Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Lateral surface area of a part of a cone. |
Unwrap the area, cut in pieces and rearrange. Hover the cursor to animate. |
Easy area to calculate. |
---|
(1/2) (blue length + red length) * black length
Place the cursor over the image to start the animation.
RegionPlot3D[
And[y^2 + z^2 < 1, z^2 + x^2 < 1], {x, -1, 1}, {y, -1, 1}, {z, -1,
1}, PlotPoints -> {200, 200, 200}, Mesh -> None,
PlotStyle -> {Opacity[1]},
Ticks -> {Range[-2, 2, 1], Range[-2, 2, 1], Range[-2, 2, 1]},
ImageSize -> 500
]
RegionPlot3D[
And[x^2+y^2 < 1, y^2 + z^2 < 1, z^2 + x^2 < 1], {x, -1, 1}, {y, -1, 1}, {z, -1,
1}, PlotPoints -> {200, 200, 200}, Mesh -> None,
PlotStyle -> {Opacity[1]},
Ticks -> {Range[-2, 2, 1], Range[-2, 2, 1], Range[-2, 2, 1]},
ImageSize -> 500
]
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
The cardioid from Problem 6 |
The cardioid from Problem 6 scaled by 2 |
The cardioid from Problem 6 scaled by 2 and translated. |
---|
Place the cursor over the image to start the animation.
A cross-section is an equilateral triangle.
Place the cursor over the image to start the animation.
A cross-section is a square.
Place the cursor over the image to start the animation.
A cross-section is a regular pentagon.
Place the cursor over the image to start the animation.
A cross-section is a regular hexagon.
Place the cursor over the image to start the animation.
A cross-section is a regular heptagon.
Place the cursor over the image to start the animation.
A cross-section is a regular octagon.
Place the cursor over the image to start the animation.
Folium of Descartes $x^3+y^3 = 6xy$ |
---|
$\displaystyle \begin{bmatrix}0 \\ 0 \\0\end{bmatrix}$ Black | $\displaystyle \begin{bmatrix}1/2 \\ 1/2 \\ 1/2\end{bmatrix}$ Gray | $\displaystyle \begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}$ White | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$\displaystyle \begin{bmatrix}1 \\ 0 \\0\end{bmatrix}$ Red | $\displaystyle \begin{bmatrix}1/2 \\ 0 \\0\end{bmatrix}$ Maroon | $\displaystyle \begin{bmatrix}1/2 \\ 1/2 \\0\end{bmatrix}$ Olive | $\displaystyle \begin{bmatrix}1 \\ 1/2 \\0\end{bmatrix}$ Orange | $\displaystyle \begin{bmatrix}1 \\ 1 \\0\end{bmatrix}$ Yellow | ||||||||||||||||||||
$\displaystyle \begin{bmatrix}0 \\ 1 \\0\end{bmatrix}$ Green |
|
$\displaystyle \begin{bmatrix}1/2 \\ 1 \\0\end{bmatrix}$ Chartruse | $\displaystyle \begin{bmatrix}0 \\ 1/2 \\ 1/2\end{bmatrix}$ Teal |
|
||||||||||||||||||||
$\displaystyle \begin{bmatrix}0 \\ 0 \\1\end{bmatrix}$ Blue | $\displaystyle \begin{bmatrix}0 \\ 0 \\ 1/2\end{bmatrix}$ Navy | $\displaystyle \begin{bmatrix}1/2 \\ 0 \\ 1/2\end{bmatrix}$ Purple | $\displaystyle \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}$ Magenta | $\displaystyle \begin{bmatrix}0 \\ 1 \\ 1\end{bmatrix}$ Cyan | ||||||||||||||||||||
|
|
|
|
|
||||||||||||||||||||
|
$\displaystyle \begin{bmatrix} 1 \\ 1/2 \\ 1/2 \end{bmatrix}$ Salmon |
|
|
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Since Teal and Yellow are the heads of particular vectors in the Color Cube, to construct a transition I connected the heads with a line segment. Points on this line segment are the heads of special linear combinations of the vectors representing Teal and Yellow. As an exercise write the linear combinations which are used in the above transition.
Place the cursor over the image to start the animation.
In the above animation I used the colors from the line segment connecting Teal and Yellow to color the rectangles in the middle of the square.
Above is the unit circle colored using colors from the line segment connecting Teal and Yellow.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
the smallest osculating circle in teal |
---|
Place the cursor over the image to start the animation.
the sine function in navy blue and its many tangents in gray
Place the cursor over the image to start the animation.
yellow points correspond to a unique real solution of (ce) orange points correspond to two distinct real solutions of (ce) blue points correspond to three distinct real solutions of (ce) |
---|
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
Place the cursor over the image to start the animation.
$|x-a| \lt \delta(\epsilon)$ implies $|f(x) - f(a) | \lt \epsilon$.
for every real number $v$ between $f(a)$ and $f(b)$ there exists $u \in [a,b]$ such that $v = f(u)$.
there exist $c, d \in [a,b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in [a,b]$.
$|x-c| \lt \delta(\epsilon)$ implies $|f(x) - f(c) | \lt \epsilon$.
Fact A. If $|x-c| \lt c/2$, then $\displaystyle \biggl|\frac{1}{x} -\frac{1}{c} \biggr| \leq \frac{2}{c^2} |x-c|$.
To toggle the proof of Fact A click$ \displaystyle |x-c| \lt \min\left\{ \frac{c}{2}, \frac{c^2}{2} \epsilon \right\}$ implies $\displaystyle \biggl|\frac{1}{x} -\frac{1}{c} \biggr| \lt \epsilon$.
Fact B. If $|x-c| \lt 1$, then $\displaystyle \bigl|x^2 -c^2 \bigr| \leq \bigl(1+2 |c| \bigr) |x-c|$.
To toggle the proof of Fact B click$ \displaystyle |x-c| \lt \min\left\{ 1, \frac{ \epsilon }{1 + 2 \bigl| c \bigr|} \right\}$ implies $\displaystyle \bigl| x^2 - c^2 \bigr| \lt \epsilon$.
Fact C. If $x \in (0,+\infty)$, then $\displaystyle \bigl| \sqrt{x} - \sqrt{c} \bigr| \leq \frac{1}{ \sqrt{c}} |x-c|$.
To toggle the proof of Fact C click$ \displaystyle |x-c| \lt \min\left\{ \frac{c}{2}, \sqrt{c} \epsilon \right\}$ implies $\displaystyle \bigl| \sqrt{x} - \sqrt{c} \bigr| \lt \epsilon$.