion of this implication is false; namely, assume that n
is even. Then n = 2k for some integer k. It follows that 3n + 2 = 3(2k) + 2 = 6k +
2 = 23k + 1),50 3n + 2 is even (since 1t is a moltiple of 2} and thercfore not odd.
Because the negation of the conclusion of the implication implies that the hypothesis is
false_the original implication is true. «

VACUOUS AND TRIVIAL PROOFS Suppose that the hypothesis p of an implica-
tion p — ¢ is false. Then the implication p — g is true, because the statement has the
form ¥ — T or F — F.and hence is true. Consequently,if it can be shown that p is false,
then a proof, called a vacuous proof, of the implication p — g can be given. Vacuous
proofs are often used to cstablish special cases of theorems that state that an implication
is true for all positive integers [i.e., a theorem of the kind ¥r P(r) where P(n) is a pro-
positional function]. Proof techmiques for theorems of this kind will be discussed in Sec-
tion 3.3,

Show that the proposition P (0} istrue where P {n) is the propositional function“lfn > 1,
then n” > n.”

Solution: Note that the proposition P{0) is the implication “If 0 = 1, then 0% > 0.
Since the hypothesis O > | is false, the implication £{0) 1s automatically true. -

Remark: The [act (hal the conclusion of this implication, 0% = 0, is false is irrelevant
to the truth value of the implication, because an implication with a false hypothesis is
guarantced to be true.

Suppose that the conclusion g of an implication p — g is true. Then p — g is true,
since the statement has the form T — T or ¥ — T. which are true. Hence, if it can be
shown that g is true, then a proof, called a trivial proof, of p — g can be given. Trivial
proofs arc often important when special cases of theorems are proved (see the discussion
of proof by cases) and in mathematical induction. which is a proof lechnique discussed
in Section 3.3.

Let P(n) be “1f a and b are positive integers with a = &, then @” > b".” Show that the
proposition P{0) is true.
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Solution: The proposition P(0) is “1f ¢« > b, then a® > B9 Since a® = BY = |, the
conclusion of P({)) is true. Hence, P (0) is true. This is an example of a trivial proof. Note
that the hypothesis. which is the statement “a > b,” was not needed in this proof. L |

A LITTLE PROOF STRATEGY We have described both direct and indirect proofs
and we have provided an example of how they are used. However, when confronted with
an implication to prove. which method should you use? First, quickly evaluate whether a
direct proof looks promising. Begin by expanding the definitions in the hypotheses. Then
begin to reason using them, together with axioms and available thegrems, If a direct proof
does not seem to go anywhere, try the sume thing with an indirect proof. Recall thatin an
indirect proof you assume that the conclusion of the implication is false and use a direct
proof to show this implies that the hypothesis must be falsc. Sometimes when there is no
obvious way to approach a direct proof, an indirect proof works nicely. We illustrate this
strategy in Examplcs 18 and 19
Belore we present our nexl example. we need a definition.

The real number ¥ is rational if there exist integers p and g with ¢ # 0 such that
r = p/q. A real number that is not rationali is called irrational.

Prave that the sum of two rational numbers is rational.

Solution: We first attempt a direct prool. To begin, suppose that r and s are rational
numbers. From the definition of a rational number, it follows that there are integers p
and g.withg #£ 0,suchthatr = p/q,and integersr and u, with u #£ 0,suchthats = r/u.
Can we use this information to show that » + s is rational? The obvious next step is to
addr = p/g and s = t/u, to obiain

pu+qt
qu

I
r+s:£+*=
g u

Becausc ¢ # 0 and u # (), it follows that gu # 0. Consequently, we have expressed
r + 5 as the ratio of two integers, pu + ¢t and qu, where gu 5= (). This means that r + s
is rational. Our attempt to find a direct proof succeeded. <

Prove that if n is an integer and n? is odd, then # is odd.

Solution: We first attempt a direct proof. Suppose that # is an integer and r? is odd. Then,
there exists an integer & such that n? = 2k + 1. Can we usc this information to show that
n 1s odd? There seems 1o be no obvious approach to show that » is odd because solving
for n produces the equation n = ++/2k + 1, which is not terribly useful.

Because this attempt to use a direct proof did not bear fruit, we next attempt an
indirect proot. We take as our hypothesis the statement that n is not odd. Because every
integer is odd or even, this means that 7 is even. This implies that there exists an integer &
such that n = 2k. To prove the theorem, we need to show that this hypothesis implies
ihe conclusion that 72 is not odd, that is, that n< is even. Can we use the equalionn = 2k
to achieve this? By squaring both sides of this equation, we obtain n’ = ak* = 2(2k%),
which implies that n® is also even since n? = 2, where t = 2&°. Our attempt to find an
indirect proot succeeded. <
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PROOFS BY CONTRADICTION Thete are other approaches we can use when nei-
ther a direct proof nor an indirect proof succecds. We now introduce several additional
proof techniques.

Suppose that a contradiction g can be found so that —=p — g is true, that is, - p —
F is tue. Then the proposition —p must be false. Consequently, p must be truc. This
technique can be used when a contradiction. such as r A —r, can be found so that it js
possible to show that the implication —p — (r A —r) is true. An argument of this type
is called a preef by contradiction,

We provide three examples of proof by contradiction. The first is an example of an
application of the pigeanhole principle. a combinatorial technigue which we will cover in
depth in Section 4.2.

Show that at least four of any 22 days must tall on the same day of the week.

