Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Lateral surface area of a part of a cone. |
Unwrap the area, cut in pieces and rearrange. Hover the cursor to animate. |
Easy area to calculate. |
---|
(1/2) (blue length + red length) * black length
Place the cursor over the image to start the animation.
$u(t) = t-\sin(t)$ in navy blue and its inverse $u^{-1}$ in maroon |
---|
The cardioid from Problem 6 |
The cardioid from Problem 6 scaled by 2 |
The cardioid from Problem 6 scaled by 2 and translated. |
RegionPlot3D[
And[y^2 + z^2 < 1, z^2 + x^2 < 1], {x, -1, 1}, {y, -1, 1}, {z, -1,
1}, PlotPoints -> {200, 200, 200}, Mesh -> None,
PlotStyle -> {Opacity[1]},
Ticks -> {Range[-2, 2, 1], Range[-2, 2, 1], Range[-2, 2, 1]},
ImageSize -> 500
]
RegionPlot3D[
And[x^2+y^2 < 1, y^2 + z^2 < 1, z^2 + x^2 < 1], {x, -1, 1}, {y, -1, 1}, {z, -1,
1}, PlotPoints -> {200, 200, 200}, Mesh -> None,
PlotStyle -> {Opacity[1]},
Ticks -> {Range[-2, 2, 1], Range[-2, 2, 1], Range[-2, 2, 1]},
ImageSize -> 500
]
Place the cursor over the image to start the animation.
A cross-section is an equilateral triangle.
Place the cursor over the image to start the animation.
A cross-section is a square.
Place the cursor over the image to start the animation.
A cross-section is a regular pentagon.
Place the cursor over the image to start the animation.
A cross-section is a regular hexagon.
Place the cursor over the image to start the animation.
A cross-section is a regular heptagon.
Place the cursor over the image to start the animation.
A cross-section is a regular octagon.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Folium of Descartes $x^3+y^3 = 6xy$ |
---|
the smallest osculating circle in teal |
---|
yellow points correspond to no real solutions of (ep) navy blue points correspond to a unique real solution of (ep) teal points correspond to two distinct real solutions of (ep) |
---|
$ X = [-1,+\infty), \ Y = [-1/e,+\infty), \ W_0 = \bigl\{ \bigl(x e^x,x \bigr) \ \bigl| \bigr. \ x \in X \bigr\} $ The Lambert $W_0$ function |
$X = (-\infty,-1), \ Y = (-1/e,0), \ W_{-1} = \bigl\{ \bigl(x e^x,x \bigr) \ \bigl| \bigr. \ x \in X \bigr\}$ The Lambert $W_{-1}$ function |
---|
$f(x)$ in navy blue and its inverse $f^{-1}(x)$ in maroon |
---|
yellow points correspond to a unique real solution of (ce) orange points correspond to two distinct real solutions of (ce) blue points correspond to three distinct real solutions of (ce) |
---|
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
the sine function in navy blue and its many tangents in gray
the navy blue function is $e^x$, the purple circle is a unit circle
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
$|x-a| \lt \delta(\epsilon)$ implies $|f(x) - f(a) | \lt \epsilon$.
for every real number $y$ between $f(a)$ and $f(b)$ there exists $x \in [a,b]$ such that $y = f(x)$.
there exist $c, d \in [a,b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in [a,b]$.
If $|x-c| \lt d$, then $|f(x) - f(c) | \lt K |x-c|$.
$|x-c| \lt \delta(\epsilon)$ implies $|f(x) - f(c) | \lt \epsilon$.
Fact A. If $|x-a| \lt a/2$, then $\displaystyle \biggl|\frac{1}{x} -\frac{1}{a} \biggr| \leq \frac{2}{a^2} |x-a|$.
To toggle the proof of Fact A click$ \displaystyle |x-a| \lt \min\left\{ \frac{a}{2}, \frac{a^2}{2} \epsilon \right\}$ implies $\displaystyle \biggl|\frac{1}{x} -\frac{1}{a} \biggr| \lt \epsilon$.
Fact B. If $|x-a| \lt 1$, then $\displaystyle \bigl|x^2 -a^2 \bigr| \leq \bigl(1+2 |a| \bigr) |x-a|$.
To toggle the proof of Fact B click$ \displaystyle |x-a| \lt \min\left\{ 1, \frac{ \epsilon }{1 + 2 \bigl| a \bigr|} \right\}$ implies $\displaystyle \bigl| x^2 - a^2 \bigr| \lt \epsilon$.
Fact C. If $x \in (0,+\infty)$, then $\displaystyle \bigl| \sqrt{x} - \sqrt{a} \bigr| \leq \frac{1}{ \sqrt{a}} |x-a|$.
To toggle the proof of Fact C click$ \displaystyle |x-a| \lt \min\left\{ \frac{a}{2}, \sqrt{a} \epsilon \right\}$ implies $\displaystyle \bigl| \sqrt{x} - \sqrt{a} \bigr| \lt \epsilon$.
$0 \lt |x-c| \lt \delta(\epsilon)$ implies $|f(x) - L | \lt \epsilon$.
$x \gt X(\epsilon)$ implies $|f(x) - L | \lt \epsilon$.
$\tanh$ in navy blue and its inverse $\tanh^{-1}$ in maroon |
---|
Place the cursor over the image to start the animation.
The composition at a generic point $x$ |
The composition at another generic point $x$ |
---|---|
Finding a minimum of the composition |
Finding a maximum of the composition |
Place the cursor over the image to start the animation.
$ A = [0,+\infty), \ B = [0,+\infty), \ f_1 = \bigl\{ (x,x^2) \ \bigl| \bigr. \ x \in A \bigr\} $ |
$A = \mathbb R, \ B = \mathbb R, \ f_2 = \bigl\{ (x,x^3) \ \bigl| \bigr. \ x \in A \bigr\}$ |
---|---|
$A = \mathbb R, \ B = (0,+\infty), \ f_3 = \bigl\{ (x,e^x) \ \bigl| \bigr. \ x \in A \bigr\}$ |
$A = (-\pi/2,\pi/2), \ B = \mathbb R, \ f_4 = \bigl\{ \bigl( x,\tan(x) \bigr) \ \bigl| \bigr. \ x \in A \bigr\} $ |
$A = [-\pi/2,\pi/2], \ B = [-1,1], \ f_5 = \bigl\{ \bigl(x,\sin(x)\bigr) \ \bigl| \bigr. \ x \in A \bigr\} $ |
$ A = [0,\pi], \ B = [-1,1], \ f_6 = \bigl\{ \bigl(x,\cos(x)\bigr) \ \bigl| \bigr. \ x \in A \bigr\} $ |
$\color{blue}{\cosh(x)} = \color{green}{\dfrac{1}{2} e^x} + \color{red}{\dfrac{1}{2} e^{-x}}, \ x \in \mathbb R $ |
$ \color{blue}{\sinh(x)} = \color{green}{\dfrac{1}{2} e^x} \color{red}{- \dfrac{1}{2} e^{-x}}, \ x \in \mathbb R $ |
---|
$ \tanh(x) = \dfrac{\sinh(x)}{\cosh(x)} = \dfrac{e^x - e^{-x}}{e^x + e^{-x}}, \ x \in \mathbb R $ |
---|
Hyperbola $\bigl\{ (x,y) \in \mathbb R\!\times \!\mathbb R \, \bigl| \bigr. \, x^2 - y^2 = 1\bigr\}$ |
---|
The sign function |
The unit step function |
---|---|
The floor function |
The ceiling function |
The Unit Circle $\bigl\{ (x,y) \in {\mathbb R}\times {\mathbb R} \, | \, x^2+y^2=1 \bigr\}$ |
---|