-
Since \(1 \gt 0\) and \(1^2 = 1 \lt 2\) we have \(1 \in A.\) Thus \(A \neq \emptyset.\)
-
We proved that \(2 \gt 0.\) We need to prove that \(2 \lt 2^2\) to establish that \(2 \in B.\) Thus \(B \neq \emptyset.\)
-
Next we need to prove
\[
\forall x \in A \ \forall y \in B \quad \text{we have} \quad x \lt y.
\]
Here is a proof. Let \(x \in A\) and \(y \in B\) be arbitrary. Then, by the definition of \(A\) we have \(x \gt 0\) and \(x^2 \lt 2\). By the definition of \(B\) we have \(y \gt 0\) and \(2 \lt y^2\). The inequalities \(x^2 \lt 2\) and \(2 \lt y^2\) and Axiom OT yield \(x^2 \lt y^2.\) Hence we have \(x,y \in \mathbb{R}_{\gt 0}\) and \(x^2 \lt y^2.\) The equivalence cited in the second item posted today yields, \(x \lt y.\) Since \(x\in A\) was arbitrary, and \(y \in B\) was arbitrary, we proved that
\[
\forall x \in A \ \forall y \in B \quad \text{we have} \quad x \lt y.
\]
-
Summarizing our preceding investigations, we have
\[
\require{bbox}
\bbox[4px, #88FF88, border: 2pt solid green]{
A, B \subset \mathbb{R}, \quad A\neq \emptyset, \quad B \neq \emptyset, \quad \forall x \in A \ \forall y \in B \quad \text{we have} \quad x \lt y.}
\]
Thus, all the hypothesis in the Completeness Axiom are satisfied. Therefore, the conclusion of the Completeness Axiom holds. That is,
\[
\require{bbox}
\bbox[4px, #88FF88, border: 2pt solid green]{
\exists c \in \mathbb{R} \quad \text{such that} \quad \forall x \in A \ \forall y \in B \quad \text{we have} \quad x \leq c \leq y.}
\]
-
In the preceding ➢ item you see how the Completeness Axiom is a "number creating tool." (I love this word "TOOL")
-
Our next task is to prove the following implication: Let \(\bbox[4px, #88FF88, border: 2pt solid green]{
c \in \mathbb{R}_{\gt 0}}\). Prove
\[
\bbox[4px, #88FF88, border: 2pt solid green]{
\forall x \in A \ \forall y \in B \quad \ x \leq c \leq y
} \quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{c^2 = 2}.
\]
The preceding implication can be proved using the axioms of an ordered field. In fact, it is easier to prove the contrapositive. Before stating the contrapositive, notice that the hypothesis in the preceding implication implies that \(c \gt 0.\) Therefore, without changing the statement, I can introduce a general assumption that \(\bbox[4px, #88FF88, border: 2pt solid green]{c \in \mathbb{R}_{\gt 0}}.\) We restate the preceding implication in an equivalent form: Let \(\bbox[4px, #88FF88, border: 2pt solid green]{c \in \mathbb{R}_{\gt 0}}.\) Then
\[
\bbox[4px, #88FF88, border: 2pt solid green]{
\Bigl(
\forall x \in A \quad x \leq c \Bigr) \ \ \land \ \
\Bigl(\forall y \in B \quad c \leq y \Bigr)
}
\quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{c^2 = 2}.
\]
-
The contrapositive deserves an item on its own. Let \(\bbox[4px, #88FF88, border: 2pt solid green]{c \in \mathbb{R}_{\gt 0}}.\) Then
\[
\bbox[4px, #88FF88, border: 2pt solid green]{c^2 \neq 2} \quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{
\Bigl(\exists x \in A \ \ \text{such that} \ \ x \gt c \Bigr) \ \ \lor \ \
\Bigl(\exists y \in B \ \ \text{such that} \ \ y \lt c \Bigr)
}
\]
Which, by Axiom OE is equivalent to: Let \(\bbox[4px, #88FF88, border: 2pt solid green]{c \in \mathbb{R}_{\gt 0}}.\) Then
\[
\bbox[4px, #88FF88, border: 2pt solid green]{c^2 \lt 2 \ \ \lor \ \ 2 \lt c^2} \quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{
\Bigl(\exists x \in A \ \ \text{such that} \ \ x \gt c \Bigr) \ \ \lor \ \
\Bigl(\exists y \in B \ \ \text{such that} \ \ y \lt c \Bigr)
}
\]
-
To prove the implication in the preceding ➢ item, it is sufficient to prove the following two implications. Let \(\bbox[4px, #88FF88, border: 2pt solid green]{c \in \mathbb{R}.}\) Then
\[
\bbox[4px, #88FF88, border: 2pt solid green]{c\gt 0 \ \ \land \ \ c^2 \lt 2} \quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{
\exists x \in A \ \ \text{such that} \ \ c \lt x}
\]
and
\[
\bbox[4px, #88FF88, border: 2pt solid green]{c \gt 0 \ \ \land \ \ 2 \lt c^2} \quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{
\exists y \in B \ \ \text{such that} \ \ y \lt c}.