Solution: Let p be the praposition ~At least four of the 22 chosen days are the samie day
of the week.” Suppose that -~ p is true. Then at most threc of the 22 days are the same day
of the week. Because there arc seven days of the weck, this implies thar at most 21 days
could have been chosen since three is the most days chosen that could be a particular day
of the week. This is a contradiction. D

Prove that +/2 is irrational by giving a proof by contradiction.

Solution: Lel p be the proposition “+/2 is irrational.” Suppose that —p is true. Then +/2
is rational. We wil] show that this leads to a contradiction. Under the assumption that
/2 is rational. there exist integers @ and b with /2 = a /b, where @ and b have no com-
mon tactors (so that the fraction /b is in lowest terms). Since V2= a /b, when both
sides of this equation are squared, it follows that

2 =a?/b%
Hence,
267 = a”.

This means that a” is even, implying that a is even. Furthermore, since g is even.a = 2¢
for some integer ¢. Thus

267 = dc?,
50
b* = 2c2,

This means that b2 is cven. Hence, b must be even as well.

It has becn shown that —p implies that +/2 = a/b, where a and b have no com-
mon factors, and 2 divides ¢ and b. This is a contradiction since we have shown that —p
implies both r and =+ where r is the statement that @ and & arc integers with no comimon
factors. Hence, — p is false. so that p: “+/2is irrational” is true. «

Anindirect proof of an implication can be rewritien as a proof by contradiction. In an
indirect proof we show that p — g is true by using a direct proof to show that ~g — —p
is true. That is. in an indirect proof of p — ¢ we assume that g is true and show that —p
must also be true. To rewrile an indirect proof of p — ¢ as a proof by contradiction,
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we suppose that both p and —¢ are true. Then we use the steps from the direct proof of
—g — —p to show that —p must also be true. This leads to the contradiction p A —p,
complcting the proof by contradiction. Example 22 illustrates how an indirect proof of
an tmplication can be rewritien as a proof by contradiction.

Give a proof by contradiclion of the theorem “If 3# + 2 is odd. then 7 is odd.”

Solurion: We assume that 3a + 2 is odd and that n is not odd, so that n is even. Following
the same steps as in the solution of Example 15 {an indirect proof of this theorem),
we can show that if n is even, then 3n 4 2 is even. This contradicts the assumplion that
3r + 2 is odd, completing the proof. -«

PROOF BY CASES To prove an implication of the form
(PrvpaVv--Vp—gq

the tautology
[pivprvevpp) =gl l(pr = @ A{p2— @) A A pn = q)]

can be used as a rule of inference. This shows that the original implication with a hypoth-
esis made up of a disjunction of the propositions ), pa, ..., py can be proved by proving
each of the n implications p; — ¢,1 = 1,2, ..., n, individually. Such an argument is
called a proof by cases. Sometlimes to prove that an implication p — ¢ is true. it is
convenient to use a disjunction p) v pa v - -+ V p,instead of p as the hypothesis of the
implication, where pand py v po Vv - - vV p, are equivalent. Consider Example 23,

Usc a proof by cases to show that [xv| = |x||y|. where x and y are real numbers. {Recall
that | x|, the absolute value of x, equals x when x > 0 and equals —x when x < 0.)

Sofution: Let p be “x and y arc real numbers” and let ¢ be “|xy| = |x|[{y]|.” Note that p
isequivalentto p; v pa Vv p3 v pg.where piis“x = 0Aay > pristx = 0Ay < O
pis“x <« 0Aay = 07and pyis“x < 0~y < 007 Hence, to show that p — g, we
can show that py — ¢, p2 — g, p3 — ¢,and py — q.{We have used these four cases
because we can remove the absolute value signs by making the appropriate choice of
signs within each case,)

We see that p; — ¢ because xy > O when x = O and y > 0,s0 that [xy| = xv =
]y

To see that p; — ¢, note that if x > Oand y < U.then xy < 0, o that |xy| =
—xy = x{—y) = |x||y|. {(Here, because y < 0, we have |y| = —v.)

To see that p3 — g, we follow the same reasoning as the previous case with the roles
of x and y reversed.
To see thal py — ¢, note that when v < 0 and y < 0, it follows that xy > 0. Hence
= x¥ = {—x)(—y) = |v||y|. This completes the proof. S|

lxy

PROOFS OF EQUIVALENCE To provce 4 theorem that is a biconditional, that is, one
that 1s a statement of the form pp <> ¢ where p and g are propositions, the tautology

=gy lipg—>q)rilg — pil

can be used. That is, the proposition “p if and only if ¢” can be proved if both the
implications “if p, then ¢” and "if ¢. then p” are proved.
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Prove the theorem “The integer n is odd if and only if 12 is odd.”

Solution: This theorem has the form “ p if and only if g,” where p is “n is 0dd” and g is
*n* is odd.” To prove this theorem, we need to show that p — 4 and ¢ — p are true.
We have already shown (in Example 14} that p —» g is true and (in Example 19)
that g — pistrue.
Since we have shown that both p — ¢ and g — p are true, we have shown that the
theorem is true. <

Sometimes a theorem states that several propositions are equivalent. Such a theorem
states that propositions pi, p2, pa, ... Py are equivalent. This can be written as

P P> > Py

which states that all nn propositions have the same truth values, and consequently, that for
alli and fwith 1 <7 <nand! < j < n, p; and p; are equivalent. One way o prove
these mutually equivalent is to use the tautology

[Prepreo--<oplolipr—p)Alp: > p3)a--Alps— p)l

'This shows that if the implications py — p2, p2 = P3,.... Py — P1 can be shown to
be true. then the propositions py, pa. .. .. p, are all equivaleat.

This is much more efficient than proving that p; — p; foralli # jwithl </ <n
and | < j <n.

