The set $(A\cap B)\setminus C$ |
The set $B \setminus (C \cup A)$ |
---|
The set $A\cup B \cup C$ The area is $6\pi \approx 18.8496$ |
The set $A\cap B \cap C$ The area is $6 \arcsin\bigl(10/(7\sqrt{7})\bigr) \approx 3.42226$ |
---|---|
$\bigl((A \cap B) \setminus C \bigr) \cup \bigl((B \cap C) \setminus A \bigr) \cup \bigl((C \cap A) \setminus B \bigr)$ The area is $18 \arcsin\bigl(1/7\bigr) \approx 2.58026$ |
$\bigl(A \setminus (B \cup C)\bigr) \cup \bigl(B \setminus (C \cup A)\bigr) \cup \bigl(C \setminus (A \cup B)\bigr)$ The area is $6 \pi -18 \arcsin\bigl(\sqrt{3} /(2\sqrt{7}) \bigr) \approx 12.847$ |
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
$u(t) = t-\sin(t)$ in navy blue and its inverse $u^{-1}$ in maroon |
---|
The cardioid from Problem 6 |
The cardioid from Problem 6 scaled by 2 |
The cardioid from Problem 6 scaled by 2 and translated. |
---|
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
RegionPlot3D[
And[y^2 + z^2 < 1, z^2 + x^2 < 1], {x, -1, 1}, {y, -1, 1}, {z, -1,
1}, PlotPoints -> {200, 200, 200}, Mesh -> None,
PlotStyle -> {Opacity[1]},
Ticks -> {Range[-2, 2, 1], Range[-2, 2, 1], Range[-2, 2, 1]},
ImageSize -> 500
]
RegionPlot3D[
And[x^2+y^2 < 1, y^2 + z^2 < 1, z^2 + x^2 < 1], {x, -1, 1}, {y, -1, 1}, {z, -1,
1}, PlotPoints -> {200, 200, 200}, Mesh -> None,
PlotStyle -> {Opacity[1]},
Ticks -> {Range[-2, 2, 1], Range[-2, 2, 1], Range[-2, 2, 1]},
ImageSize -> 500
]
Place the cursor over the image to start the animation.
A cross-section is an equilateral triangle.
Place the cursor over the image to start the animation.
A cross-section is a square.
Place the cursor over the image to start the animation.
A cross-section is a regular pentagon.
Place the cursor over the image to start the animation.
A cross-section is a regular hexagon.
Place the cursor over the image to start the animation.
A cross-section is a regular heptagon.
Place the cursor over the image to start the animation.
A cross-section is a regular octagon.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Folium of Descartes $x^3+y^3 = 6xy$ |
---|
the smallest osculating circle in teal |
---|
yellow points correspond to no real solutions of (qe) navy blue points correspond to a unique real solution of (qe) teal points correspond to two distinct real solutions of (qe) |
---|
yellow points correspond to a unique real solution of (ce) navy blue points correspond to two distinct real solutions of (ce) teal points correspond to three distinct real solutions of (ce) |
---|
yellow points correspond to no real solutions of (ep) navy blue points correspond to a unique real solution of (ep) teal points correspond to two distinct real solutions of (ep) |
---|
Place the cursor over the image to start the animation.
$ X = [-1,+\infty), \ Y = [-1/e,+\infty), \ W_0 = \bigl\{ \bigl(x e^x,x \bigr) \ \bigl| \bigr. \ x \in X \bigr\} $ The Lambert $W_0$ function |
$X = (-\infty,-1), \ Y = (-1/e,0), \ W_{-1} = \bigl\{ \bigl(x e^x,x \bigr) \ \bigl| \bigr. \ x \in X \bigr\}$ The Lambert $W_{-1}$ function |
---|
$f(x)$ in navy blue and its inverse $f^{-1}(x)$ in maroon |
---|
$ X = [-1,+\infty), \ Y = [-1/e,+\infty), \ W_0 = \bigl\{ \bigl(x e^x,x \bigr) \ \bigl| \bigr. \ x \in X \bigr\} $ The Lambert $W_0$ function |
$X = (-\infty,-1), \ Y = (-1/e,0), \ W_{-1} = \bigl\{ \bigl(x e^x,x \bigr) \ \bigl| \bigr. \ x \in X \bigr\}$ The Lambert $W_{-1}$ function |
---|
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
the navy blue function is $e^x$, the purple circle is a unit circle
Place the cursor over the image to start the animation.
the sine function in navy blue and its many tangents in gray
$|x - 0| \lt \epsilon^2$ implies $|\sqrt{x} - 0 | \lt \epsilon$.