\]
-
We explore the preceding two implications in separate items.
-
Using the definition of the set \(A\) the implication
\[
\bbox[4px, #88FF88, border: 2pt solid green]{c\gt 0 \ \ \land \ \ c^2 \lt 2} \quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{
\exists x \in A \ \ \text{such that} \ \ c \lt x}
\]
can be restated as
\[
\bbox[4px, #88FF88, border: 2pt solid green]{c \in A} \quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{
\exists x \in A \ \ \text{such that} \ \ c \lt x}.
\]
Interestingly, the last implication can be equivalently restated as a quantified statement:
\[
\forall a \in A \quad \exists x \in A \quad \text{such that} \quad a \lt x.
\]
This quantified statement is a property of the set \(A.\) To understand better what this statement is saying, let us formulate it negation:
\[
\exists a \in A \quad \text{such that} \quad \forall x \in A \quad x \leq a.
\]
This is again a property of a set \(A.\) In English it says: There is a super special element in the set \(A\) which is greater than all other elements of the set \(A.\) This is special! So such element deserves a name. We call it a maximum of the set \(A.\)
Hence, what we need to prove about the set \(A\) defined at the beginning of this post is: \(A\) does not have a maximum.
-
Using the definitions of the set \(B,\) the implication
\[
\bbox[4px, #88FF88, border: 2pt solid green]{c \gt 0 \ \ \land \ \ 2 \lt c^2} \quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{
\exists y \in B \ \ \text{such that} \ \ y \lt c}.
\]
can be restated as
\[
\bbox[4px, #88FF88, border: 2pt solid green]{c \in B} \quad \Rightarrow \quad
\bbox[4px, #FF7777, border: 2pt solid #990000]{
\exists y \in B \ \ \text{such that} \ \ y \lt c}.
\]
Interestingly, the last implication can be equivalently restated as a quantified statement:
\[
\forall b \in B \quad \exists y \in B \quad \text{such that} \quad y \lt b.
\]
This quantified statement is a property of the set \(B.\) To understand better what this statement is saying, let us formulate it negation:
\[
\exists b \in B \quad \text{such that} \quad \forall y \in B \quad b \leq y.
\]
This is again a property of a set \(B.\) In English it says: There is a super special element in the set \(B\) which is smaller than all other elements of the set \(B.\) This is special! So such element deserves a name. We call it a minimum of the set \(A.\)
Hence, what we need to prove about the set \(B\) defined at the beginning of this post is: \(B\) does not have a minimum.
-
Proof of the claim: \(A\) does not have a maximum.
What we need to prove is the following quantified statement
\[
\forall a \in A \quad \exists x \in A \quad \text{such that} \quad a \lt x.
\]
Proof. Let \(a \in A\) be arbitrary. Then, \(a \gt 0\) and \(a^2 \lt 2.\) Therefore \(2 - a^2 \gt 0\) and \(a^2 \lt 2 \lt 2^2.\) Since \(a^2 \lt 2^2,\) the equivalence stated in the second item posted today, we have \(a \lt 2.\) Since \(5 \gt 0,\) we have \(1/5 \gt 0,\) and consequently \((2 - a^2)/5 \gt 0.\) Therefore for \(x = a + (2 - a^2)/5\) we have \(x \gt a\) and, by Axiom OT, \(x \gt 0.\) Next we will prove \(x^2 \lt 2.\) In the proof of this inequality we use the fact that \(0 \lt (2 - a^2)/5 \lt 2/5 \lt 1,\) and therefore
\[
\Bigl(\frac{2 - a^2}{5}\Bigr)^2 \lt \frac{2 - a^2}{5}.