When we prove thata group of statements are equivalent, we can establish any chain
of implications we choose as long as it is possible te work through the chain to go from
any onc of these statements to any other statement. For example, we can show that py,
P2, and g3 are equivalent by showing that p; — pa, p3 — pr.and p2 — pi.

Show that these statements are equivalent:

D)t kIS aneven integer.
pz: n — lisanodd integer.
pa: 1 is an even integer.

Solution: We will show that these three statements are equivalent by showing that the
implications p; — pa, p2 — p3,and p3 — p, are true,

We use a direct proof to show that p; — p». Suppose that n is even. Then n = 24
for some integer k. Consequently,n — 1 = 2k — | = 2(k — 1) + 1. This means that
n — 11is odd since it 1s of the form 2m + |, where m 1s the integer k — 1,

We also use a dircet proof to show that p2 — pa. Now suppose n — | is odd. Then
n— 1 = 2k + ! tor some integer k. Hence, n = 2k -+ 2 so that nt = Qk+ 27 =
Ak? + 8k + 4 = 2(2k% + 4k + 2). This means that #? is twice the intcger 2k% + 4k + 2,
and hence is even.

To prove ps — pj, we use an indirect proof. That is. we provce that if n is not even.
then 2 is not even. This is the same as proving that if 15 odd, then n? is odd, which we
have already done in Example 4. This completes the proof, A

THEOREMS AND QUANTIFIERS

Many theorems are stated as propositions that involve quantifiers. A variety of methods
are used to prove theorems that are quantifications. We will describe some of the most
mmportant of these here.
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EXISTENCE PROOFS Many theorems are assertions that objects of a particular type
exist. A theorem of this type is a proposition of the form 3x P(x), where P is a predicate.
A proof of a proposition of the form Ix P(x) is called an existence proof. There are
several ways to prove a theorem of this type. Sometimes an existence proof of 3x P(x) can
be given by finding an element a such that P(a) is true. Such an existence proof is called
comstructive, It is also possible to give an existence proof that iz nonconstructive; that is,
we do not find an element @ such that P{a) is true, but rather prove that 3x P(x) is true
in some other way. One common method of giving a nonconstructive existence proof is
to use proof by contradiction and show that the negation of the existential quantification
implies a contradiction. The concept of a constructive existence proof is illustrated by
Example 26.

A Constructive Existence Proof. Show thal thereis a positive integer that can be written
as the sum of cubes of positive integers in two different ways.

Solution: After considerable computation {such as a computer search) we find that
1729 = 10° + 9* = 12% + |,

Becausc we have displayed a positive integer that can be written as the sum of cubes in
two diffcrent ways, we are done. -

A Nonconstructive Existence Proof. Show that there exist irrational numbers x and y
such that x* is rational.

Solution: By Examplc 21 we know that +/2 is irrational. Consider the number /2" . If
it is rational, we have two irrational numbers x and ¥ with x" rational, namely. x = V2

2 i
and y = +/2. On the other hand if ﬁf is irrational, then we can let x = +/2" and
. 2 242 2
y = V2 so that x¥ = («,/T/—)ﬁ = \/i(ff) =2 =2

This proof is an example of a nonconstructive existence proof because we have not

found irrational numbers x and y such that x¥ is rational. Rather, we have shown that
i

either the pair x = /2,y = +/2 or the pair x = /277,y = /2 have the desired prop-

erty, but we do not know which of these two pairs works! -

UNIQUENESS PROOFS Some theorems assert the existence of a unique element
with a particular property. [n other words, these theorems assert that there is exactly one
element with this property. To prove a statement of this type we need to show that an
element with this property exists and that no other element has this property. The iwo
parts of a uniqueness proof are:

Existence: 'We show that an element x with the desired property exists.
Uniqueness: 'We show thatif y # x, then v does not have the desired property.

HISTORICAL NOTE The English mathcmatician G. B. Hardy, when visiting the ailing Indian prodigy
Ramanujan in the hospial, remarked that 1729, the number of the cab he 100k, was rather dull, Ramanujan
replied "No, il is a very intercsting number: it is the smallest number expressible as the sum of cubes in two
different ways.” (Sce the Supplementary Exercises in Chapter 3 for biographies of Hardy and Ramanujan.)
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Remark: Showing that there is a unique element x such that P(x) is the same as
proving the statement Ix (P (x) AVy(y # x — =P(¥))).

Show that every integer has a unique additive inverse. That is. show that if p is an integer,
then there exists a unique integer ¢ such that p +¢ = 0.

Solution: 1t pis aninteger, we find that p+g = O when ¢ = —p and g is also an integer.
Consequently, there exists an integer g such that p + g = 0.

‘o show that given the integer p, the integer ¢ with p + ¢ = 0 is unique. suppose
that r is aninteger with r ¥ g such that p + » = 0. Then p + ¢ = p + r. By subtract-
ing p from both sides of the equation, it follows thatg = r, which contradicts our assump-
tion that ¢ # r. Consequently, there is a unique integer g such that p + g == 0. -«

COUNTEREXAMPLES In Section 1.3 we mentioned that we can show that a state-
ment of the form ¥x P (x) is false if we can find a counterexample, that is, an example x
for which P{x) is {alse. When we arc presented with a statement of the form ¥Yx P(x).
either which we believe to be false or which has resisted all attempts to find a proof, we
look for a counterexample. We illustrate the hunt for a counterexample in Example 29.

Show that the statement “Every positive integer 15 the sum of the squares of three inte-
gers” is false.