Fact B. For all $a \gt 0$ and all $x \geq 0$ we have $\displaystyle \biggl|\sqrt{x} -\sqrt{a} \biggr| \leq \frac{1}{\sqrt{a}} |x-a|$.
To toggle the proof of Fact B click$|x - a| \lt \delta(\epsilon)$ implies $|\sqrt{x} - \sqrt{a} | \lt \epsilon$.
$|x - a| \lt \sqrt{a} \, \epsilon$ implies $|\sqrt{x} - \sqrt{a} | \lt \epsilon$.
for every real number $y$ between $f(a)$ and $f(b)$ there exists $x \in [a,b]$ such that $y = f(x)$.
there exist $c, d \in [a,b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in [a,b]$.
If $|x-a| \lt d$, then $|f(x) - f(a) | \lt K |x-a|$.
Fact A. Let $a\in\mathbb R$ be such that $a \gt 0$. If $|x-a| \lt a/2$, then $\displaystyle \biggl|\frac{1}{x} -\frac{1}{a} \biggr| \lt \frac{2}{a^2} |x-a|$.
To toggle the proof of Fact A click$ \displaystyle |x-a| \lt \min\left\{ \frac{a}{2}, \frac{a^2}{2} \epsilon \right\}$ implies $\displaystyle \biggl|\frac{1}{x} -\frac{1}{a} \biggr| \lt \epsilon$.
$|x-a| \lt \delta(\epsilon)$ implies $|f(x) - f(a) | \lt \epsilon$.
If $0 \lt |x-a| \lt d$, then $|f(x) - L | \lt K |x-a|$.
If $0 \lt |x-a| \lt d$, then $|f(x) - f(a) | \lt K |x-a|$.
$0 \lt \delta(\epsilon) \leq 1$ and $0 \lt |x| \lt \delta(\epsilon)$ implies $|\cos(x) - 1 | \lt \epsilon$.
Fact B. If $|x| \lt \pi/3$, then $|\cos(x) - 1| \leq |x|$.
To toggle the proof of Fact B click
Figure for $\displaystyle \lim_{x\to 0} \cos(x) = 1$ |
---|
$0 \lt \delta(\epsilon) \leq \pi/3$ and $0 \lt |x| \lt \delta(\epsilon)$ implies $|\cos(x) - 1 | \lt \epsilon$.
$0 \lt \delta(\epsilon) \leq 1$ and $0 \lt |x| \lt \delta(\epsilon)$ implies $\displaystyle \left| \frac{\sin x}{x} - 1 \right| \lt \epsilon$.
Fact C. If $0 \lt |x| \lt \pi/3$, then $\displaystyle \biggl|\frac{\sin x}{x} -1 \biggr| \lt |x|$.
To toggle the proof of Fact C clickFact C-1. If $0 \lt x \lt \pi/3$, then $\displaystyle \cos(x) \lt \frac{\sin x}{x} \lt 1$.
Figure for $\displaystyle \lim_{x\to 0} \frac{\sin x}{x} = 1$ |
---|
$0 \lt \delta(\epsilon) \leq \pi/3$ and $0 \lt |x| \lt \delta(\epsilon)$ implies $\displaystyle \biggl|\frac{\sin x}{x} -1 \biggr| \lt \epsilon$.
$0 \lt \delta(\epsilon) \leq 1$ and $0 \lt |x| \lt \delta(\epsilon)$ implies $\displaystyle \left| \frac{1-\cos(x)}{x^2} - \frac{1}{2} \right| \lt \epsilon$.
Fact D. If $0 \lt |x| \lt 1$, then $\displaystyle \biggl|\frac{1-\cos(x)}{x^2} - \frac{1}{2} \biggr| \lt |x|$.
To toggle the proof of Fact D click
Figure for $\displaystyle \lim_{x\to 0} \frac{1- \cos x}{x^2} = \frac{1}{2}$ |
---|
$0 \lt \delta(\epsilon) \leq 1$ and $0 \lt |x| \lt \delta(\epsilon)$ implies $\displaystyle \biggl|\frac{1- \cos(x)}{x^2} - \frac{1}{2} \biggr| \lt \epsilon$.