\]
The claim \(x^2 \lt 2\) is justified by the following chain of equalities and inequalities:
\begin{align*} \require{bbox}
x^2 & = \Bigl( a + \frac{2 - a^2}{5}\Bigr)^2 \\
\bbox[#88FF88, 0px, border:3px solid #008800]{\text{square of a binomial}}
& = a^2 + 2 a \frac{2 - a^2}{5} + \Bigl(\frac{2 - a^2}{5}\Bigr)^2 \\
\bbox[#88FF88, 3px, border:3px solid #008800]{(2 - a^2)/5 \lt 1}
& \lt a^2 + 2 a \frac{2 - a^2}{5} + \frac{2 - a^2}{5} \\
\bbox[#88FF88, 0px, border:3px solid #008800]{\text{Axiom DL}}
& = a^2 + (2 a + 1) \frac{2 - a^2}{5} \\
\bbox[#88FF88, 0px, border:3px solid #008800]{\text{Axiom MA}}
& = a^2 + \frac{2 a + 1}{5} (2 - a^2) \\
\bbox[#88FF88, 3px, border:3px solid #008800]{a \lt 2}
& \lt a^2 + \frac{5}{5} (2 - a^2) \\
\bbox[#88FF88, 0px, border:3px solid #008800]{\text{Axioms MO, MR}}
& = a^2 + (2 - a^2) \\
\bbox[#88FF88, 0px, border:3px solid #008800]{\text{Axioms AZ, AO}}
& = 2.
\end{align*}
where the last inequality follows from the fact that \(a \lt 2\) and \((2 - a^2)/5 \gt 0.\)
-
Proof of the claim: \(B\) does not have a minimum.
What we need to prove is the following quantified statement
\[
\forall b \in B \quad \exists y \in B \quad \text{such that} \quad y \lt b.
\]
Proof. Let \(b \in B\) be arbitrary. Then, \(b \gt 0\) and \(2 \lt b^2.\) Therefore \(b^2 - 2 \gt 0.\) Since \((b^2 - 2)/(2b) \gt 0\) we have \(y = b - (b^2-2)/(2b) \lt b.\) Also, \(y = \bigl(2b^2 - b^2 +2 \bigr)/(2b) \gt 0.\) The claim \(y^2 > 2\) is justified by the following chain of equalities and one inequality:
\begin{align*}
y^2 & = \Bigl( b - \frac{b^2 - 2}{2b}\Bigr)^2 \\
\bbox[#88FF88, 0px, border:3px solid #008800]{\text{square of a binomial, +}}
& = b^2 - 2b \frac{b^2 - 2}{2b}+ \Bigl(\frac{b^2 - 2}{2b}\Bigr)^2 \\
\bbox[#88FF88, 3px, border:3px solid #008800]{\bigl((b^2 - 2)/(2b)\bigr)^2 \gt 0}
& \gt b^2 - 2b \frac{b^2 - 2}{2b} \\
\bbox[#88FF88, 0px, border:3px solid #008800]{\text{Axiom MA}}
& =b^2 - \frac{2b}{2b} (b^2 - 2) \\
\bbox[#88FF88, 0px, border:3px solid #008800]{\text{Axioms MO, MR}}
& = b^2 - (b^2 - 2) \\
\bbox[#88FF88, 0px, border:3px solid #008800]{\text{Axioms AO, AZ}}
& = 2.
\end{align*}
-
This completes the existence proof of the statement There exists a unique \(\alpha \in \mathbb{R}_{\gt 0}\) such that \(\alpha^2 = 2.\)
The uniqueness in the statement There exists a unique \(\alpha \in \mathbb{R}_{\gt 0}\) such that \(\alpha^2 = 2.\) follows from the equivalence in the second ❏ item posted today.
The unique real number \(\alpha \in \mathbb{R}_{\gt 0}\) such that \(\alpha^2 = 2\) is called the square-root of \(2\) and it is denoted \(\sqrt{2}.\)
In general, the uniqueness in the statement For every \(s \in \mathbb{R}_{\gt 0}\) there exists a unique \(\alpha \in \mathbb{R}_{\gt 0}\) such that \(\alpha^2 = s,\) follows from the equivalence in the second ❏ item posted today. However, the existence in this statement requires a proof.
Using the properties of reciprocals it follows that
\[
\frac{1}{\sqrt{2}} \gt 0, \quad \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{2}.
\]
Hence, using the existence of \(\sqrt{2}\) and algebra we proved the statement: There exists a unique \(\alpha \in \mathbb{R}_{\gt 0}\) such that \(\alpha^2 = 1/2.\)
The unique real number \(\alpha \in \mathbb{R}_{\gt 0}\) such that \(\alpha^2 = 1/2\) is called the square-root of \(1/2\) and it is denoted \(\sqrt{1/2}.\) We proved above that \(\sqrt{1/2} = 1/\sqrt{2}.\)