Sofution: We can show that this statement 1s false if we can find a counterexample.
That is, the statement is false if we can show that there is a particular integer that is not
the sum of the squares of three integers. To look for a counterexample, we try to write
successive positive integers as a sum of three squares. We find that 1 = 0% 4 0¢ + 12,
2=0+ P+ 3= P+ P -2 =0 P 25 =0+ 12226 = 17
12 4+ 22 but we cannot find a way Lo write 7 as the sum of three squares. To show that
there are not three squares that add up w 7, we note that the only possible squares we
can use are those not exceeding 7, namely, (1, 1, and 4. Since no three terms where each
term is 0, 1, or 4 add up to 7, it follows that 7 is a counterexample, We conclude that the
statement “Every positive integer is the sum of the squares of three integers™ is false.

A common error is to assume that one or more examples establish the truth of a
statement, No matter how many examples there are where P(x}) is true, the universal
guantification ¥x P (x) may still be false. Consider Example 30.

Is it true that every positive integer is the sum of 18 fourth powers ol integers? That is, is
the statement YrP{n) a theorem where P{n) is the statement “n can be written as the
sum of 18 fourth powers of integers™ and the uni+orse of discourse consists of all positive
integers?

Solution: To determine whether # can be written as the sum of 18 fourth powers of
integers, we might begin by examining whether n is the sum of 18 fourth powers of
integers for the smallest positive integers, Because the fourth powers of integers are 0,1,
16,81, ..., if we can select 18 terms from these numbers that add up to n, then » is the
sum of {8 fourth powers, We can show that all positive integers up to 78 can be written as
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the sum of 18 fourth powers, (The details are left to the reader.) However, if we decided
this was enough checking, we wonld come to the wrong conclusion. It is not true that
every positive integer is the sum of 18 fourth powers because 79 is not the sum of 18
fourth powers (as the reader can verify). &

MISTAKES IN PROOFS

There are many common errors made in constructing mathematical proofs. We will briefly
describe some of these here. Among the most common errors are mistakes in arithmetic
and basic algebra. Even professional mathematicians make such errors, especialiy when
working with complicated formulas. Whenever you use such computations you should
check them as carefully as possible. (You should also review any troublesome aspects of
basic algebra, especially before you study Section 3.3.)

Each step of a mathematical proof needs to be correct and the conclusion needs to
logically follow from the steps that precede it. Many mistakes result from the introduction
of steps that do not logically follow from those that precede it. This is illustrated in
Examples 31-33.

What is wrong with this famous supposed “proof™ that 1 = 2?7

“Proof:” We use these steps, where a and b are two equal positive integers.

Step Reason

lL.a=#h Given

2. a*=ab Multiply both sides of (1} by a

3 a*—b=ab—-b* Subtract b2 from both sides of (2)

4 {a—b)la+by=5b{(a—b) Factor both sides of (3)

S.a+b=5bh Divide both sidesof (4) bya — &

6 2b=5b Replace @ by & in {3) because @ = b
and simplify

7.2=1 Divide both sides of (6) by &

Solution: Every step is valid exccpt for one, step 5 where we divided both sides by g — b.
The error is that @ — b equals zero; division of bath sides of an equation by the same
guantity is valid as long as this quantity is not zero. <

‘What is wrong with this “proof™?

“Theorem:” If n? is positive, then » is positive.

“Proof:” Suppose that n° is positive. Because the implication “If n is positive, then n°
is positive™ is true, we can conclude that # is positive.

Solution: Let P(n) be “n is positive” and {(n) be “n- 1s positive.” Then our hypothesis
is (n). The statement “If n is positive, then ntis positive™ is the statement Ya(P(n) —
(n}). From the hypothesis Q{n) and the statement Ya(P{(n) — ((n)) we cannot
conclude P(#n), because we are not using a valid rule of inference. Instead, this is an
example of the fallacy of affirming the conclusion, A counterexample is supplied by
n = —1 for which n? = | is positive, but # is negative. «
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EXAMPLE 33

EXAMPLE 34

EXAMPLE 35

What is wrong with this “proof™?

“Theorem:” If n is not positive, then r? is not positive. ( This is the contrapositive of
the “theorem™ in Example 32.}

“Proof:” Suppose that n is not positive. Because the implication “If » is positive, then
n? is positive” is true, we can conclude that n? is not positive.

Solution: Let P{n) and ((n) be as in the solution of Example 32. Then our hypothesis is
= P(n) and the statement “If # is positive, then n*is positive”is the statement Ve { P(n) —
@1(n)). From the hypothesis =P (n) and the statement Va(P(n) — ((n)) we cannot
conclude —(J{n), because we are not using a valid rule of inference. Instead, this is
an example of the fallacy of denying the hypothesis. A counterexample is supplied by
n = —1,as in Example 32. -«

A common error in making unwarranted assumptions occurs in proofs by cases, where
not all cases are considered. This is illustrated in Example 34.

What is wrong with this “proof”?

2

“Theorem:” If x is a real number, then x is a positive real number.

“Proof*” Let p| be “x is positive,” let p, be “x is negative,” and let ¢ be “x? is positive.”
To show that p; — ¢, note that when x is positive, x? is positive since it is the product
of two positive numbers, x and x. To show that p; — g, note that when x is negative, x°
is positive since it is the product of two negative numbers, x and x. This completes the
proof.

