In the image below I give a graphical representation of the above quadruplicity. The red dot represents the zero quadratic form, the green region represents the positive semidefinite quadratic forms, the blue region represents the negative semidefinite quadratic forms and the cyan region represents the indefinite quadratic forms.
In the image above, the dark green region represents the positive definite quadratic forms and the dark blue region represents the negative definite quadratic forms. These two regions are not parts of the above quadruplicity.
The Complex Numbers. A complex number is commonly represented as $z = x + i y$ where $i$ is the imaginary unit with the property $i^2 = -1$ and $x$ and $y$ are real numbers. The real number $x$ is called the real part of $z$ and the real number $y$ is called the imaginary part of $z.$ A real number is a special complex numbers whose imaginary part is $0.$ The set of all complex numbers is denoted by $\mathbb C.$
The Complex Conjugate. By $\overline{z}$ we denote the complex conjugate of $z$. The complex conjugate of $z = x+i y$ is the complex number $\overline{z} = x - i y.$ That is, the complex conjugate $\overline{z}$ is the complex numer which has the same real part as $z$ and the imaginary part of $\overline{z}$ is the opposite of the imaginary part of $z.$ Since $-0 = 0$, a comlex number $z$ is real if and only if $\overline{z} = z.$ The operation of complex conjugation respects the algebraic operations with complex numbers: \[ \overline{z + w} = \overline{z} + \overline{w}, \quad \overline{z - w} = \overline{z} - \overline{w}, \quad \overline{z\, w} = \overline{z}\, \overline{w}. \]
The Modulus. Let $z = x + i y$ be a complex number. Here $x$ is the real part of $z$ and $y$ is the imaginary part of $z.$ The modulus of $z$ is the nonnegative number $\sqrt{x^2+y^2}.$ The modulus of $z$ is denoted by $|z|.$ Clearly, $|z|^2 = z\overline{z}$.
Vectors with Complex Entries. Let $\mathbf v$ be a vector with complex entries. By $\overline{\mathbf{v}}$ we denote the vector whose entries are complex conugates of the corresponding entries of $\mathbf v.$ That is, \[ \mathbf v = \left[\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right], \qquad \overline{\mathbf v} = \left[\begin{array}{c} \overline{v}_1 \\ \vdots \\ \overline{v}_n \end{array} \right]. \] The following calculation for a vector with complex entries is often useful \[ \mathbf{v}^\top \overline{\mathbf{v}} = \bigl[v_1 \ \ v_2 \ \ \cdots \ \ v_n \bigr] \left[\begin{array}{c} \overline{v}_1 \\ \overline{v}_2 \\ \vdots \\ \overline{v}_n \end{array} \right] = \sum_{k=1}^n v_k\, \overline{v}_k = \sum_{k=1}^n |v_k|^2 \geq 0. \] Moreover, \[ \mathbf{v}^\top \overline{\mathbf{v}} = 0 \quad \text{if and only if} \quad \mathbf{v} = \mathbf{0}. \]
Theorem. All eigenvalues of a symmetric matrix are real.