$0 \lt \delta(\epsilon) \leq 1$ and $0 \lt |x| \lt \delta(\epsilon)$ implies $\displaystyle \left| \frac{1-\cos(x)}{x} - 0 \right| \lt \epsilon$.
Fact E. If $0 \lt |x| \lt 1$, then $\displaystyle \biggl|\frac{1-\cos(x)}{x} \biggr| \lt \frac{1}{2} |x|$.
To toggle the proof of Fact E click$0 \lt \delta(\epsilon) \leq 1$ and $0 \lt |x| \lt \delta(\epsilon)$ implies $\displaystyle \biggl|\frac{1- \cos(x)}{x} - 0 \biggr| \lt \epsilon$.
$0 \lt |x-a| \lt \delta(\epsilon)$ implies $|f(x) - L | \lt \epsilon$.
$0 \lt \delta(\epsilon) \leq 1$ and $0 \lt |x-2| \lt \delta(\epsilon)$ implies $|x^2 - 4 | \lt \epsilon$.
Fact A. If $|x-2| \lt 1$, then $|x^2 - 4| \leq 5 |x - 2|$.
To toggle the proof of Fact A click$0 \lt \delta(\epsilon) \leq 1$ and $0 \lt |x-2| \lt \delta(\epsilon)$ implies $|x^2 - 4 | \lt \epsilon$.
$x \gt X(\epsilon)$ implies $|f(x) - L | \lt \epsilon$.
$\tanh$ in navy blue and its inverse $\tanh^{-1}$ in maroon |
---|
Place the cursor over the image to start the animation.
The composition at a generic point $x$ |
The composition at another generic point $x$ |
---|---|
Finding a minimum of the composition |
Finding a maximum of the composition |
Sine with yarn |
---|
$\color{blue}{\cosh(x)} = \color{green}{\dfrac{1}{2} e^x} + \color{red}{\dfrac{1}{2} e^{-x}}, \ x \in \mathbb R $ |
$ \color{blue}{\sinh(x)} = \color{green}{\dfrac{1}{2} e^x} \color{red}{- \dfrac{1}{2} e^{-x}}, \ x \in \mathbb R $ |
---|
$ \tanh(x) = \dfrac{\sinh(x)}{\cosh(x)} = \dfrac{e^x - e^{-x}}{e^x + e^{-x}}, \ x \in \mathbb R $ |
---|
Hyperbola $\bigl\{ (x,y) \in \mathbb R\!\times \!\mathbb R \, \bigl| \bigr. \, x^2 - y^2 = 1\bigr\}$ |
---|
$ X = [0,+\infty), \ Y = [0,+\infty), \ f_1 = \bigl\{ (x,x^2) \ \bigl| \bigr. \ x \in X \bigr\} $ |
$X = \mathbb R, \ Y = \mathbb R, \ f_2 = \bigl\{ (x,x^3) \ \bigl| \bigr. \ x \in X \bigr\}$ |
---|---|
$X= \mathbb R, \ Y = (0,+\infty), \ f_3 = \bigl\{ (x,e^x) \ \bigl| \bigr. \ x \in X \bigr\}$ |
$X = (-\pi/2,\pi/2), \ Y = \mathbb R, \ f_4 = \bigl\{ \bigl( x,\tan(x) \bigr) \ \bigl| \bigr. \ x \in X \bigr\} $ |
$ X = [-\pi/2,\pi/2], \ Y = [-1,1], \ f_5 = \bigl\{ \bigl(x,\sin(x)\bigr) \ \bigl| \bigr. \ x \in X \bigr\} $ |
$ X = [0,\pi], \ Y = [-1,1], \ f_6 = \bigl\{ \bigl(x,\cos(x)\bigr) \ \bigl| \bigr. \ x \in X \bigr\} $ |
The Unit Circle $\bigl\{ (x,y) \in {\mathbb R}\times {\mathbb R} \, | \, x^2+y^2=1 \bigr\}$ |
---|
The sign function |
The unit step function |
---|---|
The floor function |
The ceiling function |
The number $e$ is the value of the account in which 1 dollar has been invested for 1 year in a savings account paying 100% annual interest compounded continuously.
These four real numbers together with the imaginary unit $i$ form the set of numbers which I call "the Hall of Fame of Numbers": \[ \bigl\{ 1, 0, \pi, e, i \bigr\}. \]