Solution: The problem with the proof we have given is that we missed the case x = 0.
When x = 0, x% = 0 is not posilive, so the supposed theorem is false. If p is “x is a real
number,” then we can prove results where p is the hypothesis with three cases, p, pa,
and p3, where py is “x is positive,” ps is “x is negative,” and p3 is “x = 0" because of the
equivalence p < p| vV p2 VvV pa. «

Finally, we briefly discuss a particularly nasty type of ervor. Many incorrect arguments
are based on a fallacy called begging the question. This fallacy occurs when one or more
steps of a proof are based on the truth of the statement being proved. In other words, this
fallacy arises when a statement is proved using itself, or a statement equivalent to it. That
is why this fallacy is also called circular reasoning.

Is the following argument correct? 1t supposedly shows that n is an even integer whenever
n? is an even integetr.

Suppose that n? is even. Then #n” = 2k for some integer k. Let 1 = 2/ for some
integer /. This shows that n is even.

Sofution: This argument is incorrect. The statement “let »n = 2/ [or some integer I” occurs
in the proof. No argument has been given to show that n can be written as 2/ for some
integer . This is circular reasoning because this statement is equivalent to the statement
being proved, namely, “# is even.” Of course, the result itself is correct; only the method
of proof is wrong. <

Making mistakes in proofs is part of the learning process. When you make a mistake
that someone else finds, you should carefully analyze where you went wrong and make
surc that you do not make the same mistake again. Even professional mathematicians
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make mistakes in proofs. More than a few incorrect proofs of important results have
fooled people for many years before subtle errors in them were found.

JUST A BEGINNING

We have introduced a variety of methods for proving theorems. Observe thatno algorithm
for proving theorems has been given here or even mentioned. It is a deep result that no
such procedure exists.

There ure many theorems whose proofs arc easy to find by directly working through
the hypothescs and definitions of the terms of the theorem. However, it is often difficult
to prove a theorem without resorting (o a clever use of an indirect proof or a proof by
contradiction, or some other proof technique. Constructing proofs is an art that can be
learned only through experience, including writing proofs, having your proofs critiqued,
reading and analyzing other proofs, and so on.

We will present a variety of proofs in the rest of this chapter and in Chapter 2 before
we return to the subject of proofs. In Chapter 3 we will address some of the art and
the strategy in proving theorems and in working with conjectures. We will also introduce
several important proof techniques in Chapter 3,including mathematical induction, which
can be used to prove results that hold for all positive integers. In Chapter 4 we will
introduce the notion of combinatorial proofs.

Exercises

o 1. What rule of inference is used in cach of these argu-
\ ments?

d) Steve will work at a computer company this sum-
mer. Therefore, this summer Steve will work at a

" a) Alice is a mathematics major. Therelore, Alice is computer company ot h‘? will be a beach bum.

e either a mathematics major or a compuler science e) If I work all night on this homework, then [ can

< major. answer all the exercises. If T answer all the ex-

b) Jerry is a mathematics major and a compuler

ercises, [ will understand the material, Therefore,

(s science major. Therefore, Jerry is a mathematics if 1 work all night on this homework, then T wil
o major. understand the material.
is ¢) lfitisrainy,then the pool will be closed. Itis rainy. 3. Construct an argument using rules of inference to
at T‘herefore, the pool is c.losed‘. ) ) show that the hypotheses “Randy works hard,” “If
d) lfitsnowstoday,the university will close. The uni- Randy works hard, then he is a dull boy,” and “If
versity is not closed today. Therefore, it did not Randy is a dull boy, then he will not get the job” imply
snow today. the conclusion “Randy will not get the job.”
er e) If1go swimming, then I will stay in the sun too 4. Construct an argument using rules of inference to
long. 1 ! stay in Fhe sun (0o lopg, then I willl sun- show that the hypotheses “If it does not rain or if it
e burn. Therefore, if I go swimming, then I will sun- is not foggy, then the sailing race will be held and the
burn. lifesaving demonstration will go on,” “If the sailing
2. What rule of inference is used in each of these argu- race is heid, then the trophy will be awarded,” and
ments? “The trophy was not awarded” imply the conclusion
urs a) Kangaroos live in Australia and are marsupials, “It ramed.”
me Therefore, kangaroos are marsupials. 8. What rules of inference are used in this famous argu-
ent by 1t is either hotter than 100 degrees today or the ment? "All men are mortal. Socrates is a man. There-
hod pollution is dangerous. It is less than 100 de- fore, Socrates is mortal.”
4 grees outside today. Therefore, the pollution is 6. What rules of inference are used in this argument?
dangerous. “No man is an island. Manhattan is an island. There-
take ¢) Linda is an excellent swimmer. It Linda is an ex- fore. Manhattan is not a man.”
1ake cellent swimmer, then she can work as a lifeguard. 7. For each ot these sets of premises, what relevant con-
1ans Therefore, Linda can work as a lifeguard. clusion or conclusions can be drawn? Explain the
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rules of inference used to obtain each conclusion
from the premises.

a) “If 1 take the day off, it either rains or snows.” “I
took Tuesday olf or [ took Thursday off.” “It was
sunny on Tuesday.” 1t did not snow on Thursday.”

b) “I{1 eat spicy foods, then 1 have strange dreams.”
1 have strange dreams if there is thunder while 1
sleep.” “1 did not have strange dreams.”

¢) “lam enher clever or lucky.” “I am not lucky.” “If
I am lucky. then I will win the lottery.”

d) “Every compulter science major has a personal
computer.”'Ralph does not have a personal comi-
puter.” “Ann has a personal computer.”

e} “What is good for corporations is good for the
United States.” “What is good for the United
States is good for vou.” “What is good for cor-
porations is for you to buy lots of stuff.”

B “Allrodents gnaw their food.” “Mice are rodents.”
“Rabbits do not gnaw their food.” “Bats are not
rodents,”

For each of these sets of premises, what relevant con-
clusion or conclusions can be drawn? Explain the
rules of inference used to obtain each conclusion from
the premises.

a) “If I play hockey, then 1 am sore the next day.” *1
use the whirlpool if 1 am sore.” T did not use the
whirjpool.”

b) “if 1 work, it is either sunny or partly sunny.” “1
worked last Monday or | worked last Friday.” "It
was not sunny on Tuesday.” “It was not partly
snnny on Friday.”

¢} “All insects have six legs.” “Dragonflics are in-
sects.” “Spiders do not have six Jegs.” “Spiders cat
dragonfiies.”

d) “Everystudent hasan Internet account.” *Homer
does not have an Internet account.” “Maggie has
an Internet account.”

e} “All foods that are healthy to eat do not taste
good.”“Tofuis healthy to eat.”* You only eat what
tastes good.” “You do not eat tofu.”* Cheeseburg-
ers are not healthy 1o eat.”

f) “lameither dreaming or hallucinating.” I am not
dreaming.” “It I am hallucinating, I sce elephants
running down the road.”

For each of these arguments, explain which rules of
inference are used for each step.

a) “Doug, astudent in this class, knows how to write
programs in JAVA, Everyone who knows how to
write programs in JAVA can get a high-paying job.
Therefore, someone in this class can get a high-
paying job.”

b) “Somebody in this class enjoys whale watching,
Every person who cnjoys whale watching cares
about ocean pollution. Therefore, there is a per-
son in this class who cares about ocean pollution.”

10

11

12
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¢) “Each of the 93 students in this class owns a per-
sonal computer. Everyone who owns a personal
computer can use a word processing program.
Therefore, Zeke, a student in this class, can use
a word processing program.”

d) “Everyone in New Jersey lives within 50 miles of
the ocean. Someone in New Jerscy has never seen
the ocean. Therefore, someone who lives within
50 miles of the ocean has never seen the ocean.”

For each of these arguments, explain which rules of
inference are used for each step.

a) ‘‘Linda, a student in this class, owns a red con-
vertible. Everyone who owns a red convertible
has gotten at least one speeding ticket. There-
fore, someone in this class has gotten a speeding
ticket.”

h) “Each of five roommates, Melissa, Aaron, Ralph.
Veneesha, and Keeshawn, has taken a course
in discrete mathematics. Every student who has
taken a course in discrete mathematics can take
a course in algorithms. Thercfore. all five room-
mates can take a course in algorithms next year.”

¢) “All movies produced by John Sayles are wonder-
ful. John Sayles produced a movie about coal min-
ers. Therefore, there is a wonderful movie about
coal miners.”

d) “There is someone in this class who has been (©
France. Everyone who goes 1o France visits the
Louvre. Therefore, someonce in this class has vis-
ited the Louvre.”

For each of these arguments determine whether the
argument js correct or incorrect and explain why.

a) All students in this class understand logic. Xavier
is a student in this class. Therefore, Xavier under-
stands logic.

b) Every computer science major takes discrete
mathematics. Natasha is taking discrete mathe-
matics. Therefore, Natasha is a computer scicnce
major.

¢} All parrots like fruit. My pet bird is not a parrot.
Therefore, my pet bird does not like fruit.

4) Everyone who eats granola every day is healthy.
Linda is not healthy. Therefore, Linda does nol
eat granola every day.

For each of these argumenls determine whether the
argument is correct or incorrcct and explain why.

a) Everyone enrolled in the university has hived in
a dormitory. Mia has never lived in a dormitory,
Therefore, Mia is not enrolled in the university.

b) A convertible car is fun to drive, Isaac’s car is not
a convertible. Therefore, Isaac’s car is not fun to
drive.

¢) Quincy likes all action movies. Quincy likes the
movie Eight Men Out. Therefore, Eight Men Out
1§ an action movie,
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d) All lobstermen set at least a dozen traps. Hamil- 25, Prove that the sum of an irrational number and a
ton is a lobsterman. Therefore, Hamilton sets at rational number is irrational using a proof by contra-
least a dozen traps. diction.

13. Determine whether each of these argumcnts is valid. 26. Prove that the product of two rational numbers is ra-

If an argument is correct, what rule of inference is tional. ) )

being used? If it is not, what logical error occurs? 27. Prove or disprove that the product of two irrational

numbers is irrational.
. Provc or disprove that the product of a nonzero ra-
tional number and an irrational number is irrational.
29, Prove that if x is irrational, then 1/x is irrational,
30. Prove that if x is rational and x # 0, then 1/x is ra-
tional,
31. Show that at least 10 of any 64 days chosen must fall
on the same day of the week.
32. Show that at least 3 of any 25 days chosen must fall
in the same month of the year.
33. Prove that if x and v are real numbers, then

a) If nis arcal number such that sz > 1,thenn? > 1. 28
Suppose that n® > 1. Then n > 1.

b) Thenumber log, 3 isirrational if it is not the ratio
of two integers. Therefore, since log, 3 cannot be
written in the form a/b where g and b are integers,
it 18 irrational.

¢) If n is a real number with n > 3, then n® > 9.
Suppose that #? < 9. Thenn < 3,

d) Ifnisarcal number withr > 2, then n? > 4. Sup-
pose that n < 2. Then n® < 4,

.

14. Dctermine whether these are valid arguments. max(x, ¥) + min(x, ¥) = x + y. (Hint: Use a proof
a} “If x? is irrational, then x is irrational. Therefore, by cases, with the two cases corresponding to x > ¥
if x is irrational, it follows that x? is irrational.” and x < y, respectively.)
b) “I[x?isirrational,then x isirrational. The numbcr 34. Use a proof by cascs to show that min(a, min(b, ¢)) =
x = w?isirrational. Therefore, the numberx = = min{min(a, b), ¢} whenever a, b, and ¢ are real num-
is irrational.” bers.

15. What is wrong with this argument? Let H(x) be “x is 35, Prove the triangle inequality, which states that if x

happy.” Given the premise 3x H{x), we conclude that and y arc rcal numbers, then |x] + |y| EA
H(Lola). Therefore, Lola is happy. (where |x| represents the absolute value of x, which

equals x if x > 0 and equals —x if x < Q).
36. Prove that a square of an integer ends with a0, 1,4, 5,
6,019, (Hint: Letn = 10k +{ where !/ =0.1,...,9.)

37. Prove thal a fourth power of an integer ends with a

0, 1,5,0r6.

Prove that if n s a positive intcger, then n is even if

and only if 7n + 4 is even.

Prove that if n is a positive integer, then n is odd if

and only if 5n + 6 1s odd.

40. Prove that m® = n?ifand only if m = n orm = —n.

41. Prove or disprove that if m and » are integers such

that mn = 1,theneitherm = 1l and n = 1, or else
m=—-landn =-1.

42. Show that these three statements are equivalent
where a and b are real numbers: (i) ¢ is less than
b. (ii) the average of @ and b is greater than a, and
(#if) the average of ¢ and & is less than b.

. Show that these statements are equivalent: (i) 3x +2
is an even integer, (ii) x + 5 is an odd intcger, (i) x*

16. What is wrong with this argument? Let ${x, y) be “x

is shorter than y.” Given the premise 3y 5(y, Max), it

follows that §(Max, Max). Then by existential gener-

alization it follows that 3x S(x, x), so that someone is

shorter than himself.

Prove the proposition P (), where P(n) is the propo-

sition “If r is a positive integer greater than 1, then

n* > n.” What kind of proof did you use?

Prove the proposition P (1), where P(n) is the propo-

sition “If » is a positive integer, then n® > n.” What

kind of proof did von nse?

Let £{n) be the proposition “If a and » are positive

real numbers, then (@ + £)* > a® + b".” Prove that

P(1) is true. What kind of proof did you use?

20. Provce that the square of an even number is an even
number using

38,

17

39

18

&

19

a) a direct proof. b) an indirect proof. 43
¢) a proof by contradiction.

21, Prove thatif n is an integer and »* 4 5 is odd, then n is an even integer.
is even using 44. Show that these statemenis are equivalent: (i} x is
a} an indirect proof. rational, (ii} x /2 is rational, and (i#f} 3x — 1 is rational.
b) a proof by contradiction, 45. Show that these statements are equivalent: (i) x is ir-
22, Prove that if n is an integer and 3n 4+ 2 is even, then n ratiqnal, (if) 3.“ +.2 is irrfitional, (it} Ix/2 is lirrational.
is even using 46. I.s this reasoning for finding the solutions of th‘e equa-
o tion +/2x% — 1 = x correct? (1) +/2x2 — 1 = xisgiven;
a} an indirect proof. (2) 2x% — 1 = x2, obtained by squaring both sides of
b) a proof by contradiction. (1); (3) x* — 1 = 0, obtained by subtracting x* from
23, Prove that the sum of two odd integers is even, both sides of (2); (4) (x — ){x + 1) = 0, obtained

4. Prove that the product of two odd numbers is odd. by factoring the left-hand side of x2 — 15 (3) x = 1
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47,

49.

50.

51

52

53

54

55.

56.

57.

58

&

59.

60.
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or x = —1, which follows since ab = 0 implies that
a=0o0rb=0.

Are these steps for finding the solutions of Vx + 3 =
3 — x correct? (1) /x+3 = 3 — x is given; (2)
x + 3 = x? — 6x +9, obtained by squaring both sides
of (1):{3} 0 = x? — 7x + 6, obtained by subtracting
x + 3 from both sides of (2);(4) 0 = (x — 13{x — 6),
obtained by factoring the right-hand side of (3); (5)
x = 1 or x = 6, which follows from (4) since ab = 0
implies thata =0 orb = 0.

. Prove that there is a positive integer that equals the

sum of the positive integers not exceeding it. Is your
proof constructive or nonconstructive?

Prove that there are 100 consecutive positive integers
that are not perfect squares. Is your proof construc-
tive or nonconstructive?

Prove that either 2 10°% + 1500 2-10°%° + 16isnot a
perfect square. Is your proof constructive or noncon-
structive?

Prove that there exists a pair of consecutive integers
such that one of these integers is a perfect square and
the other is a perfect cube.

Show that the product of two of the numbers 65/ —
82!’)(]! + 3l77~ 79[2[1 _ 9239‘7 + 22001’ and 244493 — 58102 +
777 is nonnegative. Is vour proof constructive or
nonconstructive? (Hine: Do not try to evaluate these
numbers!)

Show that each of these statements can be used to
express the fact that there is a unigue element x such
that £{x) is true. {Note that by Exercise 48 in Section
(.3, this is the statement 3! P{x).}

a) WVy(P(y) < x =)

by Sx Py AVaYY(PxX) A P(Y) > x=1y¥)

€} x(PX)AVYY(P(Y}— x = ¥))

Show that if a4, b, and ¢ are real numbers and ¢ #
0. then there is a unique solution of the equation
ax+h=c.

Supposc that o and b are odd integers with ¢ # b.
Show there is a anique integer ¢ such that ja — ¢] =
b — cl.

Show thatif r is an irrational number, there is a unique
integer n such that the distance between r and n1s less
than 1/2.

Show that if » is an odd integer, then there is a unique
integer k such that = is the sum of k — 2 and & + 3.
Prove that given a real number x there exist unigne
numbers n and ¢ snch that x = » + €,n 1§ an integer,
and 0 < e < 1.

Prove that given a real number x there exist unique
numbers # and e such that x = # — €, n is an integer,
and 0 < ¢ < |.

Use resolution to show the hypotheses “Allen is a
bad boy or Hillary is a good girt” and “Allen is a good
boy or David is happy™ imply the conclusion “Hillary
is a good girl or David is happy.”

61,

62

.

63

s

64

65

&

66

H

67.

68.

*69.

*70.
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Use resolution to show that the hypotheses “It is not
raining or Yvette has her umbrelia,”“Y vette does not
have her umbrella or she does not get wet,” and Tt is
raining or Yvette does not get wet” imply that “Y vette
does not get wet.”

Show that the equivalence p A —p = F can be de-
rived using resolution together with the fact that an
implication with a false hypothesis is true. {Hinr: Let
¢ = r = F in resolution.}

Use resolution to show that the compound proposi-
ton{(pvg) A{=pVgia(pv—g)s{—pVv—g)isnot
satisfiable.

Prove or disprove that if @ and b are rational numbers,
then a” is also rational.

Prove or disprove that there is a rational number x
and an irrational number y such that x" is irrational.
Show that the propositions p,. pz, p3, and p, can be
shown to be equivalent by showing that p; < py,
pr 4+ ps.and pr o pa.

Show thal the propositions pi, pz, p3, ps. and ps can
be shown to be equivalent by proving thal the impli-
cations p; — pa, Py —> Pi, Py —> P1, pr — ps. and
Ps — pyare frue,

Prove that an 8 x 8 chessboard can be compietely
covered using dominos {1 x 2 pieces).

Prove that it is impossible to cover completely with
dominos the 8 x 8 chesshoard with two squares at
opposite corners of the board removed.

The Logic Problem, taken from WFF'N PROOF, The
Game of Logic, has these two assumptions:

1. “Logic is difficult or not many students like logic.”
2.°If mathematics is easy, then logic is not difficull.”

By transiating these assumptions into statements in-
volving propositional variables and logical connec-
tives, determine whether each of the following are
valid conclusions of these assumptions:

a) That mathematics is not easy, if many students like
logic.

That not many students like logic, if mathematics
is not easy.

That mathematics 1s not casy or logic is difficult.
That logic is not difficult or mathematics is not
easy.

That if not many students like logic. then either
mathematics is not easy or logic is not difficult.

b)

)
d)

€)

Prove that at least one of the real numbers a,
as, ..., a, is greater than or equal to the average of
these numbers. What kind of proof did you use?
Use Exercise 71 to show that if the first 10 positive
integers are placed around a circle, in any order, there
exist three integers in consecutive locations around
the circle that have a sum greater than or equal
to 17,
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73. Prove thatif n is an integer, these four statements are clusion of Lewis Carroll's argument described in Ex-
equivalent: (f) n is even, (i) n + 1 is odd, (i) 3n + 1 ample 20 of Section 1.37
is odd, (iv} 3n is even. *77. Determine whether this argument, taken from Back-

74. Prove that these four statements arc cquivalent: (£) house [Ba86], is valid.

n?1is odd, (@) 1 — n is even, (i) #* is odd, (iv} n*> + 1 If Superman were able and willing to prevent
is even. evil, he would do so. If Superman were un-
able to prevent evil, he would be impotent; if
he were unwilling to prevent evil, he would be
malevolent. Superman does not prevent evil. [[
Superman exists, he is neither impotent nor
76. Whichrules of inference arc used to establish the con- malevolent. Therefore, Superman does not exist.

75. Which rules of inference are used to establish the con-
clusion of Lewis Carroll’s argument described in Ex-

ample 19 of Section 1.37

Sets

INTRODUCTION

We will study a wide variety of discrete structures in this book. These include relations,
which consist of ordered pairs of elements; combinations, which are unordered collec-
tions of elements; and graphs, which are sets of vertices and edges connecting vertices,
Moreover, we will illustrate how these and other discrete structures are used in modeling
and problem solving. In particular, many examples of the use of discrete structures in
the storage, communication, and manipulation of data will be described. In this section
we study the fundamenial discrete structure upon which all other discrete structures are
built, namely, the sct.

Sets are used to group objects together. Often, the objects in a set have similar
properties. For instance, all the students who are currently enrolled in your school make
up a sct. Likewise, all the students currently taking a course in discrete mathematics at
any school make up a set. In addition, those students enrolled in your school who are
taking a course in discrete mathematics form a set that can be obtained by taking the
elements common to the first two collections. The language of sets is a means to study
such collections in an organized fashion. We now provide a definition of a set.

DEFINITION 1 A set is an unordered collection of objects.

Note that the term object has been used without specifying what an object is. This de-
scription of a set as a collection of objects, based on the intuitive notion of an object, was
first staled by the German mathematician Georg Cantor in 1895. The theory that results
from this intuitive definition of a sel leads to paradoxes, or logical inconsistencies, as the
English philosopher Bertrand Russell showed in 1902 (see Exercise 30 for a description
of one of these paradoxes). These logical inconsistencies can be avoided by building set
theory starting with basic assumptions, called axioms. We will use Cantor’s original ver-
sion of set theory, known as naive set theory, without developing an axiomatic version of
set theory, since all sets considered in this book can be treated consistently using Cantor’s
original theory.
We now proceed with our discussion of sets.
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