Proof. Let $A$ be a symmetric $n\!\times\!n$ matrix and let $\lambda$ be an eigenvalue of $A$. Let $\mathbf{v} = \bigl[v_1 \ \ v_2 \ \ \cdots \ \ v_n \bigr]^\top$ be a corresponding eigenvector. Then $\mathbf{v} \neq \mathbf{0}.$ We allow the possibility that $\lambda$ and the entries $v_1,$ $v_2,\ldots,$ $v_n$ of $\mathbf{v}$ are complex numbers. Since $\mathbf{v}$ is an eigenvector of $A$ corresponding to $\lambda$ we have \[ A \mathbf{v} = \lambda \mathbf{v}. \] Since $A$ is a symmetric matrix, all the entries of $A$ are real numbers. It follows from the properties of the complex conjugation that taking the complex conjugate of each side of the equality $A \mathbf{v} = \lambda \mathbf{v}$ yields \[ A \overline{\mathbf{v}} = \overline{\lambda} \overline{\mathbf{v}}. \] Since $A$ is symmetric, that is $A=A^\top$, we also have \[ A^\top \overline{\mathbf{v}} = \overline{\lambda} \overline{\mathbf{v}}. \] Multiplying both sides of the last equation by $\mathbf{v}^\top$ we get \[ \mathbf{v}^\top \bigl( A^\top \overline{\mathbf{v}} \bigr) = \mathbf{v}^\top ( \overline{\lambda} \overline{\mathbf{v}}). \] Since $\mathbf{v}^\top A^\top = \bigl(A\mathbf{v}\bigr)^\top$ and $\mathbf{v}^\top ( \overline{\lambda} \overline{\mathbf{v}}) = \overline{\lambda} \mathbf{v}^\top \overline{\mathbf{v}}$ the last displayed equality is equivalent to \[ \bigl(A\mathbf{v}\bigr)^\top \overline{\mathbf{v}} = \overline{\lambda} \mathbf{v}^\top \overline{\mathbf{v}}. \] Since $A \mathbf{v} = \lambda \mathbf{v},$ we further have \[ \bigl(\lambda \mathbf{v}\bigr)^\top \overline{\mathbf{v}} = \overline{\lambda} \mathbf{v}^\top \overline{\mathbf{v}}. \] That is, \[ \tag{*} \lambda \mathbf{v}^\top \overline{\mathbf{v}} = \overline{\lambda} \mathbf{v}^\top \overline{\mathbf{v}}. \] As explained in Vectors with Complex Entries item, $\mathbf{v} \neq \mathbf{0},$ implies $\mathbf{v}^\top \overline{\mathbf{v}} \gt 0.$ Now dividing both sides of equality (*) by $\mathbf{v}^\top \overline{\mathbf{v}} \gt 0$ yields \[ \lambda = \overline{\lambda}. \] As explained in The Complex Conjugate item above, this proves that $\lambda$ is a real number.
Theorem. Eigenspaces of a symmetric matrix which correspond to distinct eigenvalues are orthogonal.
Proof. Let $A$ be a symmetric $n\!\times\!n$ matrix. Let $\lambda$ and $\mu$ be an eigenvalues of $A$ and let $\mathbf{u}$ and $\mathbf{v}$ be a corresponding eigenvector. Then $\mathbf{u} \neq \mathbf{0},$ $\mathbf{v} \neq \mathbf{0}$ and \[ A \mathbf{u} = \lambda \mathbf{u} \quad \text{and} \quad A \mathbf{v} = \mu \mathbf{v}. \] Assume that \[ \lambda \neq \mu. \] Next we calculate the same dot product in two different ways; here we use the fact that $A^\top = A$ and algebra of the dot product. The first calculation: \[ (A \mathbf{u})\cdot \mathbf{v} = (\lambda \mathbf{u})\cdot \mathbf{v} = \lambda (\mathbf{u}\cdot\mathbf{v}) \] The second calculation: \begin{align*} (A \mathbf{u})\cdot \mathbf{v} & = (A \mathbf{u})^\top \mathbf{v} = \mathbf{u}^\top A^\top \mathbf{v} = \mathbf{u} \cdot \bigl(A^\top \mathbf{v} \bigr) = \mathbf{u} \cdot \bigl(A \mathbf{v} \bigr) \\ & = \mathbf{u} \cdot (\mu \mathbf{v} ) = \mu ( \mathbf{u} \cdot \mathbf{v}) \end{align*} Since, \[ (A \mathbf{u})\cdot \mathbf{v} = \lambda (\mathbf{u}\cdot\mathbf{v}) \quad \text{and} \quad (A \mathbf{u})\cdot \mathbf{v} = \mu (\mathbf{u}\cdot\mathbf{v}) \] we conclude that \[ \lambda (\mathbf{u}\cdot\mathbf{v}) - \mu (\mathbf{u}\cdot\mathbf{v}) = 0. \] Therefore \[ ( \lambda - \mu ) (\mathbf{u}\cdot\mathbf{v}) = 0. \] Since we assume that $ \lambda - \mu \neq 0,$ the previous displayed equality yields \[ \mathbf{u}\cdot\mathbf{v} = 0. \] This proves that any two eigenvectors corresponding to distinct eigenvalues are orthogonal. Thus, the eigenspaces corresponding to distinct eigenvalues are orthogonal.
Theorem. A symmetric $2\!\times\!2$ matrix is orthogonally diagonalizable.
Proof. Let $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$ be an arbitrary $2\!\times\!2$ be a symmetric matrix. We need to prove that there exists an orthogonal $2\!\times\!2$ matrix $U$ and a diagonal $2\!\times\!2$ matrix $D$ such that $A = UDU^\top.$ The eigenvalues of $A$ are \[ \lambda_1 = \frac{1}{2} \Bigl( a+d - \sqrt{(a-d)^2 + 4 b^2} \Bigr), \quad \lambda_2 = \frac{1}{2} \Bigl( a+d + \sqrt{(a-d)^2 + 4 b^2} \Bigr) \] Since clearly \[ (a-d)^2 + 4 b^2 \geq 0, \] the eigenvalues $\lambda_1$ and $\lambda_2$ are real numbers.
If $\lambda_1 = \lambda_2$, then $(a-d)^2 + 4 b^2 = 0$, and consequently $b= 0$ and $a=d$; that is $A = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$. Hence $A = UDU^\top$ holds with $U=I_2$ and $D = A$.
Now assume that $\lambda_1 \neq \lambda_2$. Let $\mathbf{u}_1$ be a unit eigenvector corresponding to $\lambda_1$ and let $\mathbf{u}_2$ be a unit eigenvector corresponding to $\lambda_2$. We proved that eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are orthogonal. Since $A$ is symmetric, $\mathbf{u}_1$ and $\mathbf{u}_2$ are orthogonal, that is the matrix $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$ is orthogonal. Since $\mathbf{u}_1$ and $\mathbf{u}_2$ are eigenvectors of $A$ we have \[ AU = U \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = UD. \] Therefore $A=UDU^\top.$ This proves that $A$ is orthogonally diagonalizable.
In the image below the the forest green points are the given data points. The red line is the line which I guessed could be the least-squares line. The blue line is the true least-squares line.
Proposition. If the line $y = \beta_0 + \beta_1 x$ is the least-squares line for the data points \[ (x_1,y_1), \ldots, (x_n,y_n), \] then $\overline{y} = \beta_0 + \beta_1 \overline{x}$, where \[ \overline{x} = \frac{1}{n}(x_1+\cdots+x_n), \quad \overline{y} = \frac{1}{n}(y_1+\dots+y_n). \]
The above proposition is Exercise 14 in Section 6.6.Proof. Let \[ (x_1,y_1), \ldots, (x_n,y_n), \] be given data points and set \[ \overline{x} = \frac{1}{n}(x_1+\cdots+x_n), \quad \overline{y} = \frac{1}{n}(y_1+\dots+y_n). \] Let $y = \beta_0 + \beta_1 x$ be the least-squares line for the given data points. Then the vector $\left[\begin{array}{c} \beta_0 \\ \beta_1 \end{array} \right]$ satisfies the normal equation \[ \left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{array} \right] \left[\begin{array}{cc} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{array} \right] \left[\begin{array}{c} \beta_0 \\ \beta_1 \end{array} \right] = \left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{array} \right] \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array} \right]. \] Multiplying the second matrix on the left-hand side and the third vector we get \[ \left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{array} \right] \left[\begin{array}{c} \beta_0 + \beta_1 x_1 \\ \beta_0 + \beta_1 x_2 \\ \vdots \\ \beta_0 + \beta_1 x_n \end{array} \right] = \left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{array} \right] \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array} \right]. \] The above equality is an equality of vectors with two components. The top components of these vectors are equal: \[ (\beta_0 + \beta_1 x_1) + (\beta_0 + \beta_1 x_2) + \cdots + (\beta_0 + \beta_1 x_n) = y_1 + y_2 + \cdots + y_n. \] Therefore \[ n \beta_0 + \beta_1 (x_1+x_3 + \cdots + x_n) = y_1 + y_2 + \cdots + y_n. \] Dividing by $n$ we get \[ \beta_0 + \beta_1 \frac{1}{n} (x_1+x_3 + \cdots + x_n) = \frac{1}{n}( y_1 + y_2 + \cdots + y_n). \] Hence \[ \overline{y} = \beta_0 + \beta_1 \overline{x}. \] QED.
In this image the the navy blue points are the given data points and the light blue plane is the least-squares plane that best fits these data points. The dark green points are their projections onto the $xy$-plane. The teal points are the corresponding points in the least-square plane.
Theorem. Let $A$ be an $n\!\times\!m$ matrix. Then $\operatorname{Nul}(A^\top\!\! A ) = \operatorname{Nul}(A)$.
Proof. The set equality $\operatorname{Nul}(A^\top\!\! A ) = \operatorname{Nul}(A)$ means \[ \mathbf{x} \in \operatorname{Nul}(A^\top\!\! A ) \quad \text{if and only if} \quad \mathbf{x} \in \operatorname{Nul}(A). \] We will prove this equivalence. Assume that $\mathbf{x} \in \operatorname{Nul}(A)$. Then $A\mathbf{x} = \mathbf{0}$. Consequently, \[ (A^\top\!A)\mathbf{x} = A^\top ( \!A\mathbf{x}) = A^\top\mathbf{0} = \mathbf{0}. \] Hence, $(A^\top\!A)\mathbf{x}= \mathbf{0}$, and therefore $\mathbf{x} \in \operatorname{Nul}(A^\top\!\! A )$. Thus, we proved the implication \[ \mathbf{x} \in \operatorname{Nul}(A) \quad \Rightarrow \quad \mathbf{x} \in \operatorname{Nul}(A^\top\!\! A ). \] Now we prove the converse: \[ \tag{*} \mathbf{x} \in \operatorname{Nul}(A^\top\!\! A ) \quad \Rightarrow \quad \mathbf{x} \in \operatorname{Nul}(A). \] Assume, $\mathbf{x} \in \operatorname{Nul}(A^\top\!\! A )$. Then, $(A^\top\!\!A) \mathbf{x} = \mathbf{0}$. Multiplying the last equality by $\mathbf{x}^\top$ we get $\mathbf{x}^\top\! (A^\top\!\! A \mathbf{x}) = 0$. Using the associativity of the matrix multiplication we obtain $(\mathbf{x}^\top\!\! A^\top)A \mathbf{x} = 0$. Using the Linear Algebra with the transpose operation we get $(A \mathbf{x})^\top\!A \mathbf{x} = 0$. Now recall that for every vector $\mathbf{v}$ we have $\mathbf{v}^\top \mathbf{v} = \|\mathbf{v}\|^2$. Thus, we have proved that $\|A\mathbf{x}\|^2 = 0$. Now recall that the only vector whose norm is $0$ is the zero vector, to conclude that $A\mathbf{x} = \mathbf{0}$. This means $\mathbf{x} \in \operatorname{Nul}(A)$. This completes the proof of implication (*). The theorem is proved. □
Corollary 1. Let $A$ be an $n\!\times\!m$ matrix. The columns of $A$ are linearly independent if and only if the $m\!\times\!m$ matrix $A^\top\!\! A$ is invertible.
Corollary 2. Let $A$ be an $n\!\times\!m$ matrix. Then $\operatorname{Col}(A^\top\!\! A ) = \operatorname{Col}(A^\top)$.
Corollary 3. Let $A$ be an $n\!\times\!m$ matrix. The matrices $A^\top$ and $A^\top\!\! A$ have the same rank.
Theorem. Every $n\times m$ matrix $A$ with linearly independent columns can be written as a product $A = QR$ where $Q$ is an $n\times m$ matrix whose columns form an orthonormal basis for the column space of $A$ and $R$ is an $m\times m$ upper triangular invertible matrix with positive entries on its diagonal.
An illustration of a Reflection across the green line
An illustration of a Reflection across the green line
Place the cursor over the image to start the animation.
Definition. A nonempty set $\mathcal{V}$ is said to be a vector space over $\mathbb R$ if it satisfies the following 10 axioms.
Explanation of the abbreviations: AE--addition exists, AA--addition is associative, AC--addition is commutative, AZ--addition has zero, AO--addition has opposites, SE-- scaling exists, SA--scaling is associative, SD--scaling distributes over addition of real numbers, SD--scaling distributes over addition of vectors, SO--scaling